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Linear Algebra, Calculus & Python II
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Last time

e Projection

e Introduction to Numpy



Today

e Reading images and audio in Python
e Diagonalization

e Some vector calculus



Images and audio in Python (.ipynb)


https://colab.research.google.com/drive/1hIm-9xTnJ7J-kD5_IdkxxoJFbX81nU-h?usp=sharing

Diagonalization

Every symmetric matrix A can be diagonalized. That is, there exists an orthogonal
matrix ) and a diagonal matrix D such that

A=QDQT.

An orthogonal matrix is a square matrix whose columns are orthonormal vectors.

The columns of () are exactly the eigenvectors of the matrix A.

The diagonal entries of D are the corresponding eigenvalues.

An orthogonal matrix also has the property that all rows are orthonormal and
thus

Q'Q=1=QQ".

An orthogonal matrix is norm-preserving

Q|| =[]



Optimization and eigenvalues
Exercise 1. Let A be a symmetric matrix, and consider the optimization problem
(1) min{z? Az : ||z = 1}.

Show that every minimizer x* is an eigenvector of A with smallest eigenvalue. What
happens if we switch the min to a max in (1)7 JAN
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Vector Calculus

We recall that for a differentiable function f : R™ — R, the gradient V f is defined

by
([ of Of of
ViIi= (8:13(1)’ ox(2) 7 8:17(71)) '

Example 1. For the function f(z) = 2(1)? — 2(2)? on R?, the gradient is

V() = (2e(1), ~22(2).



Ly )
Gradients of common functions 1()/(* y = i\{ (v
Exercise 2. Show that e
(i) For a linear function f(z) =y’ z, we clearly have Vf(z) = y.
(ii) For a quadratic function f(x) = 27 Az, where A is an n X n matrix, we have

Vf(z)=(A+ ATz

(iii) Assume A is a symmetric matrix. For the function f(z) = ||Az||?, show that

Vf(x) =24%,

Fixy= xTAx = (A = xTATx
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