
Math 5467: Introduction to the Mathematics
of Image and Data Analysis

Jeff Calder

University of Minnesota
School of Mathematics
jwcalder@umn.edu

May 10, 2022

jwcalder@umn.edu

2

Contents

1 Introduction 7
1.1 Course Information . 7
1.2 Python . 7
1.3 Background on audio, images, and data analysis 9

1.3.1 Audio . 10
1.3.2 Images . 11
1.3.3 Data science and machine learning 13

2 Linear Algebra Review 15
2.1 Notation . 15
2.2 Projection . 17
2.3 Diagonalization of symmetric matrices 19
2.4 Vector calculus . 20
2.5 Taylor expansion . 22
2.6 Convex functions . 28

3 Principal Component Analysis 33
3.1 Fitting the best linear subspace 33
3.2 PCA dimension reduction . 39
3.3 How many principal directions? 40
3.4 Robust PCA . 41
3.5 PCA-based Image Compression 44
3.6 PCA-based Handwritten Digit Recognition 50

4 Clustering 55
4.1 k-Means Clustering . 55

4.1.1 Clustering MNIST digits 63
4.2 Spectral Clustering . 64

4.2.1 The graph Laplacian and Fiedler vector 67
4.2.2 Clustering MNIST digits 71

3

4 CONTENTS

5 PageRank 75
5.1 Convergence of the random surfer 78
5.2 Personalized PageRank for image retrieval 82

6 The Discrete Fourier Transform 85
6.1 Complex numbers and Euler’s formula 87
6.2 The Forward and Inverse Transforms 89
6.3 The Fast Fourier Transform (FFT) 95
6.4 Parseval’s Identities . 101
6.5 Convolution and the DFT . 103
6.6 Application: Signal denoising 105

6.6.1 Tikhonov regularization 106
6.6.2 Total Variation regularization 114

6.7 Multi-dimensional DFT . 129
6.7.1 Application: Image denoising 132

6.8 The Discrete Cosine and Sine Transforms 138
6.8.1 DCT-based image compression 143

6.9 The Sampling Theorem . 144

7 The Discrete Wavelet Transform 151
7.1 The 1D Haar Wavelet . 153
7.2 2D Haar Wavelet Transform 155
7.3 Wavelet denoising and compression 158
7.4 Wavelet-based image classification 159
7.5 General discrete Wavelets . 163

8 Machine Learning 167
8.1 Introduction . 167

8.1.1 Fully supervised learning 168
8.1.2 Semi-supervised learning 170
8.1.3 Unsupervised learning 171

8.2 Graph-based semi-supervised learning 172
8.3 Graph-based embeddings . 177

8.3.1 Spectral embedding . 178
8.3.2 t-SNE embedding . 180

8.4 Neural networks . 187
8.4.1 Fully connected networks 187
8.4.2 Back propagation . 191
8.4.3 Classification with neural networks 194
8.4.4 Universal approximation 198

CONTENTS 5

8.4.5 Convolutional Neural Networks 208

9 Optimization 213
9.1 Gradient descent . 213

9.1.1 The sublinear rate . 214
9.1.2 Linear convergence with the PL inequality 217
9.1.3 Momentum descent . 219
9.1.4 Nesterov’s Accelerated Gradient Descent 231
9.1.5 Stochastic gradient descent 238

9.2 Newton’s method . 246

6 CONTENTS

Chapter 1

Introduction

1.1 Course Information

This course is a modern introduction to the mathematics of image and data
analysis. The course will cover the discrete Fourier and Wavelet transforms,
with applications to image and audio processing. We will also cover the math-
ematics of common data analysis algorithms, including principal component
analysis (PCA), data ranking (e.g., Google’s PageRank for ranking webpages),
and clustering algorithms such as k-means and spectral clustering. Time-
permitting, we will give an introduction to machine learning (ML), and cover
basic ML classifiers, neural networks (in particular, convolutional neural net-
works for image classification), and graph-based learning.

The course will cover both mathematical theory and practical applications.
We will use Python for all computational work in this course. Students will get
hands on experience working with real data through a series of computational
projects that will be completed throughout the term, on topics such as audio or
image compression, facial recognition, or image classification. We will start the
course with a gentle introduction to Python; no prior knowledge is required.
See the course website, below, for details on how to get access to Python:

http://www-users.math.umn.edu/~jwcalder/5467S21/index.html

1.2 Python

These lecture notes are accompanied by Python notebooks that can be found
on the course website, and in links throughout these notes. Below are links to

7

http://www-users.math.umn.edu/~jwcalder/5467S21/index.html

8 CHAPTER 1. INTRODUCTION

Google Colab Python notebooks with basic introductions to various aspects
of Python programming.

Introduction to Python Notebooks:

1. Introduction to Python

2. Introduction to Numpy

3. Reading and writing images and audio in Python

4. Introduction to Pandas

Below are some exercises to be completed in Python (most are in the
notebooks above as well).

Exercise 1.2.1. Write a Python function that approximates sin(x) using the
Taylor expansion sin(x) ≈ x − x3

3!
+ x5

5!
− x7

7!
. Test your function for simple

known values of sin(x), such as sin(0) = 0, sin(π/4) = 1√
2
, sin(π/2) = 1, and

sin(π) = 0, etc. How accurate is the approximation?
Your function should use only basic Python programming. In particular,

do not use any packages, like Numpy, Scipy, etc. 4
Exercise 1.2.2. Write a Python function that computes the square root of
a positive number using the Babylonian method. The Babylonian method to
compute

√
S for S > 0 constructs the sequence xn by setting x0 = S and

iterating

xn+1 =
1

2

(
xn +

S

xn

)
.

Your code can take as input a tolerance parameter ε > 0, and should iterate
until |x2

n−S| ≤ ε, and then return xn. Test your square root function to make
sure it works.

Your function should use only basic Python programming. In particular,
do not use any packages, like Numpy, Scipy, etc. 4
Exercise 1.2.3. Write a Python program that uses the Sieve of Eratosthenes
to find all prime numbers between 2 and a given integer n.

Your function should use only basic Python programming. In particular,
do not use any packages, like Numpy, Scipy, etc. 4
Exercise 1.2.4. Write a Python function that computes the largest magnitude
eigenvalue of a square matrix with the power iteration. The power iteration is

xn+1 =
Axn
‖Axn‖

.

https://colab.research.google.com/drive/1IGDvdAx8wOhxukk1zd3i6eCrypS5U7_d?usp=sharing
https://colab.research.google.com/drive/1mza3MOZEqBMtkLR33QAk4tGM17GivoKp?usp=sharing
https://colab.research.google.com/drive/1hIm-9xTnJ7J-kD5_IdkxxoJFbX81nU-h?usp=sharing
https://colab.research.google.com/drive/10cIB-uevRJ9ewSreKseABxvOjzCatia1?usp=sharing
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

1.3. BACKGROUND ON AUDIO, IMAGES, AND DATA ANALYSIS 9

For a diagonalizable matrix, the iteration converges to the eigenvector of A
with largest magnitude eigenvalue. The eigenvalue is

λ = lim
n→∞

‖Axn‖.

Compare your function to the true eigenvector and eigenvalue for small ma-
trices where you can compute it by hand, to check that your function works.

In this exercise you may use Numpy. Try to write your code with only one
loop, over the iterations in the power method. 4
Exercise 1.2.5. Write a Python function that numerically approximates π
via the integral expression

π = 4

∫ 1

0

√
1− x2 dx.

Your function should not use any loops. Use a Numpy array and Numpy
functions instead. How many decimal places of π can you accurately compute?

In this exercise you may use Numpy. Can you write the code without any
loops? 4

The following exercise may be of interest, but does not involve Python.

Exercise 1.2.6. Prove that the iteration in the Babylonian method above
converges quadratically to the square root of x. In particular, show that the
error εn = xn√

x
− 1 satisfies

εn+1 =
ε2
n

2(εn + 1)
.

From this, we get that εn ≥ 0 for n ≥ 1, and so

εn+1 ≤
1

2
min{ε2

n, εn}.

Why does the inequality above guarantee convergence (i.e., that εn → 0 as
n→∞)? 4

1.3 Background on audio, images, and data anal-
ysis

A major theme in this course is that of finding a good basis to represent
your data. Usually data (e.g., images, audio, video, etc.) are captured in

10 CHAPTER 1. INTRODUCTION

0.0 0.5 1.0 1.5 2.0
1e6

−15000

−10000

−5000

0

5000

10000

0 50 100 150 200 250 300 350 400

−2000

−1000

0

1000

2000

Figure 1.3.1: Example of a stereo audio signal from a piece of classical music.
The left figure shows both channels over the whole song, while the right figure
shows a short clip.

formats that are convenient for acquiring the data, but very inconvenient for
storage or other kinds of processing. Much of this course is concerned with
finding new bases for image and audio data that are better for tasks like
image compression or image classification, among others. A change of basis
can be linear, which the reader should be familiar with from linear algebra, or
nonlinear as in modern deep neural networks. The change of basis can also be
either hand-crafted (like in Fourier or Wavelet analysis), or learned from the
data, as in Principal Component Analysis (PCA) or deep learning. Before we
proceed with the course, we review the formats in which images and audio are
typically recorded and stored.

1.3.1 Audio

A digital audio signal is a series of discrete samples of a continuous audio
signal generated by the movement of the vibrating membrane of a microphone
(of course, the vibrations in the membrane are caused by the rarefaction and
compression of air, e.g., sound waves). Audio signals can be captured at
different sampling rates and bit-depths. Standard CD quality audio has two
channels (left and right) sampled at 44,100 Hz with 16-bits per sample. This
means each channel has 44,100 samples per second, each encoded as a (signed)
16-bit integer to represent the magnitude of the sound wave at that sample.
By the Sampling Theorem, this sampling rate allows CD audio to represent
frequencies up to 22,050 Hz, which is well above what most people can hear.
Figure 1.3.1 shows stereo audio signals for a piece of classical music.

The bit-rate for CD quality audio is the number of bits used per second of

1.3. BACKGROUND ON AUDIO, IMAGES, AND DATA ANALYSIS 11

audio, which we can compute as

2︸︷︷︸
Channels

× 44, 100︸ ︷︷ ︸
Samples per Second

× 16︸︷︷︸
Bits per Sample

= 1, 411, 200 bits/second.

Often this is written in terms of kilobits (kbit)—a kilobit is 1000 bits—so CD
audio has a bitrate of 1,411 kbit/s (also denoted 1,411 kbps). A 4 minute long
song would thus take

4︸︷︷︸
Minutes

× 60︸︷︷︸
Seconds per Minute

× 1, 411 kbits/second = 338, 640 kbits,

of space on disk. In terms of megabits (Mbit)—a megabit is 1000 kilobits—
this is 339 Mbits. The reader may be more familiar with kilobytes (kB) and
megabytes (MB). A byte is 8 bits, and so 339 Mbits is actually around 42
MB.1

The reader who is familiar with digital audio files will probably know that
an mp3 audio file for a 4 minute song is usually around 5 MB, depending on
the bitrate, which is much less than the 42 MB we computed for the raw data.
In fact, a very high quality mp3 bitrate is 320 kbit/second2, which is less than
one quarter of the bitrate of CD quality audio. Many mp3 audio files are com-
pressed at much lower bitrates than this, with sometimes acceptable results.
A main question we will address in this course is how to compress audio sig-
nals (and later images and video), without destroying important information.
Other important tasks in audio processing are classifying audio signals (e.g.,
determining which song is playing automatically), and speech to text (e.g.,
determining what was said in an audio sample).

1.3.2 Images

A digital image is a discrete sampling of a two dimensional continuous signal
given by the light hitting a rectangular image sensor in a digital camera. Thus,
we can think of an image as a two-dimensional array of pixels. An image can
be grayscale, in which case each pixel has a single number associated with it,
representing the brightness, or image intensity, at that location. Figure 1.3.2
shows an example of a grayscale image, the famous cameraman image. On the
right in the figure, we show the image plotted as a function (e.g., a surface),

1Note we are using base 10 to define kilo and mega. It is also common to use base 2, so
that a kilobit is 210 = 1024 bits, and a megabit is 1024 kilobits.

2It is widely accepted, except by some audio enthusiasts, that 320 kbit/second mp3 audio
is indistinguishable to the human ear from CD quality audio.

12 CHAPTER 1. INTRODUCTION

Figure 1.3.2: Example of a grayscale digital image. The left shows the image
in its usual form, while the right side depicts the image intensity as a surface
(i.e., a function of 2 variables).

over the two-dimensional plane, where the height of the surface is the intensity
of the pixel at that location. In a color image, each pixel is associated with
several numbers, representing the intensity of different colors at that point,
which mix to produce the correct color. The most common colorspace is
RGB (red–green–blue), in which each pixel has three numbers representing
the amount of red, green, and blue present at each pixel in the image. Thus,
a grayscale image can be thought of as a matrix, while a color image can be
thought of as 3 (or possibly more) matrices, one for each color channel. There
are other colorspaces that are frequently used (e.g., by printers) that have more
color channels, or use different colors. For example, in hyperspectral satellite
imagery, it is not uncommon to have over 200 color channels in an image, each
corresponding to a different frequency band of the electromagnetic spectrum.

The cameraman image is of size 512 × 512, and so it has 262, 144 pixels.
This is quite small by today’s standards. For example, a high-end modern
smartphone has a camera with 12 million pixels (12 MP). For a color image,
this requires storing 36 million numbers. Images usually have a bit depth of
8-bit, allowing 28 = 256 different values for each color channel, or about 16
million different colors. Some newer smartphones use higher bit depths of 10-
bits or 12-bits, yielding over 1 billion different colors. Let’s consider an 8-bit

1.3. BACKGROUND ON AUDIO, IMAGES, AND DATA ANALYSIS 13

color image with 12 megapixels. The 36 million 8-bit numbers that are stored
take up 36 MB of space. A 10-bit image would take 45 MB of space and a
12-bit image would take 54 MB of space. High end digital cameras can have
even higher resolution, currently up to around 46 million pixels, yielding 8-bit
images that take around 130 MB of space, and 14-bit images that take up to
240 MB.

However, images are rarely stored or transmitted in raw form, since it is a
colossal waste of space. Common image compression algorithms, like jpeg, can
compress images to roughly one tenth of their size, without noticeable loss in
image quality. Building on our discussion of audio compression, we will learn
in this course how to compress images without removing important informa-
tion. Aside from image compression, there are many other important tasks in
computer vision and image processing, such as image segmentation (determin-
ing the object of interest in an image), object recognition (determining what
the object is), image restoration (removing noise or blur), image inpainting
(recovering lost portions of images), and image classification. We will touch
on some of these other applications in the course.

A few words about video compression. We will not touch on this in the
course, but since video is simply a sequence of images, one could apply im-
age compression in this setting as well. However, there is a lot of temporal
information that is missed by such an approach, and modern video compres-
sion uses motion tracking and compresses only the differences between subse-
quent frames of video, which has significant advantages over image compression
alone.

1.3.3 Data science and machine learning

Finally, this course is not only about image and audio processing. Part of
the course will cover some fundamentals of data science and machine learning
from a mathematical perspective. In data analysis, one typically has many
datapoints, and the goal is to uncover structure in the data to perform tasks
like classification, clustering, dimension reduction, etc. Many problems in ma-
chine learning are related to image analysis (e.g., image classification), but
are substantially different in character than the image and audio compression
problems described in the preceding sections. In machine learning, we are
given many (possibly thousands or millions) of images and the task is to un-
derstand how the images naturally group together (e.g., clustering), and how
to automatically distinguish images from different classes (e.g., image classifi-
cation).

Figure 1.3.3 shows an example of some images from the MNIST dataset,

14 CHAPTER 1. INTRODUCTION

Figure 1.3.3: Example of some of the MNIST digits. Each image is a 28× 28
pixel image of a handwritten digit.

which we will use for illustrating machine learning throughout the course.
The MNIST dataset contains 70,000 grayscale images of handwritten digits 0
through 9. Each image is very small, containing only 28 × 28 pixels. We can
still consider the image compression problem, but here the goal would be to
compress the entire dataset, and not a single image. A more common task is
to train a machine learning classifier to recognize the number written in each
image. This is called optical character recognition, and is very commonly used
for many tasks, including archiving old newspapers or books, and teaching
self-driving cars to read street signs and house numbers. We will cover various
methods for image classification in the course, starting with a method based
on principal component analysis (PCA), and then moving on to more sophisti-
cated methods based on Fourier and Wavelet features, and deep convolutional
neural networks.

Chapter 2

Linear Algebra Review

We recall some basic facts about linear algebra in this section.

2.1 Notation
We will use capital letters like A,B,C, . . . for matrices, and lower case letters,
such as x, y, z, . . . for vectors. Scalars will be denoted by lower case letters
a, b, c, or a1, a2, When not specified, vectors are of length n and matrices
of size m × n. Vectors are always treated as column vectors. If we have
more than a handful of vectors, we will use subscripts to denote a collection
of vectors, so x1, x2, . . . , xp will always refer to a collection of p vectors. For
example, e1, e2, . . . , en will denote the n standard basis vectors in Rn. The
reader should be careful not to confuse xi with the coordinates of the vector x.
We will rarely need to notate the coordinates of vectors or matrices, and if we
do, we will use the notation x(i) for the ith coordinate of x, or eTi x. Similarly,
we will denote the entries of a matrix A as A(i, j).

The dot product of vectors x and y is given by the product xTy, treating
x and y as n× 1 column vectors. To write this out in coordinate notation we
have

xTy =
n∑
i=1

x(i)y(i).

The dot product induces a norm

‖x‖ =
√
xTx =

√
x(1)2 + x(2)2 + · · ·+ x(n)2

on the Euclidean space Rn. The quantity ‖x − y‖ is exactly the Euclidean
distance between x and y. A commonly used algebraic expansion is

(2.1.1) ‖x± y‖2 = ‖x‖2 ± 2xTy + ‖y‖2.

15

16 CHAPTER 2. LINEAR ALGEBRA REVIEW

This can be verified immediately by writing ‖x ± y‖2 = (x ± y)T (x ± y) and
expanding. A very important identity is the Cauchy-Schwarz inequality

(2.1.2) xTy ≤ ‖x‖‖y‖.

To prove the Cauchy-Schwarz inequality, we first assume ‖x‖ = ‖y‖ = 1, that
is, x and y are normal vectors (see below). Then we have to show that xTy ≤ 1.
To see this we compute via (2.1.1) that

0 ≤ ‖x− (xTy)y‖21− 2(xTy)2 + (xTy)2 = 1− (xTy)2,

from which xTy ≤ 1 follows. For general x, y ∈ Rn we use the result for normal
vectors to show that (

x

‖x‖

)T
y

‖y‖ ≤ 1,

from which (2.1.2) immediately follows by rearranging (note that if either
‖x‖ = 0 or ‖y‖ = 0 the result is trivial, so we are safe dividing by these
norms). Finally, using (2.1.1) and (2.1.2) we have

‖x+ y‖2 = ‖x‖2 + 2xTy + ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2,

which reduces, upon taking square roots of both sides, to the triangle inequality

(2.1.3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

By induction we can extend the triangle inequality to more than two vectors,
that is

(2.1.4)

∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥ ≤
m∑
i=1

‖xi‖.

The triangle and Cauchy-Schwarz inequalities are two of the most important
inequalities in analysis.

We say two vectors x and y are orthogonal if xTy = 0. A vector x is a
normal vector if ‖x‖ = 1, and two orthogonal vectors x and y that are also
normal vectors are called orthonormal. A sequence of vectors v1, v2, . . . vp is
called orthogonal (resp. orthonormal) if each pair vi, vj is orthogonal (resp. or-
thonormal), provided i 6= j. Consider a vectors x in the span of orthonormal
vectors v1, v2, . . . , vp, that is

x =

p∑
i=1

aivi.

2.2. PROJECTION 17

Then the norm of x can be computed by

(2.1.5) ‖x‖2 =

p∑
i=1

aiv
T
i

p∑
j=1

ajvj =

p∑
i=1

p∑
j=1

aiajviv
T
j =

p∑
i=1

a2
i .

Exercise 2.1.1. Given vectors x and y, both of length n, we will sometimes
find it useful to construct the rank-one matrix xyT . The matrix is called
“rank-one” since the range of xyT is spanned by the vector x, and is thus
one-dimensional so the matrix has rank equal to one. Using the definition of
matrix multiplication, xyT is the n × n matrix whose (i, j) entry is x(i)y(j).
Let x1, x2, x3, . . . , xm be a collection of vectors of length n. Show that

m∑
i=1

xix
T
i = XTX,

where X is the m × n matrix whose ith row is xTi , which can be written as
X =

[
x1 x2 · · · xm

]T . 4

2.2 Projection
Let L ⊂ Rn be the linear subspace spanned by the collection of orthonormal
vectors v1, v2, . . . , vp, where p ≤ n. That is

L =

{
p∑
i=1

aivi : ai ∈ R

}
.

In this case, L is p-dimensional. The projection of a point x ∈ Rn onto
L, denoted ProjLx, is the closest point in the subspace L to x. That is,
ProjLx ∈ L satisfies

‖ProjLx− x‖ ≤ ‖y − x‖ for all y ∈ L.

We recall here some basic properties of the projection. First, we claim that

(2.2.1) ProjLx =

p∑
i=1

(xTvi)vi

To see this, let us write y ∈ L as

y =

p∑
i=1

aivi,

18 CHAPTER 2. LINEAR ALGEBRA REVIEW

and compute

‖x− y‖2 = ‖x‖2 − 2xTy + ‖y‖2 = ‖x‖2 − 2

p∑
i=1

aix
Tvi +

p∑
i=1

a2
i .

Minimizing over ai yields ai = xTvi, which establishes the claim.
Since the vi are orthonormal, we have by (2.1.5) that

(2.2.2) ‖ProjLx‖2 =

p∑
j=1

(xTvi)
2

It can be useful to write (2.2.1) in matrix form. Let V be the n × p matrix
whose columns are v1, v2, . . . , vp, that is

V =
[
v1 v2 · · · vp

]
.

Then we have

(2.2.3) ProjLx = V V Tx.

Note that since the columns of V are orthonormal, we have V TV = I, and so

(2.2.4) (V V T)2 = V V TV V T = V V T .

This is a natural property, and simply says that if we apply the projection
twice, the second operation leaves the point unchanged, since it already lies in
L. It is also clear that V V T is a symmetric matrix.

The residual is the difference x−ProjLx. The residual is orthogonal to L,
and we thus say the projection is orthogonal projection. Indeed, we compute

(x− ProjLx)TV = (x− V V Tx)TV = xTV − xTV V TV = 0.

Note we used that V TV = I in the third equality above. Subsequently, we
have

‖x‖2 = ‖x− ProjLx+ ProjLx‖2 = ‖x− ProjLx‖2 + ‖ProjLx‖2,

and so

(2.2.5) ‖x− ProjLx‖2 = ‖x‖2 − ‖ProjLx‖2.

The matrix corresponding to the residual mapping is I − V V T , and, as
with the projection, the residual matrix satisfies

(2.2.6) (I − V V T)2 = I − 2V V T + V V TV V T = I + V V T .

2.3. DIAGONALIZATION OF SYMMETRIC MATRICES 19

This is the analogous property to (2.2.4). The matrix I − V V T is also clearly
a symmetric matrix.

It is sometimes useful to project onto affine spaces. An affine space has
the form x0 + L1, where L is a linear subspace. The key difference between
affine and linear subspaces is that linear subspaces must contain the origin 0,
while an affine space translates the origin to a new point x0. To project onto
an affine subspace, we simply translate the affine space and the point x to the
origin, project onto L, and translate back. That is, the projection onto the
affine space A = x0 + L, denoted ProjA, is given by

(2.2.7) ProjAx = x0 + ProjL(x− x0).

We can also write this as

ProjAx = x0 − ProjLx0 + ProjLx.

Exercise 2.2.1. Let L be a linear subspace of Rn.

(i) Show that ‖ProjLx‖ ≤ ‖x‖.

(ii) Show that ProjLx = x if and only if x ∈ L.

(iii) Show that if ProjLx = x for all x ∈ Rn, then L = Rn.

4

Exercise 2.2.2. Let V and W be orthogonal linear subspaces of Rn. This
means that for each v ∈ V and w ∈ W we have wTv = 0. Define

V +W = {v + w : v ∈ V and w ∈ W}.

Show that
ProjV+Wx = ProjV x+ ProjWx.

4

2.3 Diagonalization of symmetric matrices
Every symmetric matrix can be diagonalized. That is, for any symmetric
matrix A, there exists an orthogonal matrix Q and a diagonal matrix D such
that

A = QDQT .

1The notation means x0 + L = {x0 + y : y ∈ L}.

20 CHAPTER 2. LINEAR ALGEBRA REVIEW

An orthogonal matrix is a square matrix whose columns are orthonormal vec-
tors. In this case, the columns of Q are exactly the eigenvectors of the matrix
A, which are orthogonal due to the symmetry of A. An orthogonal matrix
also has the property that all rows are orthonormal and thus

QTQ = I = QQT .

Thus, the inverse of Q is QT , and vice versa.
We generally arrange the eigenvalues of A from smallest to largest

λ1 ≤ λ2 ≤ · · · ≤ λn.

