
Mathematics of Image and Data Analysis
Math 5467

Universal Approximation

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

(null)://(null)jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/5467

Announcements

• Please fill out student rating of teaching (SRT) before May 2. You’ll have a

link in your email.

• HW2, HW3 and Project 2 have been graded. Solutions will be posted this

evening.

• Final exam has been posted to the course website, due May 11.

Last Time

• Nesterov acceleration

Today

• Universal approximation

Universal approximation

Part of the success of neural networks is due to the fact that they can approximate

any continuous function, given enough parameters. In particular, we can approxi-

mate any function by a 2-layer neural network.

• This cannot fully explain this success, since other methods, like polynomial

fitting, can achieve the same universal approximation results.

• It also does not explain why deeper networks can perform better, or why

gradient descent finds networks that generalize.

Today we’ll consider a 2-layer neural network with N hidden nodes and ReLU acti-

vations, which has the form

(1) fN (x) =
NX

i=1

ai(wix+ bi)+,

This is a function fN : R ! R and the weights ai, wi, bi 2 R.

Lipschitz functions

We say a function u : R ! R is Lipschitz continuous if there exists C > 0 such that

(2) |u(x)� u(y)| C|x� y|.

The smallest such constant is called the Lipschitz constant of u and denoted

(3) Lip(u) = sup
x,y2R
x 6=y

|u(x)� u(y)|
|x� y| .

Universal approximation

Theorem 1. Let " > 0, let u : R ! R be Lipschitz continuous, and let R >

0. There exists a 2-layer ReLU neural network fN (x) of the form (1) with N =
6(RLip(u)"�1 + 1) hidden nodes such that

(4) max
�RxR

|fn(x)� u(x)| ".

Furthermore, if u0 is Lipschitz continuous then we need only

(5) N = 6(R
p

Lip(u0)"�1 + 1)

hidden nodes.

Activations

(a) ReLU (b) Sigmoid

Figure 1: Plots of the ReLU and Sigmoid activation functions. Both activation

functions have the behavior that they give zero, or close to zero, responses when the

input is below a certain threshold, and give positive responses above.

Bump functions

The proof is based on the construction of bump functions out of 2-layer networks.

For ReLU the bump function is

g(x) = (x+ 1)+ � 2x+ + (x� 1)+.

For other activations the construction can be different. For the sigmoid activation

a bump function is

g(x) = �(x+ 1)� �(x� 1).

Bump functions

(a) ReLU bump (b) Sigmoid bump

Figure 2: Examples of bump functions constructed from 2-layer neural networks

with ReLU and sigmoid activations.

Proof of Universal Approximation Theorem

Overfitting

The function

fN (x) =
mX

i=�m

yig(h
�1(x� xi)),

constructed in the proof exactly fits the data fN (xi) = yi. This means a network

with m nodes can exactly fit m datapoints, simply via memorization.

In practice it is hard (but not impossible) to get neural networks to overfit like this,

even in the severely over parameterized regime. This is somewhat of a mystery still

in the community, but is related to the optimization algorithms used to train neural

networks.

Noisy labels

(a) Smooth labels (b) Noisy labels

Figure 3: Example of a network fitting smooth and noisy data. The network has

10000 hidden nodes and only 40 training points.

Approximating polynomials with deep ReLU networks

Theorem 2. Let g be a polynomial of degree k. For any " > 0 there exists a ReLU
network f with O(k log("�1)) hidden nodes such that

|f(x)� g(x)| " for 0 x 1.

Approximating x2
deep ReLU networks

Theorem 3. For any " > 0 there exists a ReLU network f with O(log("�1)) layers
and nodes such that

|f(x)� x
2| " for 0 x 1.

Sawtooth functions

We define

g(x) =

(
2x, if 0 x 1

2

2� 2x, , if
1
2 x 1,

and the m-fold composition

gm = g � g � · · · � g| {z }
m times

.

Also let fm be the piecewise linear approximation of x
2

with 2m pieces on [0, 1].
Then as before

|fm(x)� x
2| 2�2m

.

Sawtooth functions

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 g1

g2

g3

(a) gi

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 f0

f1

f2

f3

x2

(b) fi

Figure 4: A depicition of the functions fi and gi used in approximating the parabola

x
2
.

Key lemma

Lemma 4. For any 0 x 1 and m � 1 we have

(6) fm(x) = x�
mX

k=1

gk(x)

22k
.

