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Announcements
• HW2 due Feb 25

Last time
• Gradient Descent

Today
• Newton’s Method



Gradient Descent
Recall gradient descent

(1) xk+1 = xk � ↵rf(xk)

has the minimizing movements interpretation:

Exercise 1. Fix xk and define

(2) T (x) = f(xk) +rf(xk)
T (x� xk) +

1

2↵
kx� xkk2.

If we define xk+1 as the minimizer of T , show that

xk+1 = xk � ↵rf(xk).
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Second order Taylor expansion
We say r2f is L-Lipschitz if

kr2f(x)�r2f(y)k  Lkx� yk,

where r2f is the Hessian of f .

Theorem 2 (Second Order Taylor Expansion). Let f : Rn ! R and assume r2f
is L-Lipschitz. Then

(3) f(y) = f(x) +rf(x)T (y � x) +
1

2
(y � x)Tr2f(x)(y � x) +R

where
|R|  L

6
kx� yk3.























Newton’s Method
Newton’s method is based on minimizing a better (second order) approximation of
f : We define

L(x) = f(xk) +rf(xk)
T (x� xk) +

1

2
(x� xk)

Tr2f(xk)(x� xk)

and choose xk+1 to minimize L. This yields

(4) xk+1 = xk � [r2f(xk)]
�1rf(xk).



Convergence of Newton’s Method
We assume that f is µ-strongly convex for µ > 0. This implies that

(5) kr2f(x)�1yk  1

µ
kyk,

for any x, y 2 Rn.







Convergence of Newton’s Method
Theorem 3. Let f : Rn ! R. Assume that f is µ-strongly convex, r2f is L-
Lipschitz and

� :=
L

2µ2
krf(x0)k < 1.

Then Newton’s method converges as k ! 1 to the unique minimizer of f , and
furthermore for any k � 0 we have

(6) krf(xk)k  2µ2

L
�2k .























Newton Notebook (.ipynb)

https://colab.research.google.com/drive/1X2dXKNlwQr_XZI5gmknLgVajXRZn84oW?usp=sharing