The diagonal matrix D has exactly the eigenvalues λi on the diagonal, so
D(i, i) = λi. Thus the decomposition A = QDQT acting on a vector x can
be interpreted as changing basis into the coordinates of the eigenvectors by
taking QTx, then multiplying by the diagonal matrix D, and then converting
back to the standard coordinates.

Exercise 2.3.1. Let Q be an orthogonal matrix. Show that ‖Qx‖ = ‖x‖. 4
Exercise 2.3.2. Let A be a symmetric matrix, and consider the optimization
problem

(2.3.1) min{xTAx : ‖x‖ = 1}.
Since the set {x ∈ Rn : ‖x‖ = 1} is compact (closed and bounded), and
the function x 7→ ‖Ax‖ is continuous, the optimization problem (2.3.1) ad-
mits a minimizer. Show that every minimizer x∗ is an eigenvector of A with
smallest eigenvalue. What happens if we switch the min to a max in (2.3.1)?
[Hint: Diagonalize A as A = QDQT and write write the optimization prob-
lem in terms of y = QTx. Compute the optimal y and convert back to the x
coordinates.] 4
Exercise 2.3.3. We say a square matrix A is positive semi-definite if xTAx ≥
0 for all vectors x. Show that a symmetric matrix is positive semi-definite if
and only if all its eigenvalues are nonnegative. [Hint: Diagonalize A.] 4

2.4 Vector calculus
It will sometimes be useful to differentiate real-valued functions of a vector x,
and we record some basic identities here. We recall that for a differentiable
function f : Rn → R, the gradient ∇f is defined by

∇f(x) =

(
∂f

∂x(1)
,
∂f

∂x(2)
, . . . ,

∂f

∂x(n)

)
.

2.4. VECTOR CALCULUS 21

For example, for the function f(x) = x(1)2 − x(2)2 on R2, the gradient is
∇f(x) = (2x(1),−2x(2)). The gradient is important since it characterizes
minima and maxima of f , via the necessary condition ∇f = 0.

For a linear function f(x) = yTx, we clearly have ∇f(x) = y. For a
quadratic function f(x) = xTAx, where A is an n× n matrix, we have

(2.4.1) ∇f(x) = (A+ AT)x.

Indeed, we compute

∂f

∂x(k)
=

∂

∂x(k)

n∑
i=1

n∑
j=1

A(i, j)x(i)x(j)

=
n∑
i=1

n∑
j=1

A(i, j)(δ(i, k)x(j) + δ(j, k)x(i))

=
n∑
j=1

A(k, j)x(j) +
n∑
i=1

A(i, k)x(i)

=
n∑
i=1

(A(k, i) + A(i, k))x(i),

which establishes the claim. Above, the notation δ(i, j) is the Kronecker delta,
which satisfies δ(i, j) = 1 when i = j and δ(i, j) = 0 when i 6= j.

The Hessian of f , denoted ∇2f(x), is the n × n matrix of mixed second
derivatives

∇2f =

(
∂2f

∂x(i)∂x(j)

)n
i,j=1

.

In other words

∇2f =


∂2f

∂x(1)∂x(1)
· · · ∂2f

∂x(1)∂x(n)
...
∂2f

∂x(n)∂x(1)
· · · ∂2f

∂x(n)∂x(n)

 .
Due to the equality of mixed partial derivatives

∂2f

∂x(i)∂x(j)
=

∂2f

∂x(j)∂x(i)
,

the Hessian matrix ∇2f is symmetric. As an example, for the quadratic func-
tion f(x) = xTAx, the Hessian is the constant matrix ∇2f(x) = A + AT .
Indeed, (2.4.1) can be written as

∂f

∂x(i)
=

n∑
k=1

(aik + aki)xk.

22 CHAPTER 2. LINEAR ALGEBRA REVIEW

Differentiating in x(j) above we obtain

∂2f

∂x(i)∂x(j)
= (aij + aji),

which shows that ∇2f = A+ AT .

Exercise 2.4.1. Assume A is a symmetric matrix. Show that

(2.4.2) ∇‖Ax‖2 = 2A2x,

and

(2.4.3) ∇2‖Ax‖2 = 2A2.

4
Exercise 2.4.2. Let A be a symmetric matrix. Show that any minimizer x of
(2.3.1) is an eigenvector of A with eigenvalue λ = xTAx, without using that
A is diagonalizable. [Hint: Any minimizer of (2.3.1) is also a minimizer of the
Rayleigh quotient

f(x) =
xTAx

xTx
.

Compute ∇f(x), set ∇f(x) = 0, and use that ‖x‖ = 1.] 4

2.5 Taylor expansion
Given a function f : Rn → R, it is often useful to approximate f by simpler
functions. When those simpler functions are polynomials, and the approxi-
mation is local in space, we obtain the well-known Taylor expansion. In this
section we will work out first and second order Taylor expansions for functions
on Rn.

Let x, y ∈ Rn and define the function g : R→ R by

g(t) = f(x+ t(y − x)).

We first work with a one dimensinal Taylor expansion of g. By the Funda-
mental Theorem of Calculus we compute

g(1) = g(0) +

∫ 1

0

g′(t) dt

= g(0) +

∫ 1

0

g′(0) dt+

∫ 1

0

g′(t)− g′(0) dt.

2.5. TAYLOR EXPANSION 23

Therefore

(2.5.1) g(1) = g(0) + g′(0) +R,

where

R =

∫ 1

0

g′(t)− g′(0) dt.

We now compute, via the chain rule, that

g′(t) =
d

dt
f(x+ t(y − x))

=
n∑
i=1

∂f

∂x(i)
(x+ t(y − x))(y(i)− x(i))

= ∇f(x+ t(y − x))T (y − x).

Therefore, applying Cauchy-Schwarz (2.1.2) we have

|g′(t)− g′(0)| = |∇f(x+ t(y − x))T (y − x)−∇f(x)T (y − x)|
≤ ‖∇f(x+ t(y − x))−∇f(x)‖‖x− y‖.

This suggests the following definition.

Definition 2.5.1. We say that ∇f is L-Lipschitz if

(2.5.2) ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

for all x, y ∈ Rn.

Assuming ∇f is L-Lipschitz we find that

|R| ≤
∫ 1

0

|g′(t)− g′(0)| dt

≤
∫ 1

0

‖∇f(x+ t(y − x))−∇f(x)‖‖x− y‖ dt

≤
∫ 1

0

L‖x+ t(y − x)− x‖‖x− y‖

= L‖x− y‖2

∫ 1

0

t dt

≤ L

2
‖x− y‖2.

24 CHAPTER 2. LINEAR ALGEBRA REVIEW

We now substitute this bound and the identites g(0) = f(x), g(1) = f(y) and
g′(0) = ∇f(x)T (y − x) into (2.5.1) to obtain

(2.5.3) f(y) = f(x) +∇f(x)T (y − x) +R

where

(2.5.4) |R| ≤ L

2
‖x− y‖2.

To simplify notation, we introduce Big O notation.

Definition 2.5.2. Given f, g : Rn → R, we write f = O(g) to mean that
there exists a constant C > 0 such that |f(x)| ≤ Cg(x) for all x ∈ Rn.

Using the Big O notation, we can summarize our result in the following
Theorem.

Theorem 2.5.3 (First Order Taylor Expansion). Let f : Rn → R and assume
∇f is L-Lipschitz. Then

(2.5.5) f(y) = f(x) +∇f(x)T (y − x) +O(L‖x− y‖2).

Remark 2.5.4. In using the Big O notation, we are being a bit less precise,
compared to our previous bound on the remainder (2.5.4), since the Big O
notation hides a constant C > 0 that is not specified by the notation. In the
case of Theorem 2.5.3, the constant is C = 1

2
. In some cases we will use the

explicit value of this constant. In general, it is merely important that C does
not depedend on the given function f .

The first order Taylor expansion approximates f by the linear function

T (y) = f(x) +∇f(x)T (y − x),

with quadratic errors O(L‖x − y‖2). We now consider a second order Taylor
expansion, which approximates f by a quadratic function, and sheds more
light on the quadratic error term O(L‖x− y‖2).

As before, we define the function g by

g(t) = f(x+ t(y − x)),

2.5. TAYLOR EXPANSION 25

except this time we compute a second order Taylor expansion of g. This
requires two applications of the Fundamental Theorem of Calculus, as follows

g(1) = g(0) +

∫ 1

0

g′(t) dt

= g(0) +

∫ 1

0

g′(0) +

∫ t

0

g′′(s) ds dt

= g(0) +

∫ 1

0

g′(0) dt+

∫ 1

0

∫ t

0

g′′(s) ds dt

= g(0) + g′(0) +

∫ 1

0

∫ t

0

g′′(0) ds dt+

∫ 1

0

∫ t

0

(g′′(s)− g′′(0)) ds dt

= g(0) + g′(0) +
1

2
g′′(0) +R.

where

R =

∫ 1

0

∫ t

0

(g′′(s)− g′′(0)) ds dt.

We now compute, via the chain rule, that

g′′(t) =
d2

dt2
f(x+ t(y − x))(2.5.6)

=
d

dt

n∑
i=1

∂f

∂x(i)
(x+ t(y − x))(y(i)− x(i))

=
n∑
i=1

n∑
j=1

∂2f

∂x(i)∂x(j)
(x+ t(y − x))(y(i)− x(i))(y(j)− x(j))

= (y − x)T∇2f(x+ t(y − x))(y − x).

Therefore, applying Cauchy-Schwarz we have

|g′′(s)− g′′(0)| =
∣∣(y − x)T

(
∇2f(x+ s(y − x))−∇2f(x)

)
(y − x)

∣∣
≤
∥∥(∇2f(x+ s(y − x))−∇2f(x)

)
(y − x)

∥∥ ‖x− y‖.
To proceed further, we need to define the norm of a matrix. The definition
below gives the operator norm of a matrix A, induced by the Euclidean norm
on vectors x ∈ Rn.

Definition 2.5.5. Given a matrix A ∈ Rn×m, the operator norm ‖A‖ of A is
given by

‖A‖ := max
x∈Rn
x 6=0

‖Ax‖
‖x‖ .

26 CHAPTER 2. LINEAR ALGEBRA REVIEW

We note that for any x ∈ Rn we have ‖Ax‖ ≤ ‖A‖‖x‖. Applying this
above yields

|g′′(s)− g′′(0)| ≤ ‖∇2f(x+ s(y − x))−∇2f(x)‖‖x− y‖2.

This motivatives the following definition.

Definition 2.5.6. We say that ∇2f is L-Lipschitz if

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖

for all x, y ∈ Rn.

Using this definition yields

|g′′(s)− g′′(0)| ≤ ‖∇2f(x+ s(y − x))−∇2f(x)‖‖x− y‖2

≤ L‖x+ s(y − x)− x‖‖x− y‖2

= Ls‖x− y‖3.

It follows that

|R| ≤ L‖x− y‖3

∫ 1

0

∫ t

0

s ds dt =
L

6
‖x− y‖3.

Combining all the observations above we obtain the following second order
Taylor expansion result.

Theorem 2.5.7 (Second Order Taylor Expansion). Let f : Rn → R and
assume ∇2f is L-Lipschitz. Then

(2.5.7) f(y) = f(x)+∇f(x)T (y−x)+
1

2
(y−x)T∇2f(x)(y−x)+O(L‖x−y‖3).

Remark 2.5.8. As with the first order Taylor expansion in Theorem 2.5.3,
the Big O notation obscures the constant. In this case we can see from the
argument above that the constant in the Big O notation is C = 1

6
.

Finally, we consider a first order Taylor expansion of the gradient ∇f .
While this can be handled by Theorem 2.5.3 applied to the components of
∇f , we derive a shaper matrix-vector form below.

Let us define
gi(t) =

∂f

∂x(i)
(x+ t(y − x)).

2.5. TAYLOR EXPANSION 27

Then, as in the derivation of Theorem 2.5.3 we have

gi(1) = gi(0) + g′i(0) +Ri,

where
g′i(t) = ∇ ∂f

∂x(i)
(x+ t(y − x))T (y − x),

and

Ri =

∫ 1

0

g′i(t)− g′i(0) dt.

Now, notice that

g′i(t) =
n∑
j=1

∂2f

∂x(i)∂x(j)
(x+ t(y − x))(y(j)− x(j))

= [∇2f(x+ t(y − x))(y − x)]i.

Applying these observations for i = 1, . . . , n, and putting them into vector
form, we obtain

∇f(y) = ∇f(x) +∇2f(x)(y − x) +R,

where

R =

∫ 1

0

[∇2f(x+ t(y − x))−∇2f(x)](y − x) dt.

Note that the term inside the integral above is a vector; the integral is simply
defined component-wise. Using that the norm of the integral is bounded by
the integral of the norm, we have

‖R‖ =

∥∥∥∥∫ 1

0

[∇2f(x+ t(y − x))−∇2f(x)](y − x) dt

∥∥∥∥
≤
∫ 1

0

‖[∇2f(x+ t(y − x))−∇2f(x)](y − x)‖ dt

≤
∫ 1

0

‖∇2f(x+ t(y − x))−∇2f(x)‖‖x− y‖ dt

≤
∫ 1

0

L‖x+ t(y − x)− x‖‖x− y‖ dt

= L‖x− y‖2

∫ 1

0

t dt

=
L

2
‖x− y‖2,

provided ∇2f is L-Lipschitz. This yields the following theorem.

28 CHAPTER 2. LINEAR ALGEBRA REVIEW

Theorem 2.5.9 (Gradient Taylor Expansion). Let f : Rn → R and assume
∇2f is L-Lipschitz. Then

(2.5.8) ∇f(y) = ∇f(x) +∇2f(x)(y − x) +O(L‖x− y‖2).

As before, we note that the constant in the Big O notation is C = 1
2
.

Exercise 2.5.10. Let A be a symmetric and positive semi-definite matrix,
and let λmax denote the largest eigenvalue of A. Use an argument similar to
Exercise 2.3.2 to show that

(2.5.9) ‖A‖ = λmax.

For this reason, the operator norm is also called the spectral norm. How does
(2.5.9) change if A is symmetric but not necessarily positive semi-definite?
How about if A is not symmetric? 4

2.6 Convex functions
Here, we review some basic theory of convex functions.

Definition 2.6.1. A function f : Rn → R is convex if

(2.6.1) f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ Rn and λ ∈ (0, 1).

Definition 2.6.2 (Strongly convex). Let µ ≥ 0. A function f : Rn → R is
µ-strongly convex if f − µ

2
‖x‖2 is convex.

Exercise 2.6.3. Show that f is µ-strongly convex for µ ≥ 0 if and only if

(2.6.2) f(λx+ (1− λ)y) +
µ

2
λ(1− λ)‖x− y‖2 ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ Rn and λ ∈ (0, 1). The statement in (2.6.2) is often given as the
definition of strong convexity. 4

We now give several different characterizations of strong convexity for func-
tions on the real line R.

Lemma 2.6.4. Let f : R→ R be twice continuously differentiable and µ ≥ 0.
The following are equivalent.

2.6. CONVEX FUNCTIONS 29

(i) f is µ-strongly convex.

(ii) f ′′(x) ≥ µ for all x ∈ R.

(iii) f(y) ≥ f(x) + f ′(x)(y − x) + µ
2
(y − x)2 for all x, y ∈ R.

(iv) (f ′(x)− f ′(y))(x− y) ≥ µ(x− y)2 for all x, y ∈ R.

Proof. It is enough to prove the result for µ = 0. Then if any statement holds
for µ > 0, we can define g(x) = f(x) − µ

2
x2 and use the results for g with

µ = 0.
The proof is split into three parts.
1. (i) =⇒ (ii): Assume f is convex. Let x0 ∈ R and set λ = 1

2
, x = x0−h,

and y = x0 + h for a real number h. Then

λx+ (1− λ)y =
1

2
(x0 − h) +

1

2
(x0 + h) = x0,

and the convexity condition (2.6.1) yields

f(x0) ≤ 1

2
f(x0 − h) +

1

2
f(x0 + h).

Therefore
f(x0 − h)− 2f(x0) + f(x0 + h) ≥ 0

for all h, and so

f ′′(x0) = lim
h→0

f(x0 − h)− 2f(x0) + f(x0 + h)

h2
≥ 0.

2. (ii) =⇒ (iii): Assume that f ′′(x) ≥ 0 for all x ∈ R. Let x, y ∈ R
and assume, without loss of generality, that y > x. Then by the Fundamental
Theorem of Calculus, applied twice, we have

f(y) = f(x) +

∫ y

x

f ′(t) dt

= f(x) +

∫ y

x

f ′(x) +

∫ t

x

f ′′(s) ds dt

≥ f(x) +

∫ y

x

f ′(x) dt

= f(x) + f ′(x)(y − x),

which establishes the result.

30 CHAPTER 2. LINEAR ALGEBRA REVIEW

3. (iii) =⇒ (iv): Assume (iii) holds. Then we have

f(y) ≥ f(x) + f ′(x)(y − x)

and
f(x) ≥ f(y) + f ′(y)(x− y).

Inserting the second inequality into the first yields

f(y) ≥ f(y) + f ′(y)(x− y) + f ′(x)(y − x).

Rearranging we obtain

(f ′(x)− f ′(y))(x− y) ≥ 0,

which establishes the claim.
4. (iv) =⇒ (i): Assume (iv) holds. Then f ′ is nondecreasing and so

f ′′(x) ≥ 0 for all x ∈ R, hence (ii) holds, and so does (iii). Let x, y ∈ R and
λ ∈ (0, 1), and set x0 = λx+ (1− λ)y. Define

L(z) = f(x0) + u′(x0)(z − x0).

By (iii) we have f(z) ≥ L(z) for all z. Therefore

f(λx+ (1− λ)y) = f(x0) = λL(x) + (1− λ)L(y) ≤ λf(x) + (1− λ)f(y),

and so f is convex.

We now proceed with a higher dimensional analog of Lemma 2.6.4.

Theorem 2.6.5. Let f : Rn → R be twice continuously differentiable. The
following are equivalent.

(i) f is µ-strongly convex.

(ii) The smallest eigenvalue of ∇2f is at least µ.

(iii) f(y) ≥ f(x) +∇f(x)T (y − x) + µ
2
‖x− y‖2 for all x, y ∈ Rn.

(iv) (∇f(x)−∇f(y))T (x− y) ≥ µ‖x− y‖2 for all x, y ∈ Rn.

Proof. Again, we may prove the result just for µ = 0. The proof follows mostly
from Lemma 2.6.4, with some additional observations.

2.6. CONVEX FUNCTIONS 31

1. (i) =⇒ (ii): Assume f is convex. Since convexity is defined along lines,
we see that g(t) = f(x + tv) is convex for all x, v ∈ Rn, and by Lemma 2.6.4
g′′(t) ≥ 0 for all t. Fix x ∈ Rn and note that by (2.5.6) we have

(2.6.3) 0 ≤ g′′(0) = vT∇2f(x)v,

for all v ∈ Rn. Taking v to be an eigenvector of ∇2f , with eigenvalue λ, we
have

0 ≤ vT∇2f(x)v = vTλv = λ‖v‖2,

and therefore λ ≥ 0. Thus, the smallest eigenvalue of ∇2f(x) is nonnegative
(at least zero).

2. (ii) =⇒ (iii): Assume (ii) holds and let g(t) = f(x+ tv) for x, v ∈ Rn.
By (2.6.3) we have g′′(t) ≥ 0 for all t, and so by Lemma 2.6.4

g(t) ≥ g(s) + g′(s)(t− s)

for all s, t. Let y ∈ Rn and set v = y − x, t = 1 and s = 0 to obtain

f(y) ≥ f(x) +∇f(x)T (y − x).

3. (iii) =⇒ (iv): The proof is similar to Lemma 2.6.4.
4. (iv) =⇒ (i): Assume (iv) holds, and define g(t) = f(x + tv) for

x, v ∈ Rn. Then we have

(g′(t)− g′(s))(t− s) = (∇f(x+ tv)−∇f(x+ sv)) · v(t− s) ≥ 0

for all t, s. By Lemma 2.6.4 we have that g is convex for all x, v ∈ Rn, from
which it easily follows that f is convex.

32 CHAPTER 2. LINEAR ALGEBRA REVIEW

Chapter 3

Principal Component Analysis

One of the most important tasks in data analysis is that of finding simpler
structures in data. One of the simplest mathematical structures is a linear
subspace. In this lecture we will discuss how to find the best linear subspace
approximating a collection of data points. This process is called principal
component analysis (PCA). Projecting onto this best linear subspace effec-
tively reduces the dimensionality of our data to the dimension of the subspace,
yielding a useful dimension reduction algorithm. After developing the mathe-
matical theory of PCA, we will explore applications to image compression and
classification.

3.1 Fitting the best linear subspace

Let x1, x2, . . . , xm be a collection of vectors in Rn, which we treat as our data
points. Figure 3.1.1 shows an example of a point cloud in R2 which is roughly
one dimensional. Depending on the application, we may wish to approximate
the data points by a linear or an affine subspace of Rn. To find a line of best fit
for the data in Figure 3.1.1, we would seek a one dimensional affine subspace
that best approximates the data.

We proceed with the analysis for an affine space, and we will see that
we can immediately reduce to the linear case. We seek an affine subspace
A = x0 + L, where L is a k-dimensional linear subspace of Rn and x0 ∈ Rn,
that best approximates our data in the mean squared sense. That is, we seek
to minimize the mean squared error

(3.1.1) E(x0, L) =
m∑
i=1

‖xi − ProjAxi‖2

33

34 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

Figure 3.1.1: Example of a point cloud in R2. In this case, PCA would find
the line of best fit through the point cloud.

over all k-dimensional linear subspaces L and translations x0 ∈ Rn. Let us
write L as the span of orthonormal vectors v1, v2, . . . , vk, and let V be the
matrix whose columns are the vi.

We first consider the translation x0. Recalling (2.2.7) we can write the
energy E as

E(x0, L) =
m∑
i=1

‖xi − x0 − ProjL(xi − x0)‖2.

Then by (2.2.1) we have

E(x0, L) =
m∑
i=1

‖(I − V V T)(xi − x0)‖2.

Differentiating in x0 using (2.4.2) we find that the optimal value for x0 must
satisfy

0 = ∇x0E(x0, L) = −2
m∑
i=1

(I − V V T)2(xi − x0) = 0.

Let us define the mean, or centroid, of the data to be

(3.1.2) x =
1

m

m∑
i=1

xi,

3.1. FITTING THE BEST LINEAR SUBSPACE 35

and recall that (I − V V T)2 = (I − V V T). Bringing the summation above
inside we obtain

0 = (I − V V T)(x0 − x) = x0 − x− ProjL(x0 − x).

Therefore x0 − x = ProjL(x0 − x) ∈ L. It is clear that the energy E is
unchanged by adding an element of L to x0, so we will take x0 − x = 0, or
x0 = x, for simplicity.

Exercise 3.1.1. Show that if v ∈ L then E(x0 + v, L) = E(x0, L). 4

The discussion above allows us to reduce to the case of fitting a linear
subspace to our data. Indeed, if we wish to fit an affine subspace, the optimal
offset is the centroid x, and we can simply center our data, by replacing xi with
xi − x, and reduce to the problem of fitting a linear subspace to the centered
data. Thus, without loss of generality we consider the problem of minimizing
the energy

(3.1.3) E(L) =
m∑
i=1

‖xi − ProjLxi‖2

over all k-dimensional linear subspaces L of Rn. Equivalently, we can view the
problem as minimizing E over the orthonormal vectors v1, v2, . . . , vk that span
L. To proceed further, we rewrite the energy in a more convenient form.

Lemma 3.1.2. The energy E(L) can be expressed as

(3.1.4) E(L) = Trace(M)−
k∑
j=1

vTj Mvj,

where M is the covariance matrix of the data, given by

(3.1.5) M =
m∑
i=1

xix
T
i .

Remark 3.1.3. By Exercise 2.1.1, the covariance matrix M can also be writ-
ten asM = XTX, where X is the m×n matrix whose ith row is xTi , which can
be written as X =

[
x1 x2 · · · xm

]T . In practice, one is usually given the
data matrix X directly, and the formula M = XTX is both more convenient
and more efficient in many programming languages.

36 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

Proof of Lemma 3.1.2. We recall (2.2.2) and (2.2.5), and compute

E(L) =
m∑
i=1

(
‖xi‖2 − ‖ProjLxi‖2

)
=

m∑
i=1

‖xi‖2 −
m∑
i=1

k∑
j=1

(vTj xi)
2

=
m∑
i=1

‖xi‖2 −
k∑
j=1

m∑
i=1

vTj xix
T
i vj

=
m∑
i=1

‖xi‖2 −
k∑
j=1

vTj

(
m∑
i=1

xix
T
i

)
vj

=
m∑
i=1

‖xi‖2 −
k∑
j=1

vTj Mvj.

To complete the proof, we note that

Trace(M) =
m∑
i=1

Trace(xix
T
i) =

m∑
i=1

‖xi‖2.

