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Announcements

e Projects due Friday

Last time

e k-means clustering

Today

e Spectral Clustering



Two-moons

e Sometimes a single point is not a good representative of a cluster, in Euclidean
distance.

e Instead, we can try to cluster points so that nearby points are assigned to the
same cluster, without specifying cluster centers.



Weight matrix

Let x1,2x9,...,2,, be points in R"™. To encode which points are nearby, we construct
a weight matrix W, which is an m X m symmetric matrix where W (i, j) represents
the similarity between datapoints x; and ;. A common choice for the weight matrix
is Gaussian weights

0 w(ing) = exp (- 122 ).

where the o is a free parameter that controls the scale at which points are connected.



Graph cuts for binary clustering

A graph-cut approach to clustering minimizes the graph cut energy

m m

§) B(z) = 3 30 S Wi i)le() — ()P

S

over label vectors z € {0,1}"™. O aC /S/

Notes:
e The value z(i) € {0, 1} indicates which cluster x; belongs to.

e The graph-cut energy is the sum of the edge weights W (i, 7) that must be cut
to separate the dataset into two clusters.



Balanced graph cuts for binary clustering

Minimizing the graph cut energy

m m

B() = 5 3 S Wi )l=0) — 2()P

i=1 j=1

can lead to very unbalanced clusters (e.g., one cluster can have just a single point).

A more useful approach is to minimize a balanced graph cut energy

5 iy g Wi g)I=) — ()17
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The denominator is the product of th I\mber of n each cluster, which is

maximized when the clusters are balanced. 3:

Balanced graph-cut problems are NP hard.



Relaxing the graph cut problem

To relax the graph-cut problem, we consider minimizing the graph cut energy

m m

B() = 5 3 S Wi )l=0) — 2()P

i=1 j=1

over all real-vectors z € R"™. We still have a balancing issue (here z = 0 is a
minimizer), so we impose the balancing constraints

172 = ZZ’ =0 and |z|?= 22(2)2 = 1.

i=1 i=1
Definition 1. The binary spectral clustering problem is
Minimize E(z) over z € R™, subject to 172 = 0 and ||z||* = 1.

The resulting clusters are C; = {z; : 2(i) > 0} and Cy = {x; : z(i) < 0}.



The graph Laplacian and Fiedler vector

Let W be a symmetric m X m matrix with nonnegative entries.

Definition 2. The graph Laplacian matrix L is the m X m matrix
(4) L=D-W
where D is the diagonal matrix with diagonal entries

D(i,i) =Y _ W(i,j).

J=1

Lemma 3. Then the graph cut energy can be expressed as

B(z) = 2 30 S Wi g)le(0) — =) = 7Lz,

i=1 j=1

where L 1is the graph Laplacian.

7 (- (p'=W ) o =006, 0)
(52
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Properties of the graph Laplacian

Lemma 4. Let L = D — W be the graph Laplacian corresponding to a symmetric
matriz W with nonnegative entries. The following properties hold.

(i) L is symmetric. L’ - Dj— N =D L =L
i) L is positi -definite (i.e., 2T Lz >0 for all z € R™).
(11) L is positive semi-definite (i.e., z* Lz > 0 for all z )

(iii) All eigenvalues of L are monnegative, and the constant vector z = 1 is an
eigenvector of L with eigenvalue A = 0.
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Fiedler vector

Let v1,v9,...,v, be the eigenvectors of the graph Laplacian, with corresponding
eigenvalues

O0=XA < A< <A\,

Definition 5. The second eigenvector v, of the graph Laplacian L is called the
Fiedler vector.

Theorem 6. The Fiedler vector z = vy solves the binary spectral clustering problem

Minimize E(z) over z € R™, subject to 172 =0 and ||2||* =
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Example
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(a) Fiedler vector

(b) Spectral Clustering

Figure 1: (a) The Fiedler vector and (b) spectral clustering on the 2-moons dataset



k-nearest neighbor graph

The Gaussian weights

2
W (i, j) = exp (——”x’ ] )

202

are not always useful in practice, since the matrix W is dense (all entries are non-
zero), and the connectivity length o is the same across the whole graph.

It is more common to use a k-nearest neighbor graph. Let dj ; denote the Euclidean
distance between x; and its k*"" nearest Euclidean neighboring point from 1, . .., Zm.
A k-nearest neighbor graph uses the weights

L if flog — z;]] < max{dp,i,dk.;}
0, otherwise.

W(Zvj) — {

The weights need not be binary, and can depend on ||x; —x,||, similar to the Gaussian
weights. The k-nearest neighbor graph weight matrix W is very sparse (most entries
are zero), so it can be stored and computed with efficiently.



Spectral clustering in Python (.ipynb)


https://colab.research.google.com/drive/1Ht6JY3cSF4M3K82O2xBbh9CIrTISJ0r2?usp=sharing

