
Mathematics of Image and Data Analysis
Math 5467

Spectral Clustering

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

 

(null)://(null)jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/5467


Announcements
• Projects due Friday

Last time
• k-means clustering

Today
• Spectral Clustering



Two-moons

• Sometimes a single point is not a good representative of a cluster, in Euclidean
distance.

• Instead, we can try to cluster points so that nearby points are assigned to the
same cluster, without specifying cluster centers.



Weight matrix
Let x1, x2, . . . , xm be points in Rn. To encode which points are nearby, we construct
a weight matrix W , which is an m⇥m symmetric matrix where W (i, j) represents
the similarity between datapoints xi and xj . A common choice for the weight matrix
is Gaussian weights

(1) W (i, j) = exp
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where the � is a free parameter that controls the scale at which points are connected.



Graph cuts for binary clustering
A graph-cut approach to clustering minimizes the graph cut energy

(2) E(z) =
1

2

mX

i=1

mX

j=1

W (i, j)|z(i)� z(j)|2

over label vectors z 2 {0, 1}m.

Notes:

• The value z(i) 2 {0, 1} indicates which cluster xi belongs to.

• The graph-cut energy is the sum of the edge weights W (i, j) that must be cut
to separate the dataset into two clusters.



Balanced graph cuts for binary clustering
Minimizing the graph cut energy

E(z) =
1
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W (i, j)|z(i)� z(j)|2

can lead to very unbalanced clusters (e.g., one cluster can have just a single point).

A more useful approach is to minimize a balanced graph cut energy

(3) Ebalanced(z) =
1
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The denominator is the product of the number of points in each cluster, which is
maximized when the clusters are balanced.

Balanced graph-cut problems are NP hard.



Relaxing the graph cut problem
To relax the graph-cut problem, we consider minimizing the graph cut energy

E(z) =
1

2
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W (i, j)|z(i)� z(j)|2

over all real-vectors z 2 Rm. We still have a balancing issue (here z = 0 is a
minimizer), so we impose the balancing constraints

1T z =
mX

i=1

zi = 0 and kzk2 =
mX

i=1

z(i)2 = 1.

Definition 1. The binary spectral clustering problem is

Minimize E(z) over z 2 Rm, subject to 1T z = 0 and kzk2 = 1.

The resulting clusters are C1 = {xi : z(i) > 0} and C2 = {xi : z(i)  0}.



The graph Laplacian and Fiedler vector
Let W be a symmetric m⇥m matrix with nonnegative entries.

Definition 2. The graph Laplacian matrix L is the m⇥m matrix

(4) L = D �W

where D is the diagonal matrix with diagonal entries

D(i, i) =
mX

j=1

W (i, j).

Lemma 3. Then the graph cut energy can be expressed as

E(z) =
1

2

mX

i=1

mX

j=1

W (i, j)|z(i)� z(j)|2 = zTLz,

where L is the graph Laplacian.









Properties of the graph Laplacian
Lemma 4. Let L = D � W be the graph Laplacian corresponding to a symmetric
matrix W with nonnegative entries. The following properties hold.

(i) L is symmetric.

(ii) L is positive semi-definite (i.e., zTLz � 0 for all z 2 Rm).

(iii) All eigenvalues of L are nonnegative, and the constant vector z = 1 is an
eigenvector of L with eigenvalue � = 0.











Fiedler vector
Let v1, v2, . . . , vm be the eigenvectors of the graph Laplacian, with corresponding
eigenvalues

0 = �1  �2  · · ·  �m.

Definition 5. The second eigenvector v2 of the graph Laplacian L is called the
Fiedler vector.

Theorem 6. The Fiedler vector z = v2 solves the binary spectral clustering problem

Minimize E(z) over z 2 Rm, subject to 1T z = 0 and kzk2 = 1.











Example

(a) Fiedler vector (b) Spectral Clustering

Figure 1: (a) The Fiedler vector and (b) spectral clustering on the 2-moons dataset.



k-nearest neighbor graph
The Gaussian weights

W (i, j) = exp
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are not always useful in practice, since the matrix W is dense (all entries are non-
zero), and the connectivity length � is the same across the whole graph.

It is more common to use a k-nearest neighbor graph. Let dk,i denote the Euclidean
distance between xi and its kth nearest Euclidean neighboring point from x1, . . . , xm.
A k-nearest neighbor graph uses the weights

W (i, j) =

(
1, if kxi � xjk  max{dk,i, dk,j}
0, otherwise.

The weights need not be binary, and can depend on kxi�xjk, similar to the Gaussian
weights. The k-nearest neighbor graph weight matrix W is very sparse (most entries
are zero), so it can be stored and computed with efficiently.



Spectral clustering in Python (.ipynb)

https://colab.research.google.com/drive/1Ht6JY3cSF4M3K82O2xBbh9CIrTISJ0r2?usp=sharing