The first term in (3.1.4) is independent of L, so we may focus on the
second term. Due to the minus sign, Lemma 3.1.2 shows that minimizing E
is equivalent to maximizing the quantity

k∑
j=1

vTj Mvj

over orthonormal vectors v1, v2, . . . , vk. We note that the covariance matrix
M is a symmetric matrix, thus it is diagonalizable. This means there exists
an orthogonal matrix P , whose columns are the orthonormal eigenvectors of
M , and a diagonal matrix D, whose diagonal entries are the corresponding
eigenvalues, such that M = PDP T . We arrange the eigenvalues from largest
to smallest, so Dii = λi and

(3.1.6) λ1 ≥ λ2 ≥ · · · ≥ λn.

Let p1, . . . , pn denote the corresponding orthonormal eigenvectors ofM , which
are just the columns of P .

3.1. FITTING THE BEST LINEAR SUBSPACE 37

We claim that M is positive semi-definite, that is, that λi ≥ 0 for all i. To
see this, simply note that

(3.1.7) λj = pTjMpj =
m∑
i=1

pTj xix
T
i pj =

m∑
i=1

(pTj xi)
2 ≥ 0.

Since pTj xi is the projection of xi onto pj, we see that λj is simply the variance
of the data in the direction pj (up to a normalizing factor of 1/m). We now
compute

k∑
j=1

vTj Mvj =
k∑
j=1

vTj PDP
Tvj

=
k∑
j=1

‖D1/2P Tvj‖2

=
k∑
j=1

n∑
i=1

λi(p
T
i vj)

2

=
n∑
i=1

λi

k∑
j=1

(pTi vj)
2

=
n∑
i=1

λi‖ProjLpi‖2.

Notice that
n∑
i=1

‖ProjLpi‖2 =
k∑
j=1

n∑
i=1

(pTi vj)
2 =

k∑
j=1

‖vj‖2 =
k∑
j=1

1 = k,

where the identity ‖vj‖2 =
∑n

i=1(pTi vj)
2 follows from the fact that the pi form

an orthonormal basis for Rn. Thus, we must choose the vi so as to distribute
the weights ‖ProjLpi‖2 among the largest eigenvalues as much as possible. A
natural choice is to set vi = pi for i = 1, . . . , k. Then pi ∈ L for i = 1, . . . k,
and the pi are orthogonal to L for i ≥ k + 1, yielding

‖ProjLpi‖2 =

{
1, if 1 ≤ i ≤ k

0, otherwise.

This choice of vi then yields

(3.1.8)
k∑
j=1

vTj Mvj =
k∑
i=1

λi.

38 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

The exercise below verifies that this choice of vi = pi is indeed optimal.

Exercise 3.1.4. Suppose that λi satisfy (3.1.6) and let a1, . . . , an satisfy 0 ≤
ai ≤ 1 and

∑n
i=1 ai = k, where k is an integer 1 ≤ k ≤ n. Show that

n∑
i=1

λiai ≤
k∑
i=1

λi. 4

We summarize our findings in a theorem.

Theorem 3.1.5. Let p1, p2, . . . , pn be the orthonormal eigenvectors of the co-
variance matrix M , defined in (3.1.5), with corresponding eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn, given in decreasing order. The energy E(L), defined in (3.1.3),
is minimized over k-dimensional linear subspaces L ⊂ Rn by setting

L = span{p1, p2, . . . , pk}

and the optimal energy is given by

E(L) =
n∑

i=k+1

λi.

Proof. All that remains to prove is the formula for E(L). This follows from
Eq. (3.1.8), Lemma 3.1.2, and the identity

Trace(M) =
n∑
i=1

λi.

The vectors p1, p2, . . . in Theorem 3.1.5 are called the principal components
of the data, and the eigenvalues λ1, λ2, . . . describe the amount of variation
of the data in the direction of each principal component, due to (3.1.7). In
Figure 3.1.2 we plot the principal components of the point cloud from Figure
3.1.1, scaled to length 2

√
λi to match the variation in each direction of the

data.
Let Pk =

[
p1 p2 · · · pk

]
. Then, recalling Section 2.2, the projection of

a vector x onto the PCA subspace L is given by

ProjLx = PkP
T
k x.

The coordinates of the point x in the subspace L are the contents of the length
k vector P T

k x. In this sense, we can view PCA as dimension reduction, since
the length n vector x is approximated by the length k vector P T

k x. Here, PCA
gives a dimension reduction from Rn to Rk.

3.2. PCA DIMENSION REDUCTION 39

Figure 3.1.2: A depiction of the principal directions obtained by running PCA
on the point cloud from Figure 3.1.1. The principal directions are scaled by
2
√
λi for visualization.

3.2 PCA dimension reduction
Python Notebook: .ipynb

We now give a brief application of PCA to dimension reduction. The steps
for dimension reduction to Rk are outlined below. We assume we are given an
m× n data matrix X

1. Compute the PCA covariance matrix M = XTX, with the option of
centering X first.

2. Compute the top k eigenvectors of M , and store them in a matrix P of
size n× k.

3. Compute the PCA dimension reduced dataset B = XP .

Note that the matrixB has dimensionsm×k, and the rows ofB contain exactly
the coordinates of each data point (row of X) in the PCA basis consisting of
the top k eigenvectors of M . To lift the projection back to Rn, the formula
would beXPP T . This would defeat the purpose of dimension reduction, but is
useful in applications of PCA to compression, which is discussed in Section 3.5
below (essentially, multiplication by P T is the decompression stage in PCA-
based compression).

In Figure 3.2.1 we show the two dimensional PCA dimension reduction of
some digits in the MNIST dataset. We start with just the zeros, and proceed

https://colab.research.google.com/drive/1TO2Cx3eY5L-z3cazd2E7yrq-q_cJUuun?usp=sharing

40 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

(a) 0 (b) 0,1 (c) 0,1,2

(d) 0,1,2,3 (e) 0,1,2,3,4 (f) 0,1,2,3,4,5

Figure 3.2.1: Plots of subsets of the MNIST dataset reduced to 2 dimensions
through PCA, by projecting the data onto the top two principal components.
The plots are colored by the underlying digit label. We start with just the
zeros, and incrementally add digits up to 0–5. We note that PCA is able to
well-separate the digits up to 0–3, and when we add digits 4 and 5, we see a
significant amount of overlap between clusters.

by adding one digit at a time, up to digit 5. We note that the PCA embedding
into R2 is able to well-separate the digits up to 4 digits (0–3). Beyond this,
the digit clusters overlap significantly.

3.3 How many principal directions?
A basic question concerns how to chose the number of principal components
k to use in PCA. A standard way to do this is to instead specify how much
of the variation in the data one wishes to capture with the subspace L. Let
0 < α ≤ 1 describe this quantity. For example, α = 0.95 is interpreted as
requiring that the subspace L capture 95% of the variation in the data. Since
the eigenvalue λi describes the amount of variation in the principal direction
pi, we can simply choose k as small as possible while ensuring that

k∑
i=1

λi ≥ α
n∑
i=1

λi.

3.4. ROBUST PCA 41

Figure 3.4.1: An illustration of how PCA is sensitive to outliers. Here, we used
the same point cloud as in Figure 3.1.1, but added a single outlying point to
the lower right of the point cloud (not depicted), whose distance from the point
cloud is twice the length (longest dimension) of the point cloud. Since PCA
minimize the sum of squared errors, it is overly concerned with approximating
outliers, whose distance is far from the inlying point cloud.

As in the proof of Theorem 3.1.5, we have
∑n

i=1 λi = Trace(M) and so we may
rewrite the condition as

(3.3.1)
k∑
i=1

λi ≥ αTrace(M).

The condition (3.3.1) can be checked without computing all of the eigenvalues
of M , which may be computationally intensive in high dimensional applica-
tions, where n is very large. Instead, one can use an iterative eigenvalue solver,
which finds the eigenvectors in order of decreasing eigenvalue, and stop the first
time (3.3.1) holds.

3.4 Robust PCA

While PCA is simple to work with mathematically and computationally, it
can be very sensitive to outliers in the data. This is due to its use of the
mean squared error in (3.1.3), which strongly penalizes outliers. We show an
example in Figure 3.4.1 of how a single outlier can lead to a large negative
affect on the ability of PCA to accurately fit the main part of the point cloud.

42 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

Thus, it is important to remove outliers before applying PCA. Outlier de-
tection can, however, be difficult, and so there has been substantial interest
in more robust versions of PCA that are not sensitive to outliers. Many vari-
ants of robust PCA have been proposed in the literature. Some are based on
minimizing a sum of distances energy of the form

(3.4.1) F (L) =
m∑
i=1

‖xi − ProjLxi‖.

By omitting the square, we are placing a far lower penalty on severe outliers,
and can achieve better performance. However, it is far more computationally
challenging to minimize F (L), compared to the mean-squared error E(L), since
there is no longer a simple relationship to the eigenvectors of the covariance
matrix.

Exercise 3.4.1. Consider the weighted PCA energy

Ew(L) =
m∑
i=1

wi‖xi − ProjLxi‖2,

where w1, w2, . . . , wm are nonnegative numbers (weights).

(i) Show that the weighted energy Ew is minimized over k-dimensional sub-
spaces L ⊂ Rn by setting

L = span{p1, p2, . . . , pk},

where p1, p2, . . . , pn are the orthonormal eigenvectors of the covariance
matrix

Mw =
m∑
i=1

wixix
T
i ,

with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, given in decreasing
order.

(ii) Show that the weighted covariance matrix can also be expressed as

Mw = XTWX,

where W is the m × m diagonal matrix with diagonal entries given by
w1, w2, . . . , wm, and

X =
[
x1 x2 · · · xm

]T
.

3.4. ROBUST PCA 43

(iii) Show that the optimal energy is given by

Ew(L) =
n∑

i=k+1

λi.

(iv) Suppose we minimize Ew over affine spaces x0 + L, so

Ew(x0, L) =
m∑
i=1

wi‖xi − x0 − ProjL(xi − x0)‖2.

Show that an optimal choice for x0 is the weighted centroid

x0 =

∑m
i=1wixi∑m
i=1wi

. 4

Project 3.4.1 (Robust PCA). Python Notebook: .ipynb
Robust PCA refers to a class of algorithms that minimize an energy of the

form

(3.4.2) E(x0, L) =
m∑
i=1

Φ(‖xi − x0 − ProjL(xi − x0)‖2),

Choosing Φ(s) = s yields ordinary PCA, while Φ(s) =
√
s yields the robust

sum of distances energy F given in (3.4.1). In this project you will implement
an iteratively re-weighted least squares (IRLS) algorithm for minimizing the
robust PCA energy (3.4.2), and test it on some data with outliers. Please refer
to the Python notebook linked above and complete the steps below.

1. Write a Python function to implement the weighted PCA from Exercise
3.4.1.

2. Write Python code to minimize (3.4.2) using the IRLS method, which
solves a sequence of weighted PCA problems

(xk+1
0 , Lk+1) = min

(x0,L)

m∑
i=1

wki ‖xi − x0 − ProjL(xi − x0)‖2,

where

wki =
Φ(‖xi − xk0 − ProjLk(xi − xk0)‖2)

‖xi − xk0 − ProjLk(xi − xk0)‖2
.

Start with only a handful of iterations. You can then play with a stopping
condition that checks how much the weights wki change each iteration.

https://colab.research.google.com/drive/1DZMLwdYlHPf40Ijs3mYXiPIlwlXAwQ1p?usp=sharing

44 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

You may find that you divide by zero, or very small numbers, in the
definition of the weights wki , which can cause problems. A common way
to regularize is to define

wki =
Φ(‖xi − xk0 − ProjLk(xi − xk0)‖2)

‖xi − xk0 − ProjLk(xi − xk0)‖2 + ε
,

where ε is a small number, say ε = 10−5.

3. Try your Robust PCA method on data with outliers. How many outliers
do you need to add to break the algorithm?

4

3.5 PCA-based Image Compression
Python Notebook: .ipynb

We now give a first application of PCA to the problem of image compres-
sion. To apply PCA in this context, we must break an image up into pieces in
such a way that the pieces are expected to be particularly simple and can be
expressed well by PCA with a small number of principal components.

The simplest way to do this would be split the image up into its rows or
columns. Let X be an m× n matrix representing an m× n grayscale image.
If we split the image up by rows, then this amounts to applying PCA directly
to the matrix X, where each row is considered as a data point. In this case
we do not center the data, so based on Remark 3.1.3, the covariance matrix
is M = XTX. Let k denote the number of principal components to keep
and let Pk =

[
p1 p2 · · · pk

]
be the matrix whose columns are the principal

components, and let Lk denote the span of p1, . . . , pk. For a given vector x,
PCA approximates x by its projection onto Lk, that is ProjLkx = PkP

T
k x.

Since we work with row vectors in X, let’s consider the transpose of this
quantity, so that xTi PkP T

k , is the PCA approximation of the ith row of X, if
X =

[
x1 x2 · · · xm

]T . Thus, the PCA approximation of X is given by

X ≈ XPkP
T
k .

Why does this amount to compression? To compute the right hand side above,
we only need to store the matrix Pk, which is n×k, and the matrix XPk, which
is m× k. The latter matrix XPk represents the coordinates of each row of X
in the basis of Lk. Thus, instead of storing the m× n matrix X, we store two

https://colab.research.google.com/drive/1T2IyQ2xKRryeV-Ek_au0TUXHp7j6crho?usp=sharing

3.5. PCA-BASED IMAGE COMPRESSION 45

Figure 3.5.1: The cameraman image and the decomposition of part of the
image into patches of size 8× 8.

matrices of size n× k and m× k. Often m = n (the image is square), and so
the compression ratio is is n : k.

While row-wise compression of images is an obvious first choice, the method
misses important structure in the image, and the rows are not necessarily
simple pieces of the image to compress. Since each row spans the entire image,
the pixel values across the entire row may be entirely unrelated and have very
little redundancy (which is useful for compression). Furthermore, why not use
columns? Neighboring pixels vertically in the image should also have some
correlation, but this is entirely ignored by row-wise image compression.

A better way to split up an image for compression is to use patches, or
blocks, that are localized in space. The pixel intensities do not often vary
rapidly in local areas of the image, and so small patches are expected to be
well-approximated by a low dimensional PCA approximation. We work with
the 512 × 512 cameraman image shown in Figure 1.3.2. We use 8 × 8 pixel
patches in a regular grid, so the image contains 64× 64 = 4096 patches, each
containing 8 × 8 = 64 pixels. Figure 3.5.1 shows some of the patches of the
cameraman image. Working with patches instead of rows requires a small
amount of preprocessing of the image, to split it into patches. This produces
a matrix X of size 4096 × 64, and we apply PCA to this matrix, instead of
to the image itself, as we did in the row-wise compression example above.
After this preprocessing, the compression proceeds exactly the same as in the
row-wise compression example, and the decompressed image then needs to be

46 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

reconstructed from its patches.
The reconstruction error in image compression is measured with the peak

signal to noise ratio (PSNR). The PSNR computation is based on the mean
squared error

MSE =
1

mn

m∑
i=1

n∑
j=1

(I(i, j)− I0(i, j))2.

Here, I0 is the original image and I is the reconstructed image after compres-
sion. Both images have size m×n. The PSNR computation also uses the peak
signal value, Speak, which is the largest possible value of the pixel intensity.
For 8-bit images, the largest value is Speak = 28 − 1 = 255. The PSNR is then
given by

PSNR = 10 log10

(
S2

peak

MSE

)
.

The PSNR is measured in decibels dB. PSNR values of 20 dB to 30 dB are
very low quality images you may see on wireless devices, while 30 dB to 50 dB
are respectable, and above 50 dB are very good quality compressions. This
discussion is for 8-bit images, and the values would change for higher bit-depth
images.

Figure 3.5.2 shows the compressed and difference cameraman images at
three different compression ratios, with PSNR ranging from 34 dB up to 51
dB. The reader should note the blocking-type artifacts at higher compression
ratios. These are caused by the decomposition of the image into patches, which
allows for the reconstructed patches to differ greatly near the patch boundary.
In Figure 3.5.3 we plot the PSNR versus compression ratio for patch-based
(or block-based) image compression and row-wise image compression. This
clearly shows the advantage of using block-based compression instead of row-
wise compression.

The same types of blocking artifacts are present in older jpeg compression
algorithms, which are based on the same principle of splitting the image into
patches.1 Instead of using PCA to find a basis for the patch space, the jpeg
algorithm uses the Fourier series basis, which we will learn about later in the
course. We show in Figure 3.5.4 the first 30 principal components obtained
by applying PCA to the image patches. The principal components start of
as low frequency, smooth, features, while the later components describe more
high frequency content, like texture. When we study Fourier analysis later in

1The more recent jpeg2000 algorithm uses wavelet-based compression that does not re-
quire splitting the image into patches, and does not have blocking artifacts.

3.5. PCA-BASED IMAGE COMPRESSION 47

(a) Compression Ratio: 12.6:1, PSNR: 34.12 dB

(b) Compression Ratio: 6.3:1, PSNR: 36.61 dB

(c) Compression Ratio: 2.1:1, PSNR: 51.04 dB

Figure 3.5.2: Examples of PCA-based image compression on the cameraman
image at different compression ratios. Left is original, center is compressed,
and right is the difference image.

48 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

1 2 4 8 16 32 64
Compression Ratio

20

30

40

50

60

P
ea

k
S

ig
n

al
to

N
oi

se
R

at
io

(P
S

N
R

)
in

d
B Block-wise Compression

Row-wise Compression

Figure 3.5.3: PSNR vs Compression Ratio for block-wise and row-wise com-
pression of the cameraman image.

Figure 3.5.4: The first 30 principal components extracted via PCA on 8 × 8
pixel patches of the cameraman image.

the course, we will find that the Fourier basis for patch space looks strikingly
similar to the principal components in Figure 3.5.4.

Let us also mention one aspect of compression we are omitting from this
discussion. Normally the compressed data, which is XPk and Pk, would be
further compressed with a lossless compression algorithm (like zip compres-
sion) to save additional space. This adds further compression above the lossy

3.5. PCA-BASED IMAGE COMPRESSION 49

compression we have described in this section. The mathematics of lossless
compression are unfortunately beyond the scope of this course.

Project 3.5.1 (Audio Compression). Python Notebook: .ipynb
This project will use the same PCA-based compression algorithm for audio

compression. There are two parts to the project, and the notebook above
contains some code to get you started.

1. Use the same block-based image compression algorithm, described above,
for audio compression. You can use any audio file you like; the python
notebook linked above downloads a classical music sample from the
course website that you can use. A stereo audio signal is an array of
size n × 2, where n is the number of samples. Use blocks of size N × 2
for compression.

2. When you play back the compressed audio file, you will likely hear some
static noise artifacts, even at very low compression rates. These are
caused by blocking artifacts, where the signals do not match up on
the edges of the blocks, which introduces discontinuities into the sig-
nal (which are very high in frequency). This is similar to the blocking
artifacts we observed in image compression (see Figure 3.5.2), however,
the artifacts are more noticeable in audio than in images.

To fix this, audio compression algorithms use overlapping blocks, and
apply a windowing function in order to smoothly patch together the au-
dio in each block. The blocks are structured so that half of the first block
overlaps with half of the second block, and so on. To implement this in
python, just shift the signal by half of the block width, and apply the
images_to_patches function on the original and shifted signals. Then
compress and decompress both signals. After decompressing, and before
converting back from the patch format to the audio signal, you’ll need
to multiply by a windowing function to smooth the transition between
patches. If the patch size is 2 × N , then each channel should be multi-
plied by a window function wi, i = 0, 1, . . . , N − 1. A common window
function that is used, for example, in mp3 compression, is

wi = sin2

(
π

N

(
i+

1

2

))
.

After you decompress and apply the window, undo the shift and add the
signals together to get the decompressed audio. Does this improve the
audio quality?

https://colab.research.google.com/drive/1ranzKhFwPq_lQhpSOdBPfPzsV1SPSgSV?usp=sharing

50 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

Figure 3.6.1: Mean images from each MNIST class.

As a note, in order to make sure the shifted signals add up correctly, we
need that

wi + wi+N/2 = 1.

As an exercise, the reader should check that the window function above
satisfies this condition, which is called the Princen-Bradley condition.

4

3.6 PCA-based Handwritten Digit Recognition
Python Notebook: .ipynb

We now give a further application of PCA to the problem of handwritten
digit recognition on the MNIST dataset, depicted in Figure 1.3.3. Recall
MNIST is a dataset consisting of 70,000 images of handwritten digits 0 through
9. Each image is a 28×28 pixel grayscale image, which we can view as a vector
in R784 by flattening the image array, since 282 = 784.

PCA allows us to deduce a simple linear model for the images belonging
to each digit. We choose a number of principal components k, and use PCA
to learn affine subspaces A0, A1, . . . , A9 for each of the 10 digits. A new image
of a handwritten digit is classified by projecting the image onto each of the 10
affine spaces, and finding which it is closest to. In order have held-out testing
images that are not used for constructing the affine subspaces, we use the first
60,000 images in the dataset to build the affine spaces, and the last 10,000 to
test the accuracy of the digit recognition. This is a standard training/testing
split for the MNIST dataset.

To describe this mathematically, let P0, P1, . . . , P9 denote the 784× k ma-
trices whose columns are the k principal components for each class. In this
case, we center the data before applying PCA, so let x0, x1, . . . , x9 denote the
mean images from each class. The mean MNIST images are shown in Figure
3.6.1, and the first 10 principal components per class are shown in Figure 3.6.2.
To project a flattened MNIST image x ∈ R784 onto the affine space Ai, we
recall from Section 2.2 that the formula for projection onto an affine space is

ProjAix = xi + PiP
T
i (x− xi).

https://colab.research.google.com/drive/1T2IyQ2xKRryeV-Ek_au0TUXHp7j6crho?usp=sharing

3.6. PCA-BASED HANDWRITTEN DIGIT RECOGNITION 51

Figure 3.6.2: The first 10 principal components from each class of the MNIST
dataset.

To check how far x is from the affine space Ai, we compute the norm of the
difference between x and its projection, that is

di(x) := ‖x− ProjAix‖ = ‖(I − PiP T
i)(x− xi)‖.

The quantity di is the distance between x and the affine space Ai. We can
then classify the image x by choosing the closest affine space, that is, the label
`i(x) for image x is given by

`i(x) = arg min
0≤i≤9

di(x).

Running this on the MNIST dataset produces a classifier that achieves 95.8%
accuracy on the 10,000 held out testing images. This is a very good result
for such a basic algorithm. State of the art deep neural networks can achieve

52 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

Figure 3.6.3: Some MNIST images that were incorrectly classified, along with
the incorrectly predicted label.

over 99% accuracy. Figure 3.6.3 shows some of the incorrectly labeled digits,
along with the incorrectly predicted label. We can see many of the incorrectly
classified digits are poorly written and thus difficult to classify.

Remark 3.6.1. The PCA-based classifier we have constructed is a simple
affine mapping (I−PiP T

i)(x−xi), followed by a nonlinear operation—computing
the norm of this quantity. We then check which of d0(x), d1(x), . . . , d9(x) is
smallest to decide on the label for the image x. This is similar to a single
layer neural network (a neuron is a linear function composed with a nonlinear
activation function). We will cover the basics of neural networks later in the
course.

Remark 3.6.2. In Python, and other programming languages, it is inefficient
to compute with single images, so it is useful to write the formulas above in
terms of a matrix X, whose rows are images from the MNIST dataset. Then
we must work with the transposes of the quantities above, so

(X − xTi)(I − PiP T
i)

represents the difference between the projections of all rows of X onto the ith
affine space Ai.

Let us mention briefly that the expression X−xTi is intended to mean that
we subtract the row vector xTi from all rows of X. This type of expression is
allowed in Python and other languages like Matlab. To be absolutely correct
mathematically, the expression should be written as

(X − 1xTi)(I − PiP T
i)

where 1 is the all-ones vector whose length is the same as the number of rows
in X.

Project 3.6.1 (EigenFaces). Python Notebook: .ipynb
In this project you will explore a PCA-based facial recognition algorithm

that is known as EigenFaces. The Python notebook above has code to get

https://colab.research.google.com/drive/1KjT7qNuZO-qs4I7snZt9DfbQVT8fy2gT?usp=sharing

3.6. PCA-BASED HANDWRITTEN DIGIT RECOGNITION 53

you started, including downloading and viewing a database of face images.
The dataset has 2414 images of faces, from 38 different subjects. Each person
appears many times in the database under different lighting conditions, etc.
The goal of face recognition is to match a new image of a face to an image
in an existing database. Please refer to the Python notebook above while
completing the project steps below.

1. To have held-out data for testing, we will first split the face dataset
into training and testing sets. Use the train_test_split function in
sklearn.model_selection to split the dataset randomly into training
(70%) and testing (30%).

2. Run PCA on the training images to learn an affine space that well ap-
proximates the training set. You can leave the number of principal com-
ponents, k, as a parameter; around k = 100 gives good results.

3. Project both the training images and testing images onto the affine space,
using the lower dimensional coordinates of the affine space. If the test-
ing (or training) images are stored in a matrix X, where each row is a
flattened image, and x is the mean face image computed by PCA in Step
1 (as a row vector), then the PCA coordinates are given by

(X − x)P,

where P is the matrix containing the principle components as columns.
Then match each testing image to the training image that is closest in
Euclidean distance in the PCA coordinates.

4. You may not get very good results with the method above (around 60%
accuracy). Try using the Mahalanobis distance instead of Euclidean
distance to match faces in the PCA coordinates. For two vectors x
and y of length k, representing the PCA coordinates of two images, the
Mahalanobis distance is given by

dM(x, y) =
k∑
i=1

λ−1
i (x(i)− y(i))2,

where λ1 ≥ λ2 ≥ · · · ≥ λk are the eigenvalues of the covariance matrix
(obtained by PCA in Step 1). The Mahalanobis distance rescales the
norm along each coordinate to match the variation in the data in the
corresponding principal direction. You should be able to get around 90%
accuracy with the Mahalanobis distance, with some variation depending
on the random training/testing split.

54 CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS

4

Chapter 4

Clustering

We now turn to the problem of clustering, or grouping, data. Figure 4.1.1
shows a sample dataset consisting of 500 points that appear to belong to three
distinct clusters. Two of the clusters are very close together, compared to the
third, which more isolated. The goal of clustering is to separate the points
in Figure 4.1.1 into the three natural clusters. In general, when working with
real data and not synthetic examples, it is difficult to visualize the “natural
clusters” within data, and it can be difficult to define what constitutes a good
or bad clustering (since there are various natural ways one can group data).

In this section we will study two popular and widely used algorithms for
clustering: k-means clustering, and spectral clustering. We will study the
mathematics behind each algorithm, to the extent that we can in this course,
and highlight the advantages and drawbacks of each method. We will also
give applications to real data, by considering the problem of clustering pairs
of digits from the MNIST dataset.

4.1 k-Means Clustering

Python Notebook: .ipynb

The k-means algorithm aims to find a single good representative point from
each of k clusters. The dataset is then clustered into k groups by assigning
each datapoint to the cluster corresponding to the closest such representative
point in the Euclidean distance. To describe the setting mathematically, let
x1, x2, . . . , xm by a dataset consisting of m points in Rn. Let c1, c2, . . . , ck be
the cluster centers, which are vectors in Rn and are yet to be determined. The
k-means algorithm is guided by the task of minimizing the k-means clustering

55

https://colab.research.google.com/drive/1kj73dUxSOl-Buv9isirTt72jUVyRqH_Z?usp=sharing

56 CHAPTER 4. CLUSTERING

Figure 4.1.1: An example of a point cloud that has three clusters, one of which
is substantially separated from the other two.

energy

(4.1.1) E(c1, c2, . . . , ck) =
m∑
i=1

min
1≤j≤k

‖xi − cj‖2.

Minimizing E over the cluster centers (also called “means”) c1, . . . , ck aims to
find k points that well-represent the dataset, in the sense that all points are
close to at least one cj in the squared Euclidean distance. If we are able to
minimize E, then the jth cluster in the dataset, denoted Ωj, consists of all
points xi that are closer to cj than they are to any other cluster center. That
is

Ωj =

{
xi : ‖xi − cj‖2 = min

1≤`≤k
‖xi − c`‖2

}
.

It turns out that minimizing the k-means clustering energy E is very hard
computationally (it has been shown to be NP-hard). However, it is possible
to construct a simple algorithm that descends on the energy E, is provably
convergent (to a local minimizer), and often gives good clustering results. This
is called the k-means algorithm, and is outlined below.

k-means algorithm: We start with some randomized initial values for the
means c0

1, c
0
2, . . . , c

0
k, and iterate the steps below until convergence.

1. Update the clusters

(4.1.2) Ωt
j =

{
xi : ‖xi − ctj‖2 = min

1≤`≤k
‖xi − ct`‖2

}
.

4.1. K-MEANS CLUSTERING 57

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 8

Figure 4.1.2: An illustration of the intermediate steps in the k-means clustering
algorithm. The red points are the cluster centroids. The algorithm converged
in 8 steps, but steps 6,7,8 showed very little change in the clustering.

2. Update the cluster centers

(4.1.3) ct+1
j =

1

#Ωt
j

∑
x∈Ωtj

x.

Above, the notation #Ωt
j denotes the number of points in the jth cluster Ωt

j at
the tth step in the algorithm. Hence, ct+1

j is exactly the mean of the jth cluster
Ωt
j. The k-means algorithm generates a sequence of clusterings Ω0

j , Ω1
j , Ω2

j , . . .
and cluster means c0

j , c
1
j , c

2
j , . . . , for j = 1, . . . , k, that get progressively better

in the sense that the k-means clustering energy (4.1.1) is decreasing (which
we prove below). The algorithm converges when the clusters (and hence the
cluster means) do not change from one iteration to the next, that is Ωt

j = Ωt+1
j

for all j = 1, . . . , k. We also note that a point xi may be equally close to more
than one cluster center, and in this case we can make any reasonable choice of
which cluster to assign it to, such as the cluster whose index is smallest.

We show in Figure 4.1.2 an illustration of some of the intermediate steps in
applying k-means clustering with k = 3 (i.e., the 3-means clustering algorithm)
to the point cloud from Figure 4.1.1. The algorithm converged in 8 steps to

58 CHAPTER 4. CLUSTERING

Figure 4.1.3: Two examples of poor clusterings obtained by the k-means algo-
rithm. The final clustering obtained by k-means is not unique, and depends
on the random initial condition.

a good clustering, although this depends on the randomized initial condition.
For some initializations the algorithm converged in fewer iterations, sometimes
as few as three, while for other initializations the algorithm took longer to
converge. The clustering obtained can also depend on the initial condition.
We show in Figure 4.1.3 two examples of poor clusterings obtained by 3-means
clustering of the same point cloud.

The k-means algorithm often gives good results, but it does not find a
global minimizer of the k-means clustering energy E defined in (4.1.1), and can
converge to local minimizers that give poor clustering results. Nevertheless, we
can prove that the k-means algorithm descends on the energy E, and converges
in a finite number of iterations. The proof requires a preliminary lemma, which
shows that the centroid (or mean) minimizes the sum of squared distances to
the cluster center.

Lemma 4.1.1. Let y1, y2, . . . , ym be points in Rn, and define the function
f : Rn → R by

f(x) =
m∑
i=1

‖yi − x‖2.

Then the unique minimizer of f is the centroid

c =
1

m

m∑
i=1

yi.

Proof. First, we claim that

(4.1.4) f(c) =
m∑
i=1

(‖yi‖2 − ‖c‖2).

4.1. K-MEANS CLUSTERING 59

To see this, we first compute

‖c‖2 = cT c =

(
1

m

m∑
i=1

yi

)T (
1

m

m∑
j=1

yj

)
=

1

m2

m∑
i=1

m∑
j=1

yTi yj.

From this, it follows that

f(c) =
m∑
i=1

‖yi − c‖2

=
m∑
i=1

(
‖yi‖2 − 2yTi

1

m

m∑
j=1

yj + ‖c‖2

)

=
m∑
i=1

‖yi‖2 − 2

m

m∑
i=1

m∑
j=1

yTi yj +m‖c‖2

=
m∑
i=1

‖yi‖2 − 2m‖c‖2 +m‖c‖2

=
m∑
i=1

‖yi‖2 −m‖c‖2 =
m∑
i=1

(‖yi‖2 − ‖c‖2),

which establishes the claim.
Now, using (4.1.4) we obtain

f(z) =
m∑
i=1

‖yi − z‖2

=
m∑
i=1

(
‖yi‖2 − 2zTyi + ‖z‖2

)
=

m∑
i=1

(
‖yi‖2 − ‖c‖2

)
+

m∑
i=1

(
‖c‖2 − 2zTyi + ‖z‖2

)
= f(c) +m‖c‖2 − 2mzT c+m‖z‖2

= f(c) +m‖c− z‖2

for any z ∈ Rn. Therefore f(c) ≤ f(z) for all z ∈ Rn, with equality if and only
if z = c. This completes the proof.

We can now prove convergence of the k-means algorithm.

60 CHAPTER 4. CLUSTERING

Theorem 4.1.2. The k-means algorithm descends on the energy (4.1.1), that
is

(4.1.5) E(ct+1
1 , ct+1

2 , . . . , ct+1
k) ≤ E(ct1, c

t
2, . . . , c

t
k).

Furthermore, we have equality in (4.1.5) if and only if ct+1
j = ctj for j =

1, . . . , k, and hence the k-means algorithm converges in a finite number of
iterations.

Proof. The proof is based on re-writing the k-means energy in the following
way:

E(ct1, c
t
2, . . . , c

t
k) =

k∑
j=1

∑
x∈Ωtj

‖x− ctj‖2.

This follows from the definition of the clusters Ωt
j defined in (4.1.2). Now, it

follows from Lemma 4.1.1 that∑
x∈Ωtj

‖x− ct+1
j ‖2 ≤

∑
x∈Ωtj

‖x− ctj‖2

with equality if and only if ct+1
j = ctj, due to the definition of ct+1

j in (4.1.3) as
the mean of the jth cluster Ωt

j at step t. Therefore

k∑
j=1

∑
x∈Ωtj

‖x− ct+1
j ‖2 ≤ E(ct1, c

t
2, . . . , c

t
k)

with equality if and only if ct+1
j = ctj for j = 1, . . . , k. Since the k-means energy

uses the squared distance to the closest cluster center, we trivially have

E(ct+1
1 , ct+1

2 , . . . , ct+1
k) =

m∑
i=1

min
1≤j≤k

‖xi − ct+1
j ‖2

≤
k∑
j=1

∑
x∈Ωtj

‖x− ct+1
j ‖2

≤ E(ct1, c
t
2, . . . , c

t
k),

again with equality if and only if ct+1
j = ctj for j = 1, . . . , k.

We now show that this implies convergence of the k-means algorithm. Note
that if ct+1

j 6= ctj for some j (so the algorithm has not converged), then we
proved above that the energy is strictly decreasing, so

E(ct+1
1 , ct+1

2 , . . . , ct+1
k) < E(ct1, c

t
2, . . . , c

t
k).

4.1. K-MEANS CLUSTERING 61

Hence, prior to convergence, we can never revisit the same clustering

Ωt
1,Ω

t
2, . . . ,Ω

t
k

at any step in the k-means algorithm. Indeed, if we were to revisit the
same clustering at some future step of the algorithm, then since the means
ct+1

1 , ct+1
2 , . . . , ct+1

k depend only on the clusters Ωt
1,Ω

t
2, . . . ,Ω

t
k, we would revisit

the same configuration of cluster centers, which is impossible since the k-means
energy is strictly decreasing with each iteration prior to convergence. Since
there are only a finite number of possible ways to cluster the dataset into k
groups, and the k-means algorithm cannot revisit any given clustering, the
algorithm must eventually converge.

Remark 4.1.3. The proof of Theorem 4.1.2 uses strict energy monotonicity
to prove convergence. The proof is non-quantitative, meaning it does not
say anything about how many iterations the k-means algorithm may take to
converge. In practice, the algorithm often converges very quickly, in only a
handful of iterations, but it is possible for k-means to take substantially longer
to converge. Indeed, in the worst case, the algorithm must visit every possible
clustering before converging. Even for the 2-means problem with n points,
there 2n possible ways to cluster the data, so the search space is exponentially
large.

We also remark that convergence of the k-means algorithm simply means
that the cluster centers stop changing from one iteration to the next. This does
not mean the algorithm has converged to a minimizer of the k-means energy
(4.1.1), and in general the algorithm does not find global minimizers. In fact,
due to the random choice of initialization, the algorithm can find different
clusterings every time it is executed.

Exercise 4.1.4 (Robust k-means clustering). The k-means clustering algo-
rithm is sensitive to outliers, since it uses the squared Euclidean distance. We
consider the robust k-means energy

(4.1.6) Erobust(c1, c2, . . . , ck) =
m∑
i=1

min
1≤j≤k

‖xi − cj‖.

The robust k-means algorithm attempts to minimize (4.1.6). We start with
some randomized initial values for the means c0

1, c
0
2, . . . , c

0
k, and iterate the

steps below until convergence.

1. Update the clusters as in (4.1.2).

62 CHAPTER 4. CLUSTERING

2. Update the cluster centers

(4.1.7) ct+1
j ∈ arg min

y∈Rn

∑
x∈Ωtj

‖x− y‖.

Complete the following exercises.

(i) Show that the Robust PCA algorithm descends on the energy Erobust.

(ii) The cluster center (4.1.7) does not admit a closed form expression and is
sometimes inconvenient to work with in practice. Consider changing the
Euclidean norm in (4.1.6) to the `1-norm ‖x‖1 =

∑n
i=1 |x(i)|, and define

E`1(c1, c2, . . . , ck) =
m∑
i=1

min
1≤j≤k

‖xi − cj‖1.

Formulate both steps of the k-means algorithm so that it descends on
E`1 . Show that the cluster centers ct+1

j are the coordinatewise medians
of the points x ∈ Ωt

j, which are simple to compute.

(iii) Can you think of any reasons why the Euclidean norm would be preferred
over the `1 norm in the k-means energy?

4
Exercise 4.1.5 (Optimal clustering in 1D). We consider here the 2-means
clustering algorithm in dimension n = 1. Let x1, x2, . . . , xm ∈ R and recall the
2-means energy is

E(c1, c2) =
m∑
i=1

min
{

(xi − c1)2, (xi − c2)2
}
.

Throughout the question we assume that the xi are ordered so that

x1 ≤ x2 ≤ · · · ≤ xm.

For 1 ≤ j ≤ m− 1 we define

µ−(j) =
1

j

j∑
i=1

xi, µ+(j) =
1

m− j
m∑

i=j+1

xi,

and

F (j) =

j∑
i=1

(xi − µ−(j))2 +
m∑

i=j+1

(xi − µ+(j))2.

4.1. K-MEANS CLUSTERING 63

(i) Explain how F (j) differs from the 2-means energy E(c1, c2), and why
minimizing F (j) over j = 1, . . . ,m − 1 and setting c1 = µ−(j∗) and
c2 = µ+(j∗) will give a solution at least as good as the 2-means algorithm
(here, j∗ is a minimizer of F (j)).

(ii) By (i) we can replace the 2-means problem with minimizing F (j). We
will now show how to do this efficiently. In this part, show that

F (j) =
m∑
i=1

x2
i − jµ−(j)2 − (m− j)µ+(j)2.

Thus, minimizing F (j) is equivalent to maximizing

G(j) = jµ−(j)2 + (m− j)µ+(j)2.

(iii) Show that we can maximize G (i.e., find j∗ with G(j) ≤ G(j∗) for all j)
in O(m logm) computations. Hint: First show that

µ−(j + 1) =
j

j + 1
µ−(j) +

xj+1

j + 1
,

and
µ+(j + 1) =

m− j
m− j − 1

µ+(j)− xj+1

m− j − 1
.

and explain how these formulas allow you to compute all the values
G(1), G(2), . . . , G(m− 1) recursively in O(m logm) operations, at which
point the maximum is found by brute force.

(iv) [Challenge] Implement the method described in the previous three parts
in Python. Test it out on some synthetic 1D data. For example, you can
try a mixture of two Gaussians with different means.

4

4.1.1 Clustering MNIST digits

Python Notebook: .ipynb

We now consider a brief application of k-means clustering to real data.
Again, we use the MNIST dataset of handwritten digits, and we evaluate
the 2-means algorithm for clustering pairs of MNIST digits. We consider all
pairs of MNIST digits (there are around 7000 images per digit), yielding

(
10
2

)

https://colab.research.google.com/drive/1kj73dUxSOl-Buv9isirTt72jUVyRqH_Z?usp=sharing

64 CHAPTER 4. CLUSTERING

Digit 1 2 3 4 5 6 7 8 9

0 99.1 95.0 95.0 96.5 86.8 92.9 96.9 94.5 95.6
1 92.7 96.1 97.9 91.1 96.4 95.8 94.3 97.2
2 89.7 95.7 94.6 93.8 95.6 91.2 95.7
3 97.3 66.3 97.6 96.4 80.0 94.0
4 88.2 95.6 95.3 95.7 52.7
5 91.4 87.2 52.3 94.2
6 99.1 96.6 98.9
7 95.9 60.5
8 59.8

Table 4.1.1: Accuracy for binary (2-means) clustering of pairs of MNIST digits.
We see most pairs of digits are easy to separate, while a few pairs, such as
(4,9), (5,3), (7,9), (5,8), and (8,9), are more difficult.

binary clustering problems, each with around 14000 datapoints in dimension
R784 = R28×28. The k-means algorithm converged very quickly, in around 15
iterations taking around 1 second per clustering problem. Table 4.1.1 shows
the clustering accuracy obtained by the 2-means algorithm for each pair of
MNIST digits. The numbers can vary depending on the random choice of
initial condition. We can see that many pairs of digits are very easy to cluster
into the correct classes with the 2-means algorithm, while a handful of pairs of
digits, such as (4,9), (5,3), (7,9), (5,8), and (8,9) are more difficult. It is also
natural to run the 10-means algorithm on the whole MNIST dataset, but the
algorithm takes a long time to converge and generally gives poor clustering
results.

4.2 Spectral Clustering

Python Notebook: .ipynb

The k-means clustering algorithm works well for clusters that are roughly
spherical (e.g., blob data). For clusters with more complicated geometries, a
single cluster center may not be a good representative of the whole cluster, and
Euclidean distance to cluster centers may not be a good indication of which
cluster a datapoint belongs to. We show an example of this on the famous
2-moons dataset in Figure 4.2.1. This dataset has two clusters that have a
nonlinear, and non-convex, shape, and are interleaved so that a single there

https://colab.research.google.com/drive/1Ht6JY3cSF4M3K82O2xBbh9CIrTISJ0r2?usp=sharing

4.2. SPECTRAL CLUSTERING 65

Figure 4.2.1: 2-means clustering on the two-moons dataset fails to uncover the
true clusters.

are no good choice of Euclidean cluster centers for either cluster. In this case,
2-means clustering performs poorly. In this section we will study another algo-
rithm, called spectral clustering, which can uncover more complicated cluster
geometries.

Spectral clustering takes a different perspective on clustering, compared
to k-means clustering. In k-means clustering we attempted to find k cluster
centers, and clustered the data by finding, for each datapoint, which cluster
center is closest in Euclidean distance. In contrast, spectral clustering aims to
ensure that points that are nearby spatially are assigned to the same cluster.
It does not compute cluster centers, and makes no assumption on the shape
or geometry of the clusters.

Spectral cluster requires the computation of an adjacency matrix, or weight
matrix, for the dataset, which encodes the similarities between pairs of points.
If our dataset consists of m points x1, x2, . . . , xm in Rn, the weight matrix
W is an m × m symmetric matrix, where the entry W (i, j) represents the
similarity between datapoints xi and xj. The similarity is always nonnegative
(W (i, j) ≥ 0), and should be large when xi and xj are close together spatially,
and small (or zero), when xi and xj are far apart. A common choice for the
weight matrix is Gaussian weights

(4.2.1) W (i, j) = exp

(
−‖xi − xj‖

2

2σ2

)
,

where the σ is a free parameter that controls the scale at which points are
connected by strong similarities W (i, j) in the weight matrix. In fact, the

66 CHAPTER 4. CLUSTERING

weight matrixW endows the dataset with a graph structure, where each pair of
points (xi, xj) is connected by an edge with edge weightW (i, j). Other choices
of weight matrix are possible, such as the k-nearest neighbor graph explored in
Section 4.2.2, so we proceed with a general nonnegative and symmetric m×m
weight matrix W in what follows.

While spectral clustering can be applied to general problems with k clus-
ters, it is simplest to explain for the binary clustering problem, where we seek
k = 2 clusters. Let z ∈ {0, 1}m be a vector giving the cluster labels for each
datapoint, so z(i) ∈ {0, 1} is the cluster label for xi. Here, we have assigned
one cluster to have the label 0 and the other cluster the label 1. Given a
weight matrix W , we wish to find a binary clustering for which xi and xj are
assigned to the same cluster when the weightW (i, j) is large (since this means
the points are nearby). It is thus natural to consider the graph cut energy

(4.2.2) E(z) =
1

2

m∑
i=1

m∑
j=1

W (i, j)|z(i)− z(j)|2.

The graph cut energy sums the edge weights W (i, j) corresponding to pairs
of points (xi, xj) that are assigned to different clusters, so that z(i) 6= z(j).
A graph cut approach to clustering amounts to attempting to minimize E
over cluster labels z, which attempts to ensure that similar datapoints, where
W (i, j) is large, get assigned to the same cluster. In the presence of outliers,
this can give poor clusterings, since it tends to put a single outlier in one
class, and all other datapoints in the other class. Thus, it is more common
to consider a balanced graph-cut energy, which penalizes unbalanced clusters.
One possibility is the balanced energy

(4.2.3) Ebalanced(z) =
1
2

∑m
i=1

∑m
j=1 W (i, j)|z(i)− z(j)|2∑n

i=1 z(i)
∑n

j=1(1− z(j))
.

The denominator in the balanced energy is the product of the sizes of the two
clusters, which is largest when the classes are balanced. Minimizing a balanced
graph-cut energy gives much better clusterings, but it turns out to be a very
hard problem computationally (in fact, it is NP hard).

Spectral clustering is a tractable relaxation of the graph cut problem de-
scribed above. Instead of enforcing that the cluster labels z(i) belong to the
discrete set {0, 1}, we relax the problem and allow z ∈ Rm to be any real-
valued vector. This introduces the problem that any constant vector z = t1
is a minimizer of the graph-cut energy E, where t ∈ R and 1 is the all ones
vector. We could instead consider minimizing the balanced energy (4.2.3), but

4.2. SPECTRAL CLUSTERING 67

it is more convenient to use slightly different balancing conditions. The two
natural balancing conditions used in spectral clustering are

(4.2.4) 1T z =
m∑
i=1

z(i) = 0 and ‖z‖2 =
m∑
i=1

z(i)2 = 1.

The two constraints in (4.2.4), taken together, ensure that the any minimizer
z of E(z) is not a trivial constant labeling z = t1, and that the classes are
balanced to some degree. This leads to the binary spectral clustering problem:

(4.2.5) Minimize E(z) over z ∈ Rm subject to (4.2.4).

After finding a minimizer z∗, the clustering is obtained by the sign of the
minimizer, so {xi : z∗(i) > 0} is one cluster, while {xi : z∗(i) ≤ 0} is the
other cluster.

4.2.1 The graph Laplacian and Fiedler vector

We now show how to solve the binary spectral clustering problem (4.2.5),
which will explain the spectral part of the name.

Definition 4.2.1. Let W be a symmetric m × m matrix with nonnegative
entries. The associated graph Laplacian matrix L is the m×m matrix

(4.2.6) L = D −W

where D is the diagonal matrix with diagonal entries

D(i, i) =
m∑
j=1

W (i, j).

We now show that the graph cut energy can be rewritten in terms of the
graph Laplacian matrix L.

Lemma 4.2.2. Let W be a symmetric m×m matrix with nonnegative entries.
Then the graph cut energy E defined in (4.2.2) can be expressed as

(4.2.7) E(z) = zTLz,

where L = D −W is the graph Laplacian matrix.

68 CHAPTER 4. CLUSTERING

Proof. We simply compute

E(z) =
1

2

m∑
i=1

m∑
j=1

W (i, j)|z(i)− z(j)|2

=
1

2

m∑
i=1

m∑
j=1

W (i, j)(z(i)2 − 2z(i)z(j) + z(j)2)

=
1

2

m∑
i=1

m∑
j=1

W (i, j)z(i)2 −
m∑
i=1

m∑
j=1

W (i, j)z(i)z(j)

+
1

2

m∑
i=1

m∑
j=1

W (i, j)z(j)2

=
1

2

m∑
i=1

D(i, i)z(i)2 −
m∑
i=1

m∑
j=1

W (i, j)z(i)z(j) +
1

2

m∑
j=1

D(j, j)z(j)2

=
m∑
i=1

D(i, i)z(i)2 −
m∑
i=1

m∑
j=1

W (i, j)z(i)z(j)

= zTDz − zTWz = zTLz,

which completes the proof.

We recall from Exercise 2.3.2 that minimizing the quantity zTLz, subject
to the constraint ‖z‖ = 1, is related to finding eigenvectors of L. Due to
(4.2.4) we have an additional constraint 1T z = 0 that needs to be accounted
for. Before proceeding, we record some basic properties of the graph Laplacian.

Lemma 4.2.3. Let L = D − W be the graph Laplacian corresponding to a
symmetric matrix W with nonnegative entries. The following properties hold.

(i) L is symmetric.

(ii) L is positive semi-definite (i.e., zTLz ≥ 0 for all z ∈ Rm).

(iii) All eigenvalues of L are nonnegative, and the constant vector z = 1 is
an eigenvector of L with eigenvalue λ = 0.

Proof. (i) Both D and W are symmetric, so L is as well.
(ii) By Lemma 4.2.2 we have

zTLz = E(z) ≥ 0,

for any z ∈ Rm, thus L is positive semi-definite.

4.2. SPECTRAL CLUSTERING 69

(iii) By Exercise 2.3.3, all eigenvalues of L are nonnegative, since L is
positive semi-definite. To check that z = 1 belongs to the kernel of L, let
y = L1 = D1−W1, and check that

y(i) = D(i, i)−
m∑
j=1

W (i, j) = 0

for all i = 1, . . . ,m. This completes the proof.

Since L is a real symmetric matrix, it is diagonalizable, and there exists
an orthonormal basis v1, v2, . . . , vm of Rm consisting of eigenvectors of L, with
corresponding eigenvalues

0 = λ1 ≤ λ2 ≤ · · · ≤ λm.

That is, Lvi = λivi. Note that λ1 = 0 by Lemma 4.2.3 (iii).

Definition 4.2.4. The second eigenvector v2 of the graph Laplacian L is called
the Fiedler vector.

The Fiedler vector is the first non-trivial eigenvector of L, when they are
ordered by increasing eigenvalue. The first eigenvector is constant, v1 = 1√

m
1,

and is considered trivial.
It turns out, due to the theorem below, that the Fiedler vector is exactly

the solution of the binary spectral clustering problem (4.2.5). Thus, spectral
clustering amounts to assigning points to one of two clusters depending on
the sign of the Fiedler vector. This is also the reason for the name spectral
clustering—we are using the spectrum (i.e., the eigenvectors) of the graph
Laplacian matrix for clustering.

Theorem 4.2.5. The Fiedler vector v2 solves the spectral clustering problem
(4.2.5).

Proof. A minimizer of (4.2.5) exists, due to the fact that we are minimizing a
continuous function E(z) over a closed and bounded set

{z ∈ Rm : ‖z‖ = 1 and 1T z = 0}.

Let z be a minimizer of (4.2.5), and write z in the basis of eigenvectors of L
as

z =
m∑
i=1

aivi.

70 CHAPTER 4. CLUSTERING

Since ‖z‖ = 1 we have by (2.1.5) that

(4.2.8)
m∑
i=1

a2
i = 1.

Since v1 = 1√
m
1, and the vi are orthonormal vectors, the condition 1T z = 0 is

equivalent to

0 = 1T z =
√
mvT1

m∑
i=1

aivi =
√
m

m∑
i=1

aiv
T
1 vi =

√
ma1.

Therefore a1 = 0. We now compute, by Lemma 4.2.2, that

E(z) = zTLz = zTL
m∑
i=2

aivi =
m∑
i=2

aiz
TLvi =

m∑
i=2

λiaiz
Tvi =

m∑
i=2

λia
2
i ,

since zTvi = ai. Since λ2 ≤ λ3 ≤ · · · ≤ λm, a1 = 0, and (4.2.8) holds, we have

E(z) =
m∑
i=2

λia
2
i ≥ λ1

m∑
i=2

a2
i = λ1.

Therefore, setting a2 = 1 and ai = 0 for i 6= 1 minimizes E(z). This amounts
to z = v2, which completes the proof.

We return briefly to the two-moons clustering problem from Figure 4.2.1,
which was not clustered correctly by k-means. We applied spectral clustering
with Gaussian weightsW (i, j) (see (4.2.1)) with σ = 0.15. Figure 4.2(a) shows
the Fiedler vector colored with lowest values dark blue, and highest values yel-
low. Figure 4.2(b) shows the result of spectral clustering on the two-moons
dataset, where the clusters are based on the sign of the Fiedler vector. Spectral
clustering finds the correct clustering for the two-moons dataset, which illus-
trates the ability of spectral clustering to handle more complicated nonlinear
cluster geometry.

Remark 4.2.6. We briefly remark that spectral clustering is not only used
for binary clustering, and there are versions of the algorithm that work for k
classes. The general idea is to compute the first k eigenvectors v1, v2, . . . , vk of
the graph Laplacian L = D −W and to perform a spectral embedding of the
data into Rk. The spectral embedding Φk : Rn → Rk is

Φk(xi) = (v1(i), v2(i), . . . , vk(i)).

4.2. SPECTRAL CLUSTERING 71

(a) Fiedler vector (b) Spectral Clustering

Figure 4.2.2: (a) The Fiedler vector and (b) spectral clustering on the 2-moons
dataset.

That is, at each datapoint xi, we evaluate all k eigenvectors of the graph Lapla-
cian and those values are the coordinates of the points xi in the k-dimensional
embedded space. This is a very useful method for dimension reduction. The
data is then clustered in the spectral embedding space Rk, often using the
k-means clustering algorithm. There are several different variants of spec-
tral clustering for more than two classes, based on using different normal-
izations for the graph Laplacian (two common normalizations are D−1L and
D−1/2LD−1/2), and on using further normalizations of the points in the em-
bedded space Rk. We refer to [19] for more information on spectral clustering.

4.2.2 Clustering MNIST digits

Python Notebook: .ipynb

We now return to the problem of clustering MNIST digits from Section
4.1.1, to see if we can improve upon the results of k-means clustering. The
choice of Gaussian weights (4.2.1) is not practical for real data for a couple
of reasons. First, it results in a dense matrix W , where all entries need to be
stored, which is not tractable for large datasets. Second, there are difficulties
using the same scale σ over the whole graph, since some areas of the graph
may be very dense and a smaller connectivity scale σ would be appropriate,
while some areas may be more sparse and require a larger σ to ensure they
are well-connected to neighboring points in the graph.

A better way to construct a graph over a dataset in practice is to build a

https://colab.research.google.com/drive/1Ht6JY3cSF4M3K82O2xBbh9CIrTISJ0r2?usp=sharing

72 CHAPTER 4. CLUSTERING

Digit 1 2 3 4 5 6 7 8 9

0 99.8 98.9 99.5 99.8 99.5 98.7 99.7 99.2 99.3
1 97.0 99.3 99.1 99.4 99.7 98.8 99.1 99.6
2 98.3 99.5 99.1 99.5 98.0 98.6 99.3
3 99.6 82.3 99.6 99.0 91.8 97.9
4 99.6 99.3 98.9 98.9 53.4
5 97.9 99.8 90.0 98.3
6 99.8 99.0 99.7
7 99.1 70.9
8 97.0
9

Table 4.2.1: Accuracy for binary spectral clustering of pairs of MNIST digits.
The results are generally an improvement over 2-means clustering (see Table
4.1.1), but we still see some pairs of digits, such a (4,9) and (7,9) are hard to
separate.

k-nearest neighbor graph. To do this, we find for each xi, the k nearest points
xj in the Euclidean distance, and we assign positive edge weights W (i, j) only
for these k-nearest neighbors. All other weights are zero, and the matrix is
stored in a sparse matrix format so the zero entries do not need to be stored in
memory, nor used in computations. The weights can be defined asW (i, j) = 1
when j is a k-nearest neighbor of i, or we can use Gaussian weights with a
length scale that adapts to the graph. In this experiment we used

W (i, j) = exp

(
−4‖xi − xj‖2

dk(xi)2

)
,

where dk(xi) is the Euclidean distance from xi to its kth nearest neighbor.
A minor problem with k-nearest neighbor graphs is that they are not sym-

metric, that is W (i, j) 6= W (j, i). This means the graph Laplacian matrix
L = D − W will not be symmetric, and hence it may not be diagonaliz-
able, the spectrum may be complex-valued, and the Fiedler vector will have
no meaning. Thus, we always symmetrize the weight matrix for a k-nearest
neighbor graph in some reasonable way before applying spectral clustering. In
this experiment, we replace W with 1

2
(W +W T) to symmetrize. Other choices

are possible, such as symmetrizing the weights directly

W (i, j) = exp

(
− 4‖xi − xj‖2

dk(xi)dk(xj)

)
.

4.2. SPECTRAL CLUSTERING 73

We show in Table 4.2.2 the results of binary spectral clustering of all pairs of
MNIST digits using a k = 10 nearest neighbor graph. We generally see a good
improvement over the corresponding results for the k-means algorithm given
in Table 4.1.1. However, there are still some pairs of digits that are difficult
to separate, such as (4, 9) and (7, 9). We will return to this example later in
the lecture notes, and we will see how the results can be further improved by
using neural network autoencoders.

74 CHAPTER 4. CLUSTERING

Chapter 5

PageRank

Python Notebook: .ipynb

Having introduced graph-based methods briefly in Section 4.2, we turn here
to study the PageRank algorithm, which was used by Google to rank internet
search results until around 2006. While PageRank originally gained popular-
ity as Google’s search engine, it has found a wide range of applications in
other fields, including biology (GeneRank), chemistry, ecology, neuroscience,
physics, sports, and computer systems. We refer to [9] for a review of PageR-
ank and a summary of the abundance of applications outside of search engines.

PageRank is a graph-based ranking algorithm that ranks websites based
on their link structure. The idea behind the PageRank algorithm is to take a
random walk on the internet for a long time (by randomly following links on
each webpage visited) and record how often each website is visited along the
way. The websites that are visited more often get higher ranks than those that
are visited less often. While this is the core of the idea behind PageRank, there
is a small problem with a simple random walk on a graph like the internet—
the walker may get stuck in small disconnected components of the graph that
have no outgoing links. The walker will then spend all of its time in a small
part of the internet (which may be very sensitive to where the walk starts),
and will be unable to rank the majority sites.

To resolve this issue, PageRank uses a random surfer, which is a random
walker that at random times teleports to a completely random website, one
that is not necessarily connected to the current website by a link. This allows
the surfer to escape poorly connected pockets of the internet and produce a
ranking for all pages. Furthermore, specific choices of the type of teleportation
lead to localized or personalized versions of PageRank, which are discussed in
Section 5.2.

75

https://colab.research.google.com/drive/1WKpzLLu6P4kW7ObnATne3T-G7KvEN49d?usp=sharing

76 CHAPTER 5. PAGERANK

To describe the PageRank algorithm mathematically, the starting point is
an adjacency matrix W , which encodes the links between websites. Often the
adjacency matrix is a binary matrix with

W (i, j) =

{
1, if site i links to site j
0, otherwise.

The adjacency matrixW is an n×nmatrix, where n is the number of webpages
to rank. The matrixW is a very large matrix that is usually very sparse. That
is, most of the entires of W are zero, since most websites link to only a small
fraction of the internet. Matrix operations with W are thus tractable if one
stores the matrix in a sparse format, so that the zero entries are not stored in
memory, and not used in matrix/vector multiplications.

To define a random walk on a graph, we need to define a probability tran-
sition matrix P , which is an n × n matrix whose (i, j) entry is the one-step
transition probability

P (i, j) = Probability of stepping from j to i.

Clicking on a link at random from webpage j leads to the transition probabil-
ities

P (i, j) =
W (j, i)∑n
k=1W (j, k)

.

The columns of P are probability distributions, and hence for all j we have

(5.0.1)
n∑
i=1

P (i, j) = 1.

Exercise 5.0.1. Show that P = W TD−1, where D is the diagonal matrix
with diagonal entries D(i, i) =

∑n
j=1W (i, j). 4

To model the random teleportation of the surfer, we flip a biased coin at
each step, and with probability α ∈ [0, 1) the surfer takes a random walk step,
and with probability 1−α the surfer teleports somewhere else at random in the
internet. The teleportation step is itself drawn at random, according to a tele-
portation probability distribution v, which satisfies v(i) ≥ 0 and

∑n
i=1 v(i) = 1.

The teleportation distribution can be uniform v(i) = 1/n, in which case the
random surfer jumps uniformly at random to another site on the internet.
Another typical choice is a localized PageRank, obtained by setting v(i) = δij,
where δij = 1 if i = j and δij = 0 otherwise. In this case, the random surfer
always jumps back to the same website j each time it teleports, which leads to

77

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.0.1: An illustration of the PageRank vector on a toy graph with
α = 2/3. The colors from blue to yellow indicate the value of the PageRank
vector at each node, and the black arrows indicate directed links between
webpages.

a ranking of all pages relative to j. This can be useful in retrieval problems.
There are of course a continuum of intermediate teleportation distributions
between the uniform random distribution and localized PageRank.

Let x0(i) denote the probability that the random surfer is initially at site
i at step k = 0 of the walk. We can take x0 to be any probability vector
(i.e., x0(i) ≥ 0 and

∑
i x0(i) = 1). For instance, setting x0(i) = δij amounts

to initially placing the random surfer at page j. Any other distribution x0

amounts to placing the surfer at node j with probability x0(j) at the initial
time. For k ≥ 1 define

xk(i) = Probability that the random surfer is at page i on step k.

To see how xk transitions to xk+1 requires some probability. We condition
on the location of the surfer at step k, and on the outcome of the coin flip, to

78 CHAPTER 5. PAGERANK

obtain

xk+1(i) = (1− α)v(i) + α

n∑
j=1

P (i, j)xk(j).

We can write this in matrix/vector form as

(5.0.2) xk+1 = (1− α)v + αPxk.

The PageRank vector is defined as the limit of xk as k →∞—we will prove the
limit exists below. Figure 5.0.1 shows an illustration of the PageRank vector
(small values are blue and large are yellow) on a toy graph with α = 2/3.
The black arrows indicate links between websites. Notice that the two lowest
ranked sites (the dark blue ones) have no incoming edges, so they are not
visited except for on teleportation steps of the random surfer, which is one
of the reasons for their low ranking. On the other hand, the highest ranked
yellow node has many incoming edges and is visited very often by the random
surfer.

5.1 Convergence of the random surfer
If we send k → ∞ in the PageRank iteration (5.0.2), and if xk converges to
some vector x, then clearly x should be a solution of the linear equation

(5.1.1) x = (1− α)v + αPx.

We call (5.1.1) the PageRank problem, and its solution x is the PageRank
vector. In this section, we will prove that the probability distribution xk
of the random surfer converges as k → ∞ to the solution of the PageRank
problem (5.1.1).

It will be more convenient to work in the `1-norm ‖ · ‖1 defined by

‖x‖1 =
n∑
i=1

|x(i)|.

In the `1-norm, the transition matrix P is non-expansive, according to the
following proposition.

Proposition 5.1.1. We have ‖Px‖1 ≤ ‖x‖1.

Proof. The proof is a straightforward computation

‖Px‖1 =
n∑
i=1

∣∣∣∣∣
n∑
j=1

P (i, j)x(j)

∣∣∣∣∣ ≤
n∑
i=1

n∑
j=1

P (i, j)|x(j)| =
n∑
j=1

|x(j)| = ‖x‖1,

where we used (5.0.1) in the third step. This completes the proof.

5.1. CONVERGENCE OF THE RANDOM SURFER 79

We first establish that the PageRank problem (5.0.2) has a unique solution.

Lemma 5.1.2. Let v ∈ Rn and 0 ≤ α < 1. Then there is a unique vector
x ∈ Rn solving the PageRank problem (5.1.1). Furthermore, the following
hold.

(i) We have
∑n

i=1 x(i) =
∑n

i=1 v(i).

(ii) If v(i) ≥ 0 for all i, then x(i) ≥ 0 for all i.

Remark 5.1.3. Taking (i) and (ii) together shows that whenever v is a prob-
ability distribution (i.e., v(i) ≥ 0 and

∑
i v(i) = 1), the same is true of the

unique solution x of the PageRank problem (5.1.1).

Proof of Lemma 5.1.2. Note that we can re-write (5.1.1) as Ax = v where

A = (1− α)−1(I − αP).

To prove there is a unique solution x, we need only show that the kernel of A
is trivial. Then the mapping A : Rn → Rn is injective (one-to-one), and hence
it is also surjective (onto), by the rank-nullity theorem.

To show that ker(A) = {0}, let z ∈ ker(A). Then Az = 0 and so z = αPz.
By Proposition 5.1.1 we have

‖z‖1 = ‖αPz‖1 = α‖Pz‖1 ≤ α‖z‖1.

Since α < 1 we must have ‖z‖1 = 0, and so z = 0, which establishes that A is
injective, and so Ax = v has a unique solution x, for each v.

We now prove (i). We use (5.0.1) to obtain

n∑
i=1

x(i) =
n∑
i=1

(
(1− α)v(i) + α

n∑
j=1

P (i, j)x(j)

)

= (1− α)
n∑
i=1

v(i) + α

n∑
j=1

x(j)
n∑
i=1

P (i, j)

= (1− α)
n∑
i=1

v(i) + α
n∑
j=1

x(j).

Re-arranging we have

(1− α)
n∑
i=1

x(i) = (1− α)
n∑
i=1

v(i).

80 CHAPTER 5. PAGERANK

Since α < 1, we can divide by 1− α to complete the proof of (i).
We finally prove (ii). Assume v(i) ≥ 0 for all i. We first compute, using

(5.1.1), that

|x(i)| =
∣∣∣∣∣(1− α)v(i) + α

n∑
j=1

P (i, j)x(j)

∣∣∣∣∣
≤ (1− α)|v(i)|+ α

∣∣∣∣∣
n∑
j=1

P (i, j)x(j)

∣∣∣∣∣
≤ (1− α)v(i) + α

n∑
j=1

P (i, j)|x(j)|.

Summing both sides over i = 1, . . . , n and using (5.0.1) we find that
n∑
i=1

|x(i)| ≤ (1− α)
n∑
i=1

v(i) + α
n∑
i=1

n∑
j=1

P (i, j)|x(j)|

= (1− α)
n∑
i=1

v(i) + α
n∑
j=1

|x(j)|.

Re-arranging and using part (i) we have

(1− α)
n∑
i=1

|x(i)| ≤ (1− α)
n∑
i=1

v(i) = (1− α)
n∑
i=1

x(i).

Since α < 1 we can divide by 1− α to deduce that
n∑
i=1

|x(i)| ≤
n∑
i=1

x(i).

It follows that x(i) = |x(i)| ≥ 0 for all i, which completes the proof.

Remark 5.1.4. It is common to re-write the PageRank problem (5.1.1) as
an eigenvector problem. Let us assume we are in the setting where v and x
are probability distributions, so x(i) ≥ 0 and

∑n
i=1 x(i) = 1. Noting that

1Tx =
∑n

i=1 x(i) = 1 we can re-write (5.1.1) as

x = (1− α)v1Tx+ αPx =
(
(1− α)v1T + αP

)
x.

The matrix

(5.1.2) Pα := (1− α)v1T + αP

5.1. CONVERGENCE OF THE RANDOM SURFER 81

is exactly the probability transition matrix for the random surfer, and the
PageRank problem Pαx = x is an eigenvector problem, which merely states
that the PageRank vector is the invariant (or stationary) distribution of the
induced Markov chain. In this light, Lemma 5.1.2 (ii) is a direct consequence
of the Perron-Frobenius Theorem.

We can now prove convergence, with a linear rate, of the random surfer’s
distribution xk to the PageRank vector.
Theorem 5.1.5. Let v ∈ Rn and 0 ≤ α < 1. Let xk satisfy the PageRank
iteration (5.0.2), and let x be the unique solution of the PageRank problem
(5.1.1) (i.e., the PageRank vector). Then we have

(5.1.3) ‖xk − x‖1 ≤ αk‖x0 − x‖1.

Proof. We simply subtract

x = (1− α)v + αPx

from
xk = (1− α)v + αPxk−1

to obtain

‖xk − x‖1 = ‖αPxk−1 − αPx‖ = α‖P (xk−1 − x)‖1.

Using Proposition 5.1.1 we obtain

‖xk − x‖1 ≤ α‖xk−1 − x‖1.

The proof is completed by induction.
Remark 5.1.6. Since 0 ≤ α < 1, Theorem 5.1.5 shows that the PageRank
iterations xk converge to the PageRank vector x as k →∞ at the linear rate
of α in the `1-norm. In particular, the convergence can be very slow if α is
close to one. This shows another advantage to introducing the teleportation
step; not only does it guarantee convergence of the PageRank iterations, but
it gives the user control over the convergence rate.

In practice, the standard way to compute the solution of the PageRank
problem (5.1.1) is via the PageRank iteration (5.0.2), since it is simple to
compute (especially with large sparse matrices), and can be terminated early
to obtain an approximate solution. The PageRank iteration (5.0.2) can be
interpreted as the power iteration for computing the largest eigenvector of a
matrix. Indeed, following Remark 5.1.4, we can rewrite the PageRank iteration
as xk+1 = Pαxk, where Pα is defined in (5.1.2). This is exactly the power
iteration, except the normalization step appears to be omitted (normally it
would be xk+1 = Pαxk/‖Pαx‖). The normalization is not needed since P is
non-expansive (see Proposition 5.1.1).

82 CHAPTER 5. PAGERANK

Figure 5.2.1: An example of using personalized PageRank for image retrieval.
In each row the image on the left is the query image, and the following 14
images are the top retrieved images using personalized PageRank.

5.2 Personalized PageRank for image retrieval

Python Notebook: .ipynb

We give here an example of using personalized, or localized, PageRank for
image retrieval. Image retrieval takes a query image and tries to find similar
images in a dataset. We consider the MNIST dataset of handwritten digits,
and construct a k-nearest neighbor graph over the dataset as described in
Section 4.2.2. To retrieve images similar to image j, we set the teleportation
distribution to be v(i) = δij, in order to rank all images based on their similar-
ity to image j. We then solve the PageRank problem (5.1.1) with the iteration
(5.0.2), and return the top ranked images. We took one image from each of
the 10 MNIST digits and ran personalized PageRank to retrieve the top 14
similar images. Figure 5.2.1 shows the results. The image on the left is the
query image, and the following 14 images are the retrieved images. We note

https://colab.research.google.com/drive/1WKpzLLu6P4kW7ObnATne3T-G7KvEN49d?usp=sharing

5.2. PERSONALIZED PAGERANK FOR IMAGE RETRIEVAL 83

that most digits are from the same class, and are in fact written in a very
similar way to the query digit. There are a handful retrieved digits that are
from different classes than the query; for example, a 5 in the 8 row and some
4’s in in the 9 row. There is also what appears to be an 8 in the 7 row, but
this is hard to distinguish by eye.

84 CHAPTER 5. PAGERANK

Chapter 6

The Discrete Fourier Transform

We saw in Section 3.5 how to use PCA to find a good basis to represent image
blocks in order to perform image compression. The basis is one for which only
a few basis functions are required to reconstruct with good accuracy most of
the blocks in the image. We experimented with a similar PCA-based method
for audio compression in Project 3.5.1. In this case, the basis vectors learned
by PCA are good at representing very short segments of audio files, such as
music or speech. PCA finds the best such basis; the one that captures the
most variation in the data with the fewest basis vectors.

It is instructive to take a closer look at these basis functions. For image
compression we show the first 30 principal component vectors in Figure 3.5.4.
These start off as low frequency images that are roughly constant over the
block, and gain additional higher frequency components as we look at higher
principal components. This means that most blocks in the image are well-
approximated by these slowly varying roughly constant image blocks. Simi-
larly, for audio compression we show the first 4 principal components on length
64 blocks of an audio file in Figure 6.0.1. Here, some of the basis functions
strongly resemble low frequency pure tones, i.e., sin and cos functions.

While PCA finds the best basis, and is adapted to the data, it is costly to
compute the principal components, since this requires solving large eigenvector
problems. This is impossible to do in embedded environments (e.g., a digital
camera, smartphone, video surveillance, digital TVs, etc.), which have limited
processing power and have to process images and video in real-time. In some
settings, individual image frames in video must be processed in real-time, and
only a few lines of each frame can be stored in memory. In such cases, a
learned basis, such as that obtained via PCA, is intractable, and instead a
hand-crafted basis with similar properties is desired.

The Fourier Transform is a hand-crafted change of basis that is extremely

85

86 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

0 10 20 30 40 50 60

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
0
1
2
3

Figure 6.0.1: The first 4 principal components computed during PCA-based
audio compression, following Project 3.5.1. Two of the basis functions strongly
resemble the trigonometric functions sin and cos.

useful for analyzing audio, images, and video. The Fourier Transform expresses
a signal (i.e., a function) in terms of a basis consisting of pure tones, that is,
cos and sin waves with different shifts and of different frequencies. We will see
that the Fourier basis shares many similarities with a PCA-basis, namely that
images and audio signals are well-approximated locally in space/time by only
a few Fourier basis functions. This is called sparsity, and audio and image
signals are locally sparse in the Fourier domain. This sparsity is what allows
lossy compression algorithms, like jpeg for images and mpeg for video, to
work so well. These algorithms use Discrete Fourier Transforms, instead of a
PCA-based compression, and are selective about which Fourier basis function
to encode, and which to discard at each instance in time or location in the
image.

We will study the Discrete Fourier Transform in these notes, which applies
to discretized signals (e.g., vectors), but the main ideas are similar across
the different variants of the Fourier Transform. The advantage of studying
the Discrete Fourier Transform is that we are studying exactly the algorithm
used in practice, and we do not need to use advanced mathematical tools
like measure theory and Lp spaces, which are needed to study the continuous
Fourier transform.

We briefly mention that there are many other advantages to a hand-crafted

6.1. COMPLEX NUMBERS AND EULER’S FORMULA 87

change of basis, like the Fourier Transform, beyond the computational advan-
tages of not needing access to an eigensolver. The change of basis itself can
be computed far more efficiently with a Fast Fourier Transform (FFT) in
O(n log n) operations, compared to the matrix multiplication required for a
general change of coordinates, which requires O(n2) operations. Furthermore,
with PCA we did not know before hand what our basis functions would look
like and could only do a limited analysis of their properties. On the other
hand, for a hand-crafted transform, we know the basis functions explicitly
and can perform an in-depth mathematical analysis of their properties. The
Discrete Fourier Transform has many very nice mathematical properties that
are worth studying on their own, independent of the applications to image
or audio analysis. Furthermore, we will find that some properties of the Dis-
crete Fourier Transform, such as its compatibility with convolutions, make it
a very useful tool for solving difference equations, which are discretizations of
partial differential equations. In fact, one can argue that the most important
applications of the Fourier Transform are no longer in image processing or
computer vision, since deep convolutional neural networks outperform Fourier
(and Wavelet) methods by orders of magnitude. However, in scientific com-
puting problems, like solving linear partial differential equations, the Fourier
Transform is still one of the most useful tools, and will not be replaced anytime
soon. As such, these notes will emphasize a variety of applications of Fourier
and Wavelet methods, including to solving partial differential equations.

It is important to point out that we will make use of complex numbers in
this section. The letter i will always denote the imaginary number i =

√
−1,

and will never be used for an index of summation, unless it is a typo. This
convention is not followed in any other sections of these notes.

6.1 Complex numbers and Euler’s formula

We recall that a complex number has the form z = a + ib where a, b ∈ R
and i =

√
−1. The set of all complex numbers is denoted C. For a complex

number z = a+ ib, the complex conjugate, denoted z, is given by

z = a− ib.

For two complex numbers z1, z2 we have z1z2 = z1 z2. The modulus of z,
denoted |z|, is given by

|z| =
√
a2 + b2 =

√
zz.

88 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

The complex exponential of z ∈ C is defined by the Taylor series expansion

ez =
∞∑
k=0

zk

k!
.

The Taylor series is absolutely convergent in the whole complex plane. A very
important identity involving the complex exponential is Euler’s identity

(6.1.1) eit = cos t+ i sin t

for all real numbers t ∈ R. In particular, the complex exponential is a 2π-
periodic function, so ei(t+2πk) = eit for any integer k. We also note that

eit = cos t− i sin t = cos(−t) + i sin(−t) = e−it.

Exercise 6.1.1. Prove Euler’s identity in three different ways.

1. Substitute Taylor expansions for eit, cos t, and sin t in (6.1.1), and show
that both sides are equal.

2. Write the complex number eit in polar coordinates

eit = r(cos θ + i sin θ),

where r = r(t) and θ = θ(t) are real numbers. Differentiate both sides
in t, and equate real and imaginary parts to show that r′(t) = 0 and
θ′(t) = 1. Use the initial values r(0) = 1 and θ(0) = 0 to show that
r(t) = 1 and θ(t) = t.

3. Write f(t) = cos t + i sin t for t ∈ R. Show that f ′(t) = if(t). Use this
to show that

d

dt
(f(t)e−it) = 0.

Therefore f(t) = zeit for a complex number z. Use that f(0) = 1 to
show that z = 1.

4
Exercise 6.1.2. Use Euler’s formula (6.1.1) to prove the following trigono-
metric identities.

(i) cos(s+ t) = cos(s) cos(t)− sin(s) sin(t)

(ii) sin(s+ t) = sin(s) cos(t) + cos(s) sin(t)

[Hint: Apply Euler’s formula to both sides of ei(s+t) = eiseit.] 4

6.2. THE FORWARD AND INVERSE TRANSFORMS 89

6.2 The Forward and Inverse Transforms
Python Notebook: .ipynb

Let Zn = {0, 1, . . . , n − 1}. It will be useful to think of complex vectors
of length n as functions f : Zn → C. Since the trigonometric functions cos
and sin are periodic, it will be convenient to work with periodic signals, so
we are really thinking of Zn as the cyclic group of integers modulo n (written
Zn = Z/n). When integers p, q ∈ Zn are added, subtracted, or multiplied,
the result is interpreted modulo n. For example, in Z4, 2 + 2 = 4 = 0 mod 4.
This has the effect of extending a signal f : Zn → C to a periodic function
f : Z→ C of period n, so that f(k +mn) = f(k) for all integers k and m.

Let L2(Zn) denote the vector space of functions f : Zn → C. We define
the inner product on L2(Zn) by

〈f, g〉 =
n−1∑
k=0

f(k)g(k).

We note that L2(Zn) is nothing other than Cn—it is simply more convenient
to take the viewpoint of functions instead of vectors. It is important to note
that the inner product is not symmetric, and in fact

〈f, g〉 = 〈g, f〉.

The norm of f ∈ L2(Zn) is defined by ‖f‖ =
√
〈f, f〉.

The Discrete Fourier Transform (DFT) is an orthogonal change of basis in
L2(Zn) that expresses a function f :∈ L2(Zn) → C in terms sinusoidal basis
functions of different frequencies. Due to Euler’s formula (6.1.1), it is far more
convenient to work with complex exponential functions of the form

(6.2.1) k 7→ e2πiσk = cos(2πσk) + i sin(2πσk).

The real and imaginary parts of (6.2.1) are exactly the sinusoidal basis func-
tions we are interested in, and σ ≥ 0 is the corresponding frequency (i.e., the
number of cycles per unit). It is possible to avoid complex analysis and work
with the sinusoidal functions directly (indeed, there are transforms called the
cosine and sine transforms). However, encoding the sinusoids into the complex
exponential via Euler’s formula greatly simplifies the analysis and leads to an
elegant mathematical theory.

Now, we do not need all of the frequencies σ ≥ 0 for a change of basis.
In face, since L2(Zn) is n-dimensional (it is just Cn), we should just need n

https://colab.research.google.com/drive/15EyOIsO4uxu_-Gb2sB_IaCD-Um31HDPB?usp=sharing

90 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

basis vectors. To see which frequencies to choose, note that any f ∈ L2(Zn)
can be extended to a periodic function on Z with period n. Thus, we should
only need to choose frequencies σ resulting in n-periodic complex exponentials.
This means the smallest period T = 1/σ of the sinusoid should divide evenly
into n, in other words, σ = `/n for some integer ` = 0, 1, . . . , n− 1. Note that
we do not take ` = n since then σ = 1 and e2πiσk = 1 = e0 for all k, which
is the same as taking ` = 0. In fact, due to the periodicity of the complex
exponential, taking any other integer values for ` is redundant.

Thus, it is natural to consider the n complex exponential functions

(6.2.2) u`(k) := e2πik`/n, ` = 0, 1, . . . , n− 1.

It is often useful to note that we can set ω = e2πi/n and write u`(k) = ωk`.
The complex number ω is an nth root of unity, meaning that ωn = e2πi = 1.
We also have ω = e−2πi/n = ω−1.

It is important to point out that the frequency of the sampled function u`
does not always match the frequency of the continuous function it is sampled
from, due to an effect known as aliasing. Indeed, since ω is an nth root of unity
we have

(6.2.3) un−`(k) = ω(n−`)k = ωnkω−`k = u`(k).

So at the discrete level, the functions un−` and u` have the same frequency, and
are in fact just complex conjugates of each other. Hence, the exponentials u`
with the highest frequencies correspond to ` ≈ n/2. The frequencies increase
with ` for 0 ≤ ` ≤ n/2, and decrease with ` for n/2 < ` ≤ n− 1. We give an
illustration of this for n = 8 in Figure 6.2.1.

It turns out that the complex exponential functions u` are mutually or-
thogonal.

Lemma 6.2.1. The functions u0, u1, . . . , un−1 are orthogonal. In particular

(6.2.4) 〈u`, um〉 =

{
n, if ` = m

0, otherwise.

6.2. THE FORWARD AND INVERSE TRANSFORMS 91

0 1 2 3 4 5 6 7 8

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) u0

0 1 2 3 4 5 6 7 8

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) u1

0 1 2 3 4 5 6 7 8

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) u2

0 1 2 3 4 5 6 7 8

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(d) u3

0 1 2 3 4 5 6 7 8

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(e) u4

0 1 2 3 4 5 6 7 8

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(f) u5

0 1 2 3 4 5 6 7 8

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(g) u6

0 1 2 3 4 5 6 7 8

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(h) u7

0 1 2 3 4 5 6 7 8

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(i) u8

Figure 6.2.1: Real parts of the discrete Fourier modes u` for n = 8. The orange
dots show the real parts of u`(k) for k = 0, 1, . . . , 7, which are sampled from
the blue curves. For u5, u6, u7, u8, the sampled frequency is aliased to the lower
frequency modes u3, u2, u1, u0, respectively, which is equivalent to sampling the
green curve. The discrete Fourier mode with the highest frequency is u4.

Proof. We compute

〈u`, um〉 =
n−1∑
k=0

u`(k)um(k)

=
n−1∑
k=0

ωk`ωkm

=
n−1∑
k=0

ωk`ω−km =
n−1∑
k=0

(
ω`−m

)k
.

92 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

If ` = m then we have ω`−m = ω0 = 1 and 〈u`, um〉 = n. If ` 6= m then we
note that the expression above is a (truncated) geometric series in the variable
r := ω`−k, and we thus have

〈u`, um〉 =
rn − 1

r − 1
.

The proof is completed by noting that rn = (ωn)`−k = 1, since ω is an nth root
of unity.

Since u0, u1, . . . , un−1 are orthogonal, they are linearly independent and
span L2(Zn). The DFT is simply the change of basis that writes a function
f ∈ L2(Zn) in this new basis, that is, in the form

f =
1

n

n−1∑
`=0

c`u`.

Note that the 1
n
factor is simply a convention, and could have been omitted,

in which case it would appear in the formula for c` below. To determine the
coefficients c`, we take the inner product of both sides above with um and use
the orthogonality shown in Lemma 6.2.1 to obtain

〈f, um〉 =
1

n

n−1∑
`=0

c`〈u`, um〉 = cm.

Therefore we have cm = 〈f, um〉, and we can write f in the form

f =
1

n

n−1∑
`=0

〈f, u`〉u`.

The coefficients c` can be written out as

c` = 〈f, u`〉 =
n−1∑
k=0

f(k)u`(k) =
n−1∑
k=0

f(k)ω−k` =
n−1∑
k=0

f(k)e−2πik`/n.

This leads us to the definition of the DFT, which simply computes the coeffi-
cients c`.

Definition 6.2.2. The Discrete Fourier Transform (DFT) is the mapping
D : L2(Zn)→ L2(Zn) defined by

Df(`) =
n−1∑
k=0

f(k)ω−k` =
n−1∑
k=0

f(k)e−2πik`/n,

where ω = e2πi/n.

6.2. THE FORWARD AND INVERSE TRANSFORMS 93

It is important to point out that the DFT has symmetries when applied to
real-valued signals.

Proposition 6.2.3. If f ∈ L2(Zn) is real-valued (i.e., f(k) ∈ R for all k),
then

Df(`) = Df(n− `).
Proof. The proof follows from (6.2.3). Indeed, since f is real-valued, we use
(6.2.3) to compute

Df(`) = 〈f, u`〉 = 〈f, un−`〉 = 〈f, un−`〉 = Df(n− `).
Proposition 6.2.3 shows that we only need to record the first half of the

DFT coefficients, Df(`) for 0 ≤ ` ≤ n
2
, when transforming a real-valued signal.

We immediately have the following inversion theorem.

Theorem 6.2.4 (Fourier Inversion Theorem). For any f ∈ L2(Zn) we have

(6.2.5) f(k) =
1

n

n−1∑
`=0

Df(`)ωk` =
1

n

n−1∑
`=0

Df(`)e2πik`/n.

Proof. Let g(k) denote the right hand side of (6.2.5). We need to show that
g(k) = f(k). We compute

g(k) =
1

n

n−1∑
`=0

Df(`)ωk`

=
1

n

n−1∑
`=0

n−1∑
j=0

f(j)ω−j`ωk`

=
1

n

n−1∑
j=0

f(j)
n−1∑
`=0

uj(`)uk(`)

=
1

n

n−1∑
j=0

f(j)〈uk, uj〉 = f(k),

due to Lemma 6.2.1.

Based on Theorem 6.2.4, we make the following definition.

Definition 6.2.5 (Inverse Discrete Fourier Transform). The Inverse Discrete
Fourier Transform (IDFT) is the mapping D−1 : L2(Zn)→ L2(Zn) defined by

D−1f(`) =
1

n

n−1∑
k=0

f(k)ωk` =
1

n

n−1∑
k=0

f(k)e2πik`/n.

94 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

Remark 6.2.6. By Theorem 6.2.4, we have D−1Df = f for all f ∈ L2(Zn).
The other direction, DD−1f = f , follows from standard linear algebra facts,
but it is also very easy to show using the argument in Theorem 6.2.4. Indeed,
we have

D(D−1f)(k) =
n−1∑
`=0

D−1f(`)ωk` =
1

n

n−1∑
`=0

n−1∑
j=0

f(j)ωj`ω−k` = f(k),

where the final equality is proved in a similar way as in Theorem 6.2.4.

Remark 6.2.7. Define the n×n complex-valued matrix with entriesW (k, `) =
ωk`, that is

(6.2.6) W =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)


Then the DFT can be expressed via matrix multiplication as Df = Wf . The
inverse DFT can be expressed as D−1f = 1

n
Wf . In both cases we treat f as

a vector f ∈ Cn. Theorem 6.2.4 (Fourier Inversion) can be restated as saying
that WW = nI.

Exercise 6.2.8. Show that the DFT enjoys the following basic shift properties.

1. Recall that u`(k) := e2πik`/n = ωk`. Show that

D(f · u`)(k) = Df(k − `).

2. Let T` : L2(Zn)→ L2(Zn) be the translation operator T`f(k) = f(k+ `).
Show that

D(T`f)(k) = e−2πik`/nDf(k).

[Hint: You can equivalently show that D−1 (f · u`) (k) = D−1f(k − `),
using an argument similar to part 1.]

4

6.3. THE FAST FOURIER TRANSFORM (FFT) 95

6.3 The Fast Fourier Transform (FFT)
Python Notebook: .ipynb

For f ∈ L2(Zn), computing Df or D−1f requires on the order of n2 op-
erations (multiplications and additions) if we use perform the computation
exactly as in Definition 6.2.2. Indeed, the sum defining Df(`) has n terms,
and we have to compute n coefficients, for ` = 0, 1, . . . , n− 1. From the view-
point of the DFT as matrix multiplication discussed in Remark 6.2.7, we are
multiplying an n × n matrix by a vector, which requires O(n2) operations.
If we always computed the DFT in this way, it would be too slow for most
applications. Indeed, taking n = 1000 samples in an audio file with a sample
rate of 44.1 kHz is only 22 ms of audio, but would take millions (n2 = 106 = 1
million) of operations to compute the DFT of very short audio sample. One
whole second of audio has n = 44, 100 samples, and it would take on the or-
der of n2 ≈ 2 × 109 operations to compute the DFT. This quickly becomes
computationally intractable.

It turns out that many of the O(n2) operations performed to compute the
DFT as per Definition 6.2.2 are redundant, and if the computation is done
carefully it can be reduced to O(n log n) operations. The resulting algorithm
is called the Fast Fourier Transform (FFT). The computational efficiency of
the FFT is perhaps the dominant factor in the widespread applicability of the
Fourier Transform in problems like image and audio compression, and solving
partial differential equations, among many others. The FFT has been ranked
as one of the top 10 algorithms of 20th Century by IEEE Computing in Science
& Engineering magazine, and according to Gilbert Strang (MIT), is “the most
important numerical algorithm of our lifetime.”

The FFT is based on subsampling the signal into its even and odd samples,
applying the DFT to these two components separately. The algorithm then
proceeds recursively by applying the even/odd subsampling to each component
from the first step. The whole idea is based on the Lemma 6.3.1 below, which
allows us to efficiently compute the DFT of a signal from the DFT of its even
and odd samples.

Before presenting the lemma, we introduce some additional notation. For
f ∈ L2(Zn) with n even, the even and odd parts of f , denoted fe and fo,
respectively, are the functions in L2(Zn

2
) defined by

fe(k) = f(2k) and fo(k) = f(2k + 1),

for k = 0, 1, . . . , n
2
− 1. In this section we will work with the DFT for signals

of different lengths so we will denote by Dn and D−1
n the forward and inverse

https://colab.research.google.com/drive/1dCtmAD1ww4XeydfinZa8l-VuF2ddLGRp?usp=sharing

96 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

DFT, respectively, on L2(Zn). It is important to note that D1 is the identity,
since D1f(0) = f(0).

Lemma 6.3.1. For each f ∈ L2(Zn) with n even we have

(6.3.1) Dnf(`) = Dn
2
fe(`) + e−2πi`/nDn

2
fo(`),

for ` = 0, 1, . . . , n− 1.

Proof. The proof is a straightforward computation based on splitting the sum
defining Df(`) into even and odd parts. We have

Dnf(`) =
n−1∑
k=0

f(k)e−2πik`/n

=

n
2
−1∑

k=0

f(2k)e−2πi2k`/n +

n
2
−1∑

k=0

f(2k + 1)e−2πi(2k+1)`/n

=

n
2
−1∑

k=0

fe(k)e−2πi2k`/n + e−2πi`/n

n
2
−1∑

k=0

fo(k)e−2πi2k`/n

=

n
2
−1∑

k=0

fe(k)e−2πik`/(n/2) + e−2πi`/n

n
2
−1∑

k=0

fo(k)e−2πik`/(n/2)

= Dn
2
fe(`) + e−2πi`/nDn

2
fo(`),

which completes the proof.

Remark 6.3.2. In (6.3.1), it is important to point out that Dnf ∈ L2(Zn)
and Dn

2
fe,Dn

2
fo ∈ L2(Zn

2
). For n

2
≤ ` ≤ n − 1, the periodicity of Zn

2
gives

that
Dnf(`) = Dn

2
fe(`− n

2
) + e−2πi`/nDn

2
fo(`− n

2
).

This is important to keep in mind in practical implementations, since indexing
arrays in Python or Matlab does not work cyclically.

At a high level, the FFT works by using Lemma 6.3.1 to recursively split
the problem up into smaller subproblems. Each split reduces the length of
the signals by half, and after log2 n such splits, the problem is reduced to
computing the DFT of very short signals, say, of length n = 1, which can
be computed in constant time. Each time we recombine the results from
subproblems using (6.3.1) we incur a cost of O(n) operations, yielding an
overall complexity of O(n log2 n).

6.3. THE FAST FOURIER TRANSFORM (FFT) 97

The description above is just a summary of the main ideas. We now con-
sider the FFT algorithm in detail and prove that the computational complexity
is O(n log2 n). From now on we restrict our analysis to signal lengths n that
are powers of 2, so n = 2k for some positive integer k. This ensures that every
time we split we end up with even-length signals that can be further split
evenly, and makes the FFT algorithm simpler to state.

In Algorithm 6.3 we show Python code for the FFT algorithm using a
recursive implementation. The algorithm checks if the input signal has length
n = 1, and if so, it returns f , since D1 is the identity (as noted above). If n ≥ 2
then the algorithm splits the signal into its even and odd parts fe = f[::2] and
fo = f[1::2], takes their DFT by calling fft recursively, and then recombines
the resulting DFTs Dfe and Df0 using (6.3.1) to compute Df . We also point
out that Steps 11 and 12 simply extend Dfe and Dfo to functions on Zn by
periodicity, so that (6.3.1) can be applied (see Remark 6.3.2). We also recall
(see Step 13) that 1j =

√
−1 in Python.

Algorithm 6.3.1 The Fast Fourier Transform (FFT) in Python
1 import numpy as np
2

3 def fft(f):
4 n = len(f)
5 k = np.arange(n)
6 if n == 1:
7 return f
8 else:
9 Dfe = fft(f[::2])

10 Dfo = fft(f[1::2])
11 Dfe = np.hstack((Dfe,Dfe))
12 Dfo = np.hstack((Dfo,Dfo))
13 return Dfe + np.exp(-2*np.pi*1j*k/n)*Dfo

We now carefully analyze the computational complexity of the FFT. In
order to do so, it is important to consider how one chooses to count operations.
Here, we will count an operation of addition, subtraction, multiplication or
division of real numbers as a single operation. Applying functions like cos or
sin to real numbers will also count as one operation. Operations on complex
numbers take multiple real operations. For example, adding two complex
numbers

(a+ ib) + (c+ id) = (a+ b) + i(c+ d)

98 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

requires two real additions (adding a + b and c + d). The complex number
a+ ib is stored in memory as a pair (a, b), with the understanding that b is the
imaginary part of the complex number, and a is the real part. So the addition
operation between (a + b) and i(c + d) is not a real operation and does not
need to be computed, since the result is simply stored as (a + b, c + d). The
same can be said for the multiplication of i and c + d; these numbers are not
multiplied by the computer (how could they be?), so this does not count as
an operation. The result of this discussion is that addition or subtraction of
complex numbers takes two real operations.

Multiplication of complex numbers takes more than two real operations,
since we must write

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc).

So multiplying two complex numbers requires computing ac− bd and ad+ bc,
which takes 6 real operations (4 multiplications and 2 additions). Note it is
also possible to multiply numbers in polar coordinates with fewer operations,
since

r1e
iθ1r2e

−iθ2 = r1r1e
i(θ1+θ2)

requires only 2 real operations (one multiplication and one addition). However,
adding or subtracting in polar coordinates is more expensive, since one must
convert back to Cartesian coordinates a + ib first via Euler’s Formula. Thus,
we will conduct our analysis assuming the complex numbers are stored in
Cartesian format, requiring 2 operations per addition or subtraction and 6
operations for a multiplication.

We define

An = Number of real operations taken by the FFT on L2(Zn).

We note that since D1 is the identity, which requires no operations to compute,
we have A1 = 0. We can use Lemma 6.3.1 to obtain a recursion for An in
terms of An

2
. Indeed, using (6.3.1) to compute Df(`) for ` = 0, 1, . . . , n − 1

requires computing Dn
2
fe and Dn

2
fo, which takes 2An

2
operations. Then we

need to perform the complex addition and multiplication in (6.3.1), which takes
2 + 6 = 8 operations. This has to be done n times (for ` = 0, 1, . . . , n − 1),
yielding 8n operations. Thus, we find that

(6.3.2) An = 2An
2

+ 8n.

Notice we did not allocate any computation time to the complex exponential
e−2πi`/n. This quantity is independent of the signal f and can be computed

6.3. THE FAST FOURIER TRANSFORM (FFT) 99

once, offline, and the values can be stored in memory. Thus, we do not include
this in the operation count of the algorithm.

The recursion (6.3.2) allows us to solve explicitly for An, as shown in the
following lemma.

Lemma 6.3.3. Let n = 2k for a positive integer k, and assume An satisfies
(6.3.2) for n ≥ 2 and A1 = 0. Then we have

(6.3.3) An = 8n log2 n.

Proof. We can iterate (6.3.2) again to obtain

An = 2
(

2A n
22

+ 8n
2

)
+ 8n = 22A n

22
+ 8n+ 8n,

and
An = 22

(
2A n

23
+ 8 n

22

)
+ 8n+ 8n = 23A n

23
+ 8n+ 8n+ 8n.

Iterating this k times, by induction, we have that

An = 2kA n

2k
+ 8nk.

Since n = 2k we have A n

2k
= A1 = 0 and k = log2 n, which yields

An = 8nk = 8n log2 n.

Lemma 6.3.3 shows that the FFT takes at most 8n log2 n operations to
execute, which is an order of magnitude improvement over the naive imple-
mentation based on Definition 6.2.2 that takes O(n2) operations. It turns out
this complexity can be improved to 5n log2 n by removing some redundant
computations.

Remark 6.3.4. As in Remark 6.3.2, we consider writing (6.3.1) in different
ways depending on whether ` ≤ n

2
− 1 or not. Since

e−2πi(`+n
2

)/n = e−2πi`/ne−πi = −e−2πi`/n

and Dn
2
fe(`),Dn

2
fo are n

2
periodic, we can write (6.3.1) as

Dnf(`) = Dn
2
fe(`) + e−2πi`/nDn

2
fo(`), and

Dnf(`+ n
2
) = Dn

2
fe(`)− e−2πi`/nDn

2
fo(`)

for ` = 0, 1, . . . , n
2
−1. Notice that there are now only n

2
complex multiplications

to perform, since they are common between the two parts. We still need n

100 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

additions, so the number of real operations to combine Dn
2
fe(`) and Dn

2
fo into

Df is reduced from 8n, as above, to 6n
2

+ 2n = 5n. The recursion (6.3.2)
becomes

An = 2An
2

+ 5n

and the complexity is thus An = 5n log2 n.

The computational complexity can be further improved to 4n log2 n by
considering a 3-way split, where the odd terms are further split in half before
the recursion. Exercise 6.3.5 explores this algorithm, called the split-radix
FFT, which enjoyed its role as the fastest FFT for power-of-two n for quite
some time, until the relatively recent work [13] made some modifications to
the algorithm and improved the complexity to 34

9
n log2 n. The split radix

methods are variants of the general Cooley-Tukey FFT algorithm [7]. The
Cooley-Tukey FFT can be applied to any n, not just powers of 2, although the
constants in the computational complexity are worse for non powers of two.

Exercise 6.3.5 (Split-radix FFT). Assume n is a power of 2 and let f ∈
L2(Zn). Define fe ∈ L2(Zn

2
), and fo,1, fo,2 ∈ L2(Zn

4
) by

fe(k) = f(2k), fo,1(k) = f(4k + 1), and fo,2(k) = f(4k + 3).

(i) Show that

(6.3.4) Dnf(`) = Dn
2
fe(`) + e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`).

(ii) The FFT algorithm based on the 3-way split in (6.3.4) is called the split-
radix FFT algorithm. As in Remark 6.3.4, there are a lot of redundant
computations in (6.3.4), and these must be accounted for in order to
realize the improved complexity of the split-radix FFT. Show that

Dnf(`) = Dn
2
fe(`) + (e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`)),

Dnf(`+ n
2
) = Dn

2
fe(`)− (e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`)),

Dnf(`+ n
4
) = Dn

2
fe(`+ n

4
)− i(e−2πi`/nDn

4
fo,1(`)− e−2πi3`/nDn

4
fo,2(`)),

Dnf(`+ 3n
4

) = Dn
2
fe(`+ n

4
) + i(e−2πi`/nDn

4
fo,1(`)− e−2πi3`/nDn

4
fo,2(`)),

for 0 ≤ ` ≤ n
4
− 1. This gives all the outputs of Df(`) and reduces the

number of multiplications and additions required.

(iii) Explain how the observations in Part (ii) allow you to compute Dnf
from Dn

2
fe, Dn

4
fo,1 and Dn

4
fo,2 using 6n real operations. [Note, multipli-

cations with ±1 or ±i do not count, since they amount to negation of
real or imaginary parts, which can be absorbed into the next operation
by changing it from addition to subtraction or vice versa]

6.4. PARSEVAL’S IDENTITIES 101

(iv) Show that part (iii) implies that the number of real operations taken by
the split-radix FFT, denoted again as An, satisfies the recursion

An = An
2

+ 2An
4

+ 6n.

Explain why A1 = 0 and A2 = 4. Use this to show that An ≤ 4n log2 n.
[Hint: Define Bn = An − 4n log2 n and show that Bn satisfies

Bn = Bn
2

+ 2Bn
4

with B1 = 0 and B2 = −4. Use this to argue that Bn ≤ 0 for all
power-of-two n.] [Note: If one is more careful about redundant com-
putations (there are additional multiplications with ±1 or ±i that can
be skipped), then the complexity of the split-radix FFT algorithm is
actually 4n log2 n− 6n+ 8 real operations].

4
Remark 6.3.6. Before concluding this section, we remark that the FFT al-
gorithm can be easily extended to compute the inverse DFT. The analogous
identity to (6.3.1) for D−1

n is

(6.3.5) D−1
n f(`) =

1

2
D−1

n
2
fe(`) +

1

2
e2πi`/nD−1

n
2
fo(`).

The proof of (6.3.5) is left to an exercise (below). The inverse FFT is formu-
lated very similarly to the FFT, just using (6.3.5) in place of (6.3.1). As an
alternative, one can always use the identity

D−1
n =

1

n
Dnf

to compute the inverse DFT efficiently using a single forward FFT, two com-
plex conjugation operations, and an elementwise division.

Exercise 6.3.7. Prove that (6.3.5) holds under the same assumptions as in
Lemma 6.3.1. 4

6.4 Parseval’s Identities
Recall that for a real-valued orthogonal matrix Q, the inverse of Q is the
transpose QT . Since the DFT is an orthogonal change of coordinates, a similar
property holds. Indeed, the following lemma shows that the IDFT D−1 is the
adjoint of the DFT D, up to the factor 1/n.

102 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

Lemma 6.4.1. For each f, g ∈ L2(Zn) we have

1

n
〈Df, g〉 = 〈f,D−1g〉.

Proof. We compute

〈f,D−1g〉 =
n−1∑
k=0

f(k)D−1g(k)

=
1

n

n−1∑
k=0

f(k)
n−1∑
`=0

g(`)ωk`

=
1

n

n−1∑
`=0

g(`)
n−1∑
k=0

f(k)ω−k`

=
1

n

n−1∑
`=0

g(`)Df(`) =
1

n
〈Df, g〉,

which completes the proof.

An immediate consequence of Lemma 6.4.1 are Parseval’s Identities, which
state that the DFT preserves the inner product on L2(Zn), and hence also
preserves the norm, up to the 1

n
factor.

Theorem 6.4.2 (Parseval’s Identities). Let f, g ∈ L2(Zn). Then it holds that

(i) 〈f, g〉 = 1
n
〈Df,Dg〉, and

(ii) ‖f‖2 = 1
n
‖Df‖2.

Proof. To prove (i), we use Lemma 6.4.1 and Theorem 6.2.4 to write

〈f, g〉 = 〈f,D−1Dg〉 =
1

n
〈Df,Dg〉.

To prove (ii), we take f = g in part (i).

Remark 6.4.3. Of course, a similar statement holds for the inverse transform
D−1. Indeed, Lemma 6.4.1 and Theorem 6.2.4 imply

1

n
〈f, g〉 =

1

n
〈DD−1f, g〉 = 〈D−1f,D−1g〉.

Setting f = g yields 1
n
‖f‖2 = ‖D−1f‖2.

6.5. CONVOLUTION AND THE DFT 103

6.5 Convolution and the DFT
One of the most important properties of the DFT is that it turns convolu-
tions into products. This property makes the DFT useful for solving partial
differential equations, and for efficiently computing certain convolutions.

We first define the discrete convolution on the cyclic group Zn.

Definition 6.5.1. The discrete cyclic convolution of f, g ∈ L2(Zn), denoted
f ∗ g, is the function in L2(Zn) defined for each k by

(6.5.1) (f ∗ g)(k) =
n−1∑
j=0

f(j)g(k − j).

We note that the definition of the convolution makes use of the fact that Zn
is a cyclic group when k− j falls outside of 0, 1, . . . , n−1 (i.e., the values wrap
around). We leave some basic properties of the convolution to an exercise.

Exercise 6.5.2. Let f, g, h ∈ L2(Zn). Show that the following hold.

(i) f ∗ g = g ∗ f ;

(ii) f ∗ (g ∗ h) = (f ∗ g) ∗ h;

(iii) f ∗ (g + h) = f ∗ g + f ∗ h.

4

The main result of this section concerns the DFT of a convolution.

Lemma 6.5.3 (Convolution and the DFT). For f, g ∈ L2(Zn) we have

(6.5.2) D(f ∗ g) = Df · Dg.

Proof. We compute

D(f ∗ g)(`) =
n−1∑
k=0

(f ∗ g)(k)ω−k`

=
n−1∑
k=0

n−1∑
j=0

f(j)g(k − j)ω−k`

=
n−1∑
j=0

f(j)ω−j`

(
n−1∑
k=0

g(k − j)ω−(k−j)`

)
.

104 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

Since Zn is cyclic, for any function h ∈ L2(Zn) and any j ∈ Zn we have

n−1∑
k=0

h(k) =
n−1∑
k=0

h(k − j).

Thus, the term in brackets above is exactly Dg(`) and we have

D(f ∗ g)(`) =
n−1∑
j=0

f(j)ω−j`Dg(`) = Df(`)Dg(`).

Remark 6.5.4. Lemma 6.5.3 is arguably one of the most important properties
of the DFT. It allow for efficient computation of convolutions via the FFT.
Indeed, we can use (6.5.2) to write

f ∗ g = D−1(Df · Dg).

Using the FFT, we can compute the convolution with two forward and one
inverse transformation, which takes O(n log n) operations. Computing the
convolution by the definition (6.5.1) takes O(n2) operations.

Also, as we explore in Exercise 6.5.6, all discrete derivatives of f can be
viewed as convolutions of f with a particular choice of g. Thus, Lemma 6.5.3
turns differential equations, involving discrete derivatives, into algebraic equa-
tions which are easy to solve. This enables the use of the FFT for efficiently
solving linear constant coefficient partial differential equations. We explore
this further in Section 6.6.

Remark 6.5.5. Of course, a similar property holds for the inverse DFT D−1.
To see this, we use the identity D−1f = 1

n
Df to obtain

D−1(f ∗ g) =
1

n
Df ∗ g =

1

n
Df · Dg = nD−1f · D−1g.

Exercise 6.5.6. Discrete derivatives (difference quotients) can be interpreted
as convolutions. Complete the following exercises.

(i) For f ∈ L2(Zn) define the backward difference

∇−f(k) = f(k)− f(k − 1).

Find g ∈ L2(Zn) so that ∇−f = g ∗ f and use this with Lemma 6.5.3 to
show that D(∇−f)(k) = (1− ω−k)Df(k), where ω = e2πi/n.

6.6. APPLICATION: SIGNAL DENOISING 105

(ii) For f ∈ L2(Zn) define the forward difference

∇+f(k) = f(k + 1)− f(k).

Find g ∈ L2(Zn) so that ∇+f = g ∗ f and use this with Lemma 6.5.3 to
show that D(∇+f)(k) = (ωk − 1)Df(k).

(iii) For f ∈ L2(Zn) define the centered difference by

∇f(k) =
1

2
(∇−f(k) +∇+f(k)) =

1

2
(f(k + 1)− f(k − 1)).

Use parts (i) and (ii) to show that

D(∇f)(k) =
1

2
(ωk − ω−k)Df(k) = i sin(2πk/n)Df(k).

(iv) For f ∈ L2(Zn), define the discrete Laplacian as

∆f(k) = ∇+∇−f(k) = f(k + 1)− 2f(k) + f(k − 1).

Use parts (i) and (ii) to show that

D(∆f)(k) = (ωk + ω−k − 2)Df(k) = 2(cos(2πk/n)− 1)Df(k). 4

Exercise 6.5.7. Consider the Poisson equation on Zn

(6.5.3) −∆f(k) = g(k) for k ∈ Zn.

The source term g ∈ L2(Zn) is given, and f ∈ L2(Zn) is the unknown we wish
to solve for. The Laplacian ∆ is defined in Exercise 6.5.6. Use Exercise 6.5.6
(iii) to derive a solution formula for f(k). Is there a condition you need to
place on Dg for your solution formula to make sense? [Hint: Take the DFT of
both sides of (6.5.3), solve for Df , and then apply the inverse DFT D−1. Be
careful not to divide by zero when you solve for Df .] 4

6.6 Application: Signal denoising
Noise arises in most signal acquisition processes. For example, in a microphone,
air molecules constantly bombard the diaphragm, causing random vibrations
not associated with the sound one wishes to record, and electronic circuitry
generates thermal noise due to the natural random motions of electrons inside

106 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

0.0 0.2 0.4 0.6 0.8 1.0

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

(a) Clean signal

0.0 0.2 0.4 0.6 0.8 1.0

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

(b) Noisy signal

Figure 6.6.1: Example of a clean signal, and a noisy version, corrupted with
additive Gaussian noise. The clean signal is superimposed over the noisy one
in (b) for reference.

conductors. Sensors on digital cameras are also prone to noise in the image
capture process, for similar reasons, and this can be especially pronounced in
low light situations. Noise can also be introduced after signal acquisition. For
instance, noise can arise as the result of compression artifacts or corruption in
the transmission of signals wirelessly. In Figure 6.6.1 shows a synthetic signal
and a noisy version corrupted by additive Gaussian noise (at each sample point
we add an independent Gaussian random variable to the signal). Many types
of noise are well approximated by Gaussian noise due to the Central Limit
Theorem in probability.

Let f ∈ L2(Zn) represent a noisy signal, like in Figure 6.6.1(b). While
we are interested primarily in real-valued signals, the analysis is similar for
complex-valued signals f ∈ L2(Zn), so we proceed in generality. The goal of
signal denoising is to recover the clean signal in Figure 6.6.1(a), which amounts
to removing the removing the noise. In the sections below, we discuss Tikhonov
regularization and Total Variation regularization for denoising.

6.6.1 Tikhonov regularization

Python Notebook: .ipynb

A widely used and successful method for signal and image denoising is the
regularized variational approach. While there are many versions of this, we
focus here on a simple case known as Tikhonov regularization, which denoises

https://colab.research.google.com/drive/1sNsrf3Byo3-qp9h_sJwEjuleDLtXjFYE?usp=sharing

6.6. APPLICATION: SIGNAL DENOISING 107

the signal by minimizing the function E : L2(Zn)→ L2(Zn) defined by

(6.6.1) E(u) =
n−1∑
k=0

|u(k)− f(k)|2 + λ
n−1∑
k=0

|u(k)− u(k − 1)|2,

where λ ≥ 0 is a parameter. The first term in E is called a data fidelity term,
and it encourages the minimizer of E (i.e., the denoised signal) to remain close
to the noisy signal f . The second term aims to measure the amount of noise
in the signal u, by summing squared differences of neighboring signal values.
Clean signals should give much smaller values for this term, compared to noisy
signals. There is a parameter λ ≥ 0 in the function E that controls the tradeoff
between these two terms. For small λ we expect the minimizer of E to remain
very close to f and we will thus have very little denoising. For large λ > 0,
we expect to get a very smooth signal with the noise removed, but we may
not accurately reconstruct the clean signal. Finding a good value of λ that
removes noise while preserving important signal information is an important
consideration in variational methods.

In this section, we show how to use the theory we have developed for the
DFT to efficiently find the minimizer of E in order to denoise signals. For
this, it is useful to rewrite the Tikhonov regularized functional E. We recall
first the definitions of discrete derivatives from Exercise 6.5.6. The backward
difference ∇− : L2(Zn)→ L2(Zn) is defined by

∇−u(k) = u(k)− u(k − 1),

while the forward difference is ∇+ : L2(Zn)→ L2(Zn) is defined by

∇+u(k) = u(k + 1)− u(k).

The Laplacian ∆ : L2(Zn) → L2(Zn) is the composition of the forward and
backward differences, in either order, so ∆ = ∇+∇− = ∇−∇+. In terms of
the values of u(k), the Laplacian is given by

∆u(k) = u(k + 1)− 2u(k) + u(k − 1).

Since our signals are one dimensional, we should think of the Laplacian as just
the second derivative of u, and indeed, it is exactly the difference quotient
approximation of u′′(x) for a smooth function u.

In terms of this new notation, we can write E as

(6.6.2) E(u) = ‖u− f‖2 + λ‖∇−u‖2.

108 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

The denoising problem is to minimize E over u ∈ L2(Zn), that is

(6.6.3) min
u∈L2(Zn)

E(u).

We now characterize minimizers of (6.6.1) as the solution of a differential
equation known as the Euler-Lagrange equation.

Theorem 6.6.1. Let λ ≥ 0 and f ∈ L2(Zn). Then there exists a unique
solution u ∈ L2(Zn) of the optimization problem (6.6.3). Furthermore, the
minimizer u is also characterized as the unique solution of the Euler-Lagrange
equation

(6.6.4) u− λ∆u = f.

Before proving the theorem, we need to record some properties of ∇+,
∇− and ∆. These properties are the discrete analog of integration by parts
formulas.

Proposition 6.6.2. For all u, v ∈ L2(Zn) the following hold.

(i) 〈∇−u, v〉 = −〈u,∇+v〉

(ii) 〈∇+u, v〉 = −〈u,∇−v〉

(iii) 〈∆u, v〉 = 〈u,∆v〉
Proof. We first prove (i). Let u, v ∈ L2(Zn) and compute

〈∇−u, v〉 =
n−1∑
k=0

∇−u(k)v(k)

=
n−1∑
k=0

(u(k)− u(k − 1))v(k)

=
n−1∑
k=0

u(k)v(k)−
n−1∑
k=0

u(k − 1)v(k)

=
n−1∑
k=0

u(k)v(k)−
n−2∑
k=−1

u(k)v(k + 1).

Now, since Zn is cyclic, we have

n−2∑
k=−1

u(k)v(k + 1) =
n−1∑
k=0

u(k)v(k + 1)

6.6. APPLICATION: SIGNAL DENOISING 109

and so

〈∇−u, v〉 =
n−1∑
k=0

u(k)(v(k)− v(k + 1)) = −〈u,∇+v〉.

To prove (ii), we use Part (i) to obtain

〈∇+u, v〉 = 〈v,∇+u〉 = −〈∇−v, u〉 = −〈u,∇−v〉.

To prove (iii), since ∆ = ∇+∇− we can use parts (i) and (ii) to find that

〈∆u, v〉 = 〈∇+∇−u, v〉
= −〈∇−u,∇−v〉
= 〈u,∇+∇−v〉
= 〈u,∆v〉,

which completes the proof.

Remark 6.6.3. Notice in the proof of Proposition 6.6.2(iii) that we can take
u = v to obtain the identity

‖∇−u‖2 = 〈∇−u,∇−u〉 = −〈∆u, u〉.

Similarly, we can also write ‖∇+u‖2 = −〈∆u, u〉.

Proof of Theorem 6.6.1. The proof is split into 3 parts.
1. We first show that the solution of (6.6.4) has a unique solution u ∈

L2(Zn). To see this, we first establish uniqueness. Suppose that u and v
satisfy (6.6.4). Then by subtracting the equations satisfied by u and v, we
find that w = u− v satisfies

w − λ∆w = 0.

We take the inner product with w on both sides and use Remark 6.6.3 to
obtain

0 = 〈w − λ∆w,w〉 = 〈w,w〉 − λ〈∆w,w〉 = ‖w‖2 + λ‖∇−w‖2.

Therefore ‖w‖2 = 0, and so 0 = w = u − v. Therefore u = v and so the
solution, if it exists, is unique.

The existence of a solution to (6.6.4) now follows from linear algebra, since
the equation u− λ∆u = f can be written as Au = f where A = I − λ∆. The
uniqueness proof above shows that the kernel of A is trivial, so A : L2(Zn)→
L2(Zn) is one-to-one. By the rank-nullity theorem A is also onto, so for every

110 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

f ∈ L2(Zn) there exists u ∈ L2(Zn) such that Au = f . This completes the fist
step of the proof.

2. We now show that the unique solution of (6.6.4) solves the optimization
problem (6.6.3). Let u ∈ L2(Zn) be the solution of (6.6.4), which exists due
to Part (i). To show that u solves the optimization problem (6.6.3), we need
to show that for all w ∈ L2(Zn) we have

(6.6.5) E(u) ≤ E(w).

Let w ∈ L2(Zn), set v = w − u, and define the function e : R→ R by

e(t) = E(u+ tv).

Then we have

E(w)− E(u) = e(1)− e(0) =

∫ 1

0

e′(t) dt.

The goal of the proof is to show that e′(t) ≥ 0, so that E(w)− E(u) ≥ 0. To
do this, we first need a simple algebraic identity. For any g, h ∈ L2(Zn) we
have

‖g + h‖2 = 〈g + h, g + h〉 = 〈g, g〉+ 〈g, h〉+ 〈h, g〉+ 〈h, h〉.
Since 〈h, g〉 = 〈g, h〉 and z + z = 2Rez for any z ∈ C, we have

‖g + h‖2 = ‖g‖2 + 2Re〈g, h〉+ ‖h‖2.

We now apply this to both terms in e(t) = E(u+ tv) to obtain

e(t) = E(u+ tv) = ‖u+ tv − f‖2 + λ‖∇−(u+ tv)‖2

= ‖u− f + tv‖2 + λ‖∇−u+ t∇−v‖2

= ‖u− f‖2 + 2tRe〈u− f, v〉+ t2‖v‖2

+ λ‖∇−u‖2 + 2λtRe〈∇−u,∇−v〉+ λt2‖∇−v‖2.

By Proposition 6.6.2 we have

〈∇−u,∇−v〉 = −〈∇+∇−u, v〉 = −〈∆u, v〉.

Therefore, we can simplify the expression above to read

e(t) = E(u) + 2tRe〈u− λ∆u− f, v〉+ t2
(
‖v‖2 + λ‖∇−v‖2

)
.

Differentiating in t we have

(6.6.6) e′(t) = 2Re〈u− λ∆u− f, v〉+ 2t
(
‖v‖2 + λ‖∇−v‖2

)
.

6.6. APPLICATION: SIGNAL DENOISING 111

Since u solves (6.6.4), the first term vanishes, and so e′(t) ≥ 0 for t ≥ 0, which
completes the proof of this step.

3. Finally, we show that any solution of the optimization problem (6.6.3)
must solve the Euler-Lagrange equation (6.6.4). Since solutions of (6.6.4) are
unique, this shows that minimizers E are also unique, and completes the proof.
Let u ∈ L2(Zn) be a solution to the optimization problem (6.6.3). Let v ∈
L2(Zn), to be determined later, and as in Part (ii) we define e(t) = E(u+ tv).
Since E(u) ≤ E(w) for all w ∈ L2(Zn), we have e(0) = E(u) ≤ E(u + tv) =
e(t). Therefore e has a minimum at t = 0 and so e′(0) = 0. Using (6.6.6) we
have

(6.6.7) 0 = e′(0) = 2Re〈u− λ∆u− f, v〉.

Setting v = u− λ∆u− f we obtain

0 = 2Re‖u− λ∆u− f‖2,

which shows that u− λ∆u = f , as desired.

Remark 6.6.4. A key step in the proof of Theorem (6.6.4) is differentiating
the function e(t), which amounts to computing

d

dt
E(u+ tv).

This is called computing a variation of E in the direction of v, and is a funda-
mental idea in the calculus of variations. In fact, this computation is part of
the definition of the Gateaux derivative of E, and denoted dE(u) : L2(Zn)→
L2(Zn), and defined by

dE(u)v :=
d

dt

∣∣∣
t=0
E(u+ tv).

The Gateaux derivative is simply the directional derivative of E in the direction
v. The proof of Theorem 6.6.1 simply used the fact that minimizers u of E
must satisfy dE(u)v = 0 for all v ∈ L2(Zn); that is, their directional derivatives
in every direction are zero. It follows from (6.6.7) that

dE(u)v = e′(0) = 2Re〈u− λ∆u− f, v〉.

The gradient of E, denoted ∇E, is defined as the mapping ∇E : L2(Zn) →
L2(Zn) satisfying

dE(u)v = Re〈∇E(u), v〉.

112 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

In this case, the formula for the Gateaux derivative above shows that the
gradient of E is

∇E(u) = u− λ∆u− f.
Thus, the Euler-Lagrange equation (6.6.4) is simply the necessary condition
∇E(u) = 0 satisfied by minimizers of E.

The solution of (6.6.4) satisfies a maximum principle, which says that its
values cannot exceed the maximum and minimum values of the noisy signal
f . This is a desirable property of denoising algorithms.

Proposition 6.6.5 (Maximum Principle). Let λ ≥ 0 and let f ∈ L2(Zn) be
real-valued. Let u ∈ L2(Zn) be the solution of (6.6.4), which is also real-valued.
Then we have

(6.6.8) min
Zn

f ≤ u ≤ max
Zn

f.

Proof. The proof uses a maximum principle argument. Let k ∈ Zn be a point
at which u attains its maximum value over Zn. Then u(k) ≥ u(j) for all
j ∈ Zn, and so

∆u(k) = u(k + 1)− 2u(k) + u(k − 1) ≤ u(k)− 2u(k) + u(k) = 0.

Inserting this into (6.6.4) we have

f(k) = u(k)− λ∆u(k) ≥ u(k),

and so maxZn u = u(k) ≤ f(k) ≤ maxZn f .
Similarly, if k ∈ Zn is a point where u attains its minimum value over Zn

then ∆u(k) ≥ 0 and we find that minZn u = u(k) ≥ minZn f .

So far we have not made any connection between denoising and the DFT.
We now show how to use the FFT to efficiently solve the Euler-Lagrange
equation (6.6.4) to obtain the denoised signal. This is an example of the
application of the FFT to numerically solving partial differential equations.
We simply take the DFT on both sides of (6.6.4) and use linearity of the DFT
to obtain

(6.6.9) Du− λD(∆u) = Df.

We now use Exercise 6.5.6(iv) to obtain

D(∆u)(k) = 2(cos(2πk/n)− 1)Du(k).

6.6. APPLICATION: SIGNAL DENOISING 113

0.0 0.2 0.4 0.6 0.8 1.0

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75
λ = 0

λ = 1

λ = 10

λ = 50

Figure 6.6.2: Example of Tikhonov denoising for λ = 0, 1, 10, 50, using the
noisy signal from Figure 6.6.1.

This is the main utility of the DFT for solving partial differential equations;
it turns derivatives into multiplication. We now substitute this into (6.6.9) to
obtain

Du(k)− 2λ(cos(2πk/n)− 1)Du(k) = Df(k).

We can solve algebraically for Du(k) now, yielding

Du(k) = Gλ(k)Df(k),

where
Gλ(k) =

1

1 + 2λ− 2λ cos(2πk/n)
.

Taking the inverse transform on both sides we obtain

(6.6.10) u = D−1(GλDf).

This gives a very efficient solution method, which solves the discrete differential
equation (6.6.4) in O(n log n) operations using the FFT. Figure 6.6.2 shows
examples of denoised images for various values of λ.

Remark 6.6.6. When using the DFT for signal denoising, the signal is im-
plicitly extended periodically to Zn. This can introduce a sharp discontinuity

114 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

in the signal, since f(0) and f(n− 1) may not be similar, leading to boundary
effects in the denoised signal. To eliminate this, we first take the even exten-
sion of the signal (see (6.8.4)) before applying the solution formula (6.6.10).
The even extension extends a signal periodically without introducing disconti-
nuities. As an alternative, one may use the Discrete Cosine Transform in place
of the DFT in the solution formula (6.6.10). Section 6.8 covers the Discrete
Cosine Transform.

The Fourier solution formula (6.6.10) also gives us insight into how Tikhonov
regularization works to denoise a signal. Indeed, from (6.6.10) we see that each
Fourier coefficient Df(k) is simply multiplied by Gλ(k) before taking an in-
verse transformation to obtain u. This acts to attenuate certain frequencies,
where Gλ is small. In signal processing, this type of operation is called filter-
ing. In Figure 6.6.3(a) we show the Tikhonov filters Gλ for various values of λ.
All the Tikhonov filters are low-pass filters, which means the lower frequencies
get multiplied by Gλ ≈ 1 and are unchanged, while the higher frequencies are
attenuated. The amount of attenuation of high frequencies increases with λ.
This attenuation is exactly how the noise is removed from the signal; noise
typically contains very high frequency components.

We can also rewrite the formula (6.6.10) in the signal domain using the
convolution property (Lemma 6.5.3). Indeed, defining gλ = D−1Gλ so that
Gλ = Dgλ we have

u = D−1(Dgλ · Df) = gλ ∗ f.
Thus, the denoised signal u is merely the convolution of gλ with f . The
function gλ is often called a kernel. Figure 6.6.3(b) shows the kernel gλ for
various values of λ. The convolution to compute u(k) should be thought of as
a weighted average, weighted by gλ, of the values of f nearby k. Indeed, we
have

u(k) = (gλ ∗ f)(k) =
n−1∑
j=0

gλ(j)f(k − j).

As we increase λ we can see in Figure 6.6.3(b) that the width of the kernels
increases, meaning we are averaging over a wider neighborhood of the signal,
yielding a smoother and less noisy signal.

6.6.2 Total Variation regularization

Python Notebook: .ipynb

Tikhonov regularization works well on signals that are smooth and do not
have substantial high frequency content. Indeed, as we showed in Section

https://colab.research.google.com/drive/1z5pHXOS-G88MGx7gPJEzM3Urp-CGtuk0?usp=sharing

6.6. APPLICATION: SIGNAL DENOISING 115

0 20 40 60 80 100 120

Frequency

0.0

0.2

0.4

0.6

0.8

1.0
G

λ
λ = 1

λ = 2

λ = 5

λ = 10

λ = 50

(a) Filters Gλ

−0.100 −0.075 −0.050 −0.025 0.000 0.025 0.050 0.075 0.100

0.0

0.1

0.2

0.3

0.4

g λ

λ = 1

λ = 5

λ = 10

λ = 50

(b) Kernels gλ

Figure 6.6.3: Examples of the (a) Tikhonov filters Gλ and (b) Tikhonov kernels
gλ for different values of λ. The filters work by allowing low frequencies to pass
through, and attenuating high frequencies to a certain degree, depending on
how large λ is. In the signal domain, this amounts to locally averaging the
noisy signal with the kernel gλ, whose width grows with λ.

6.6.1, Tikhonov regularization is just applying a linear filter to the signal that
attenuates the high frequencies. Tikhonov regularization does not work well on
signals that have sharp changes, like bar codes, or in two or three dimensions,
natural images. Here, any sharp change in the signal (say an edge in an image,
or a stripe in a bar code) contributes substantially to the higher end of the
spectrum, and Tikhonov regularization excessively blurs the edges. Figure
6.6.4 shows an example of this, using Tikhonov regularization on a piecewise
constant signal, with additive Gaussian noise. The sharp transitions in the
signal are lost after Tikhonov denoising.

A better approach to denoising is Total Variation regularization, which
minimizes the energy

(6.6.11) E(u) =
1

2

n−1∑
k=0

|u(k)− f(k)|2 + λ
n−1∑
k=0

|u(k)− u(k − 1)|.

The second term above is call the Total Variation of the signal u. We note that
the only difference between (6.6.1) and (6.6.11) is that the Total Variation reg-
ularizer takes the sum of the absolute value of the differences |u(k)−u(k−1)|,
instead of the squares |u(k) − u(k − 1)|2 that are used in Tikhonov regu-
larization. Hence, Tikhonov regularization cares far more about minimizing
the largest changes in the signal, which smoothes away the edges, while Total

116 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(a) Noisy signal

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4 λ = 0

λ = 1

λ = 10

λ = 50

(b) Tikhonov denoising

Figure 6.6.4: Example of (a) a noisy piecewise constant signal (e.g., a bar code)
and (b) the results of Tikhonov regularized denoising with various values of λ.
Tikhonov denoising does not preserve the sharp changes in the signal between
regions, and instead overly smoothes these edges.

Variation does not place any preference over which size changes are minimized.
The following exercise explores this.

Exercise 6.6.7. Assume that f ∈ L2(Zn) is real-valued and increasing; that
is f(k) ≤ f(k + 1) for k = 0, . . . , n− 2.

(i) Show that
n−1∑
k=1

|f(k)− f(k − 1)| = f(n− 1)− f(0).

Thus, the Total Variation norm does not care how the signal gets from
f(0) to f(n− 1), as long as the signal is monotone (i.e., not oscillating).
Total Variation regularization assigns the same energy to a sharp jump
as it does to a continuous ramp, so neither is preferred over the other.

(ii) Consider the Tikhonov regularizer

T =
n−1∑
k=1

|f(k)− f(k − 1)|2,

and suppose we fix f(0) = 0 and f(n− 1) = n− 1. As above, we assume
f is increasing, so there are no oscillations. How does the Tikhonov
energy T of a sharp jump, where f(k) = 0 for k ≤ n/2 and f(k) = n− 1
for k > n/2, compare to a smooth ramp f(k) = k? Which ones does
Tikhonov regularization prefer?

6.6. APPLICATION: SIGNAL DENOISING 117

4
For the rest of this section we will work with real-valued signals f : Zn → R.

The theory is similar, but needlessly more complicated, for complex valued
signals. For this purpose, we define the space L2(Zn;R) of real-valued signals
f : Zn → R. Note that L2(Zn;R) ⊂ L2(Zn) is a linear subspace L2(Zn), so it
inherits the inner-product structure and norm, etc.

We will proceed in generality, studying regularizers of the form

(6.6.12)
n−1∑
k=0

Φ(u(k)− u(k − 1)) =
n−1∑
k=0

Φ(∇−u(k)),

where Φ : R→ R is a twice continuously differentiable, convex, and even func-
tion satisfying Φ(0) = 0. We note that Tikhonov regularization corresponds
to Φ(t) = t2, while Total Variation corresponds to Φ(t) = |t|. Convexity can
be defined in many different, but equivalent, ways. Here, we take the defini-
tion that Φ′′ ≥ 0, so that Φ′ is an increasing function. That is Φ′(s) ≤ Φ′(t)
whenever s ≤ t. Since Φ is even we have Φ′(0) = 0 and so Φ is decreasing for
t < 0 and increasing for t > 0. We also have that

(6.6.13) (Φ′(t)− Φ′(s))(t− s) ≥ 0

for all s, t ∈ R. This is an important monotonicity property used in the proofs
in this section. To see why (6.6.13) holds, note that if t ≥ s, then t − s ≥ 0
and Φ′(t) − Φ′(s) ≥ 0 since Φ′ is increasing, so (6.6.13) holds. If t ≤ s then
Φ′(t)− Φ′(s) ≤ 0 and t− s ≤ 0, so (6.6.13) still holds.

Remark 6.6.8. The assumption that Φ is continuously differentiable means
that our theory does not apply directly to the Total Variation regularizer,
where Φ(t) = |t| is not differentiable at t = 0. However, as we’ll see below
when we solve the Total Variation problem numerically, we will approximate it
by Φ(t) =

√
t2 + ε2 for a small ε > 0, which is necessary for numerical stability

of our solution scheme. This approximation is a smooth function to which all
our theory applies.

In order to simplify notation, we write Φ(∇−u) : L2(Zn;R) → L2(Zn;R)
for the function

Φ(∇−u)(k) = Φ(∇−u(k)).

Then the regularizer above can be written more simply as ‖Φ(∇−u)‖1, where
we recall the `1-norm is given by ‖f‖1 =

∑n−1
k=0 |f(k)|. The regularized energy

for denoising is then given by

(6.6.14) EΦ(u) =
1

2
‖u− f‖2 + λ‖Φ(∇−u)‖1,

118 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

and the denoised signal is found by minimizing EΦ. This section aims to
study EΦ mathematically, to prove a minimizer exists, is unique, and to find
the corresponding Euler-Lagrange equation. Then we will explore how to
minimize EΦ numerically. The situation is far different compared to Tikhonov
regularization, since here the Euler-Lagrange equation will be nonlinear. The
techniques and tools in this section are thus somewhat different, and rely more
on nonlinear and convex analysis.

We first prove the existence of a minimizer of (6.6.12).

Lemma 6.6.9. For any f ∈ L2(Zn;R) and λ ≥ 0, there exists u ∈ L2(Zn;R)
minimizing (6.6.14), i.e., EΦ(u) ≤ EΦ(w) for all w ∈ L2(Zn;R). Furthermore,
u satisfies

(6.6.15) min
Zn

f ≤ u ≤ max
Zn

f.

Proof. Let fmax = maxZn f and fmin = minZn f . Define the truncation opera-
tor T : R→ R by

T (x) =


fmin, if x < fmin

x, if fmin ≤ x ≤ fmax

fmax, if x > fmax.

The truncation operator is Lipschitz continuous with constant 1, that is

|T (x)− T (y)| ≤ |x− y|.

To prove this, we may take x > y without loss of generality and write

|T (x)− T (y)| = T (x)− T (y) =

∫ x

y

T ′(s) ds ≤ max
s∈R

T ′(s)|x− y|.

Note that we can ignore the points where T is not differentiable, x = fmin, fmax,
since we can always split the integral to avoid them. Since at all points where T
is differentiable we have T ′(x) = 0 or T ′(x) = 1, it follows that maxs∈R T

′(s) =
1, which establishes the claim.

Let u ∈ L2(Zn;R) and define w ∈ L2(Zn;R) by w(k) = T (u(k)), that is,
by truncating the values of u. We claim that

(6.6.16) EΦ(w) ≤ EΦ(u).

That is, EΦ decreases by truncation. To see this, note that for each k, the
Lipschitz property of T yields

|w(k)− f(k)|2 = |T (u(k))− T (f(k))|2 ≤ |u(k)− f(k)|2,

6.6. APPLICATION: SIGNAL DENOISING 119

and
|T (u(k))− T (u(k − 1))| ≤ |u(k)− u(k − 1)|.

Since Φ is increasing for t ≥ 0, so we can use the evenness of Φ to write

Φ(w(k)− w(k − 1)) = Φ(|T (u(k))− T (u(k − 1))|)
≤ Φ(|u(k)− u(k − 1)|)
= Φ(u(k)− u(k − 1)).

This establishes the claim (6.6.16).
Now we define the set

M = {u ∈ L2(Zn;R) : fmin ≤ u(k) ≤ fmax for all k}.

The function EΦ is continuous and the set M is closed and bounded (it’s a
rectangle when L2(Zn;R) is viewed as Rn), so EΦ attains its minimum value
over M at some u ∈ M . To see that u minimizes EΦ over L2(Zn;R), we
take any other v ∈ L2(Zn;R) and define the truncation w(k) = T (v(k)). By
(6.6.16) we have EΦ(w) ≤ EΦ(v), and since the truncation w belongs to M we
have EΦ(u) ≤ EΦ(w), which completes the proof.

We now prove the solution is unique and characterize the Euler-Lagrange
equation.

Lemma 6.6.10. Let f ∈ L2(Zn;R) and λ ≥ 0. Then the minimizer u ∈
L2(Zn;R) of EΦ is unique and is characterized as the unique solution of the
Euler-Lagrange equation

(6.6.17) u− λ∇+Φ′(∇−u) = f.

Proof. Let u ∈ L2(Zn;R) be a minimizer of EΦ, which exists due to Lemma
6.6.9. We first show that u satisfies (6.6.17). We take a variation of EΦ, as in
the proof of Theorem 6.6.1 and Remark 6.6.4. Let v ∈ L2(Zn;R) and define

e(t) := EΦ(u+ tv).

Then, following a similar argument as in Theorem 6.6.1 we have

e′(t) =
d

dt

(
1

2
‖u+ tv − f‖2 + λ

n−1∑
k=0

Φ(∇−u(k) + t∇−v(k))

)

= 〈u− f, v〉+ t2‖v‖2 + λ
n−1∑
k=0

Φ′(∇−u(k) + t∇−v(k))∇−v(k).

120 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

Setting t = 0 and noting that e′(0) = 0 we have

0 = e′(0) = 〈u− f, v〉+ λ

n−1∑
k=0

Φ′(∇−u(k))∇−v(k)

= 〈u− f, v〉+ λ〈Φ′(∇−u),∇−v〉
= 〈u− f, v〉 − λ〈∇+Φ′(∇−u), v〉
= 〈u− λ∇+Φ′(∇−u)− f, v〉,

where we used Proposition 6.6.2 in the third step above. Setting v = u −
λ∇+Φ′(∇−u)− f we find that

‖u− λ∇+Φ′(∇−u)− f‖2 = 0

and so u satisfies (6.6.17).
The proof will be completed by showing that solutions of (6.6.17) are

unique. Let u, v ∈ L2(Zn;R) be solutions of (6.6.17). Therefore

u− λ∇+Φ′(∇−u)− (v − λ∇+Φ′(∇−u)) = 0,

which can be simplified to read

u− v − λ∇+
(
Φ′(∇−u)− Φ′(∇−v)

)
= 0.

Now take the inner product with u− v on both sides to obtain

‖u− v‖2 − λ〈∇+
(
Φ′(∇−u)− Φ′(∇−v)

)
, u− v〉 = 0.

In the second term, we use the integration by parts formula from Proposition
6.6.2(ii) to obtain

‖u− v‖2 + λ〈Φ′(∇−u)− Φ′(∇−v),∇−u−∇−v〉 = 0.

By (6.6.13), and the assumption that λ ≥ 0, we have

λ〈Φ′(∇−u)− Φ′(∇−v),∇−u−∇−v〉 ≥ 0.

It follows that ‖u− v‖2 = 0, and so u = v, which completes the proof.

We now turn to the problem of numerically computing the denoised signal
by solving the Euler-Lagrange equation (6.6.17). This equation is nonlinear,
and we can no longer simply take the DFT on both sides to obtain a solu-
tion formula, as we did in Section 6.6.1. Here, we use gradient descent to

6.6. APPLICATION: SIGNAL DENOISING 121

solve (6.6.17) numerically. Recalling Remark 6.6.4 and examining the proof of
Lemma 6.6.10 we see that the gradient of EΦ is given by

∇EΦ(u) = u− λ∇+Φ′(∇−u)− f.

Gradient descent takes small steps in the direction of −∇EΦ until convergence.
We start with some initial guess for the denoised signal, u0, and iterate

(6.6.18) uj+1 = uj − dt (uj − λ∇+Φ′(∇−uj)− f),

where dt > 0 is a time step. A good choice for the initial iterate u0 is, for
example, the solution of Tikhonov denoising given in Section 6.6.1.

The choice of the time step in important. If the time step is taken too
large, then the iteration (6.6.18) is unstable and non-convergent, and if it is
chosen too small then the convergence can take prohibitively long. To see how
to choose an appropriate time step, we use a Von Neumann analysis, which
uses the DFT to analyze stability of numerical schemes. The Von Neumann
analysis applies only to linear equations, so it is common in practice (though
not rigorous, see below) to approximate the equation by a similar linear equa-
tion. To see how to do this, note that the linear Tikhonov setting is Φ(t) = t2,
where Φ′(t) = 2t and Φ′′(t) = 2. In general, we can make the approximation

∇+Φ′(∇−u)(k) = Φ′(∇−u(k + 1))− Φ′(∇−u(k))

≈ Φ′′(∇−u(k))(∇−u(k + 1)−∇−u(k))

= Φ′′(∇−u(k))∇+∇−u(k)

= Φ′′(∇−u(k))∆u(k).

Thus, for the Von Neumann analysis we replace∇+Φ′(∇−u) with CΦ∆u, where
CΦ = maxt∈R |Φ′′(t)|. We also set f = 0 for simplicity; the scheme needs to be
stable in this case, and it turns out nonzero choices for f do not affect stability
considerations. This yields the simplified linear equation

uj+1 = uj − dt (uj − CΦλ∆uj).

We perform a Von Neumann analysis by taking the DFT of both sides and
using Exercise 6.5.6 to obtain

Duj+1(k) = Duj(k)− dt (Duj(k)− 2CΦλ(cos(2πk/n)− 1)Duj(k))

= (1− dt+ 2CΦλdt (cos(2πk/n)− 1))︸ ︷︷ ︸
λk

Duj(k).

122 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(a) Noisy signal

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4 TV

Tikhonov

(b) Denoised

Figure 6.6.5: Total Variation (TV) denoising versus Tikhonov denoising on
the piecewise constant signal from Figure 6.6.4. Total Variation denoising
better preserves edges (e.g., sharp changes) in the signal, and is superior at
reconstructing piecewise constant signals. We used λ = 0.1 and ε = 10−5 for
TV denoising and λ = 20 for Tikhonov.

Hence, the Fourier modes are simply being multiplied by λk at each iteration.
In order to ensure stability, so the solution does not blow up, we need |λk| ≤ 1.
Using that −1 ≤ cos(2πk/n) ≤ 1 we have

λk ≤ 1− dt and λk ≥ 1− dt(1 + 4CΦλ).

Thus, to ensure −1 ≤ λk ≤ 1 for all k we require that 1− dt(1 + 4CΦλ) ≥ −1
or

(6.6.19) dt ≤ 2

1 + 4CΦλ
.

In numerical analysis of partial differential equations, this time step restriction
is called a Courant-Friedrichs-Lewy, or CFL, condition.

Figure 6.6.5 shows the solution of Total Variation (TV) denoising compared
to Tikhonov denoising. We chose λ = 0.1 for TV denoising and λ = 20 for
Tikhonov denoising. These were chosen to yield similar amounts of denoising
in the constant regions of the signal. As discussed in Remark 6.6.8, we approx-
imate the function Φ(t) = |t| for TV denoising with the smooth approximation
Φε(t) =

√
t2 + ε2. In this case

Φ′ε(t) =
t√

t2 + ε2

6.6. APPLICATION: SIGNAL DENOISING 123

and 0 ≤ Φ′′ε(t) ≤ 1
ε
. Therefore CΦ = 1

ε
, and the time step restriction from the

Von Neumann analysis yields

dt ≤ 2

1 + 4CΦλ
=

2ε

ε+ 4λ
.

In the experiment we chose ε = 10−5 and ran the gradient descent iterations
(6.6.18) until uj satisfied (6.6.17) up to an error tolerance of 10−3, which took
around 70,000 iterations. We can see that choosing ε > 0 is necessary to
obtain a numerically stable computational method (though see Remark 6.6.13
below). There are other methods for minimizing energies with Total Variation
regularizers that do not need to make this smooth approximation, for example,
primal dual methods [4] and the Split-Bregman approach [10].

It is important to point out that the Von Neumann stability analysis for
nonlinear equations like (6.6.18) is not mathematically rigorous. We made a
heuristic simplification to obtain a linear equation, and to make this rigorous
we would have to relate the solutions of the linearized equation to the original
nonlinear equation (6.6.18) in some way, which is generally difficult. Never-
theless, it is very common to perform these heuristic stability analyses, since
they usually give the correct CFL time step stability condition, and it is very
easy to check in practice if the time step restriction is correct, and if it is tight.

In many cases we can say a great deal more if we analyze the gradient
descent equation (6.6.18) using techniques from nonlinear and convex analy-
sis. In Theorem 6.6.11 below, we give a rigorous proof of convergence of the
gradient descent scheme (6.6.18) under a similar, but more restrictive, time
step condition.

Theorem 6.6.11. Let f ∈ L2(Zn;R) and λ ≥ 0. Let uj be the iterations
of the gradient descent scheme (6.6.18) and let u be the solution of (6.6.17).
Assume that the time step dt in (6.6.18) satisfies

(6.6.20) dt <
2

1 + 16C2
Φλ

2
.

Then uj converges to u as j →∞, and the difference uj − u satisfies

(6.6.21) ‖uj+1 − u‖2 ≤ µ‖uj − u‖2

where

(6.6.22) µ := (1− dt)2 + 16C2
Φdt

2λ2 < 1.

124 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

Remark 6.6.12. Theorem 6.6.11 shows that whenever the time step restric-
tion (6.6.20) holds, gradient descent (6.6.18) converges at the linear rate µ to
the solution u of (6.6.17). The time step restriction is not strict, and gradient
descent may converge for larger time steps, and may exhibit a better conver-
gence rate in practice. Indeed, one often uses the less restrictive Von Neumann
time step (6.6.19) in practice.

Proof. We note that the gradient descent equation (6.6.18) can be written as

uj+1 = (1− dt)uj + dtλ∇+Φ′(∇−uj) + dtf.

The solution u of (6.6.17) satisfies

u = (1− dt)u+ dtλ∇+Φ′(∇−u) + dtf.

Subtracting these equations and writing ej = uj − u we obtain

ej+1 = (1− dt)ej + dtλ∇+
(
Φ′(∇−uj)− Φ′(∇−u)

)
.

We take the squared norm on both sides to obtain

‖ej+1‖2 = ‖(1− dt)ej + dtλ∇+
(
Φ′(∇−uj)− Φ′(∇−u)

)
‖2

= (1− dt)2‖ej‖2 + dt2λ2‖∇+(Φ′(∇−uj)− Φ′(∇−u))‖2

+ 2dt(1− dt)λ〈∇+
(
Φ′(∇−uj)− Φ′(∇−u)

)
, uj − u〉

= (1− dt)2‖ej‖2 + dt2λ2‖∇+(Φ′(∇−uj)− Φ′(∇−u))‖2

− 2dt(1− dt)λ〈Φ′(∇−uj)− Φ′(∇−u),∇−uj −∇−u〉,

where we used the integration by parts formula from Proposition 6.6.2(i) in
the last line. By (6.6.13), the last term is negative or zero, so we can drop it
to obtain the inequality

(6.6.23) ‖ej+1‖2 ≤ (1− dt)2‖ej‖2 + dt2λ2‖∇+(Φ′(∇−uj)− Φ′(∇−u))‖2.

We now note that for any f ∈ L2(Zn;R) we have

‖∇+f‖2 ≤ 4‖f‖2.

To see this, we use the inequality 2ab ≤ a2 + b2 (obtained by expanding

6.6. APPLICATION: SIGNAL DENOISING 125

(a− b)2 ≥ 0) to compute

‖∇+f‖2 =
n−1∑
k=0

(f(k + 1)− f(k))2

=
n−1∑
k=0

(f(k + 1)2 − 2f(k + 1)f(k) + f(k)2)

≤ 2
n−1∑
k=0

(f(k + 1)2 + f(k)2)

≤ 2(‖f‖2 + ‖f‖2) = 4‖f‖2.

Likewise we have ‖∇−f‖2 ≤ 4‖f‖2. Using this estimate in (6.6.23) we have

(6.6.24) ‖ej+1‖2 ≤ (1− dt)2‖ej‖2 + 4dt2λ2‖Φ′(∇−uj)− Φ′(∇−u)‖2

Since

Φ′(t)− Φ′(s) =

∫ t

s

Φ′′(τ) dτ ≤ CΦ(t− s)

for t ≥ s (recall CΦ = max Φ′′), we have

|Φ′(t)− Φ′(s)| ≤ CΦ|t− s|

for any t, s ∈ R. Therefore

‖Φ′(∇−uj)− Φ′(∇−u)‖2 ≤ ‖CΦ|∇−uj −∇−u|)‖2 = C2
Φ‖∇−ej‖2 ≤ 4CΦ‖ej‖2.

Inserting this into (6.6.24) we have

‖ej+1‖2 ≤ (1− dt)2‖ej‖2 + 16C2
Φdt

2λ2‖ej‖2

≤
(
(1− dt)2 + 16C2

Φdt
2λ2
)
‖ej‖2.

Thus, gradient descent converges when

µ := (1− dt)2 + 16C2
Φdt

2λ2 < 1,

Since in this case we have ‖ej‖2 ≤ µj‖e0‖2 → 0 as j → ∞. The proof is
completed by checking that µ < 1 whenever

126 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(a) dt = 0.01

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(b) dt = 0.05

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(c) dt = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(d) dt = 0.5

Figure 6.6.6: Example of the steady state obtained by the TV gradient descent
(6.6.18) with ε = 10−10 and various time steps dt, all of which are above the
CFL stability condition, which is dt ∼ 5 × 10−10. There are nonlinear effects
that lead to a weaker (non-convergent) stability at much larger time steps that
is still useful for denoising. For example, at dt = 0.01 the result in the figure
took only 200 iterations to obtain, compared to the result in Figure 6.6.5,
which took about 70,000 iterations at ε = 0.01.

Remark 6.6.13. It turns out it is possible to set ε = 0, i.e., use the true TV
regularizer Φ(t) = |t|, and still obtain a stable numerical method that results
in good denoising results (and converges rapidly). In Figure 6.6.6 we show the
denoising results with various values of dt and ε = 10−10. In this case the CFL
condition gives a stability condition of dt ≤ 5× 10−10, and we consider much
larger time steps of dt = 0.01, 0.05, 0.1, 0.5. In each case the gradient descent
does not converge, but it does settle down to a steady state solution with some
persisting oscillations. For dt = 0.01 the oscillations are quite small and could

6.6. APPLICATION: SIGNAL DENOISING 127

be acceptable for a denoising result.
This is a remarkable phenomenon that does not hold for linear equations,

where the Von Neumann analysis gives sharp CFL time step stability con-
ditions that cannot be violated without finite time blow up of the solution.
Here, there are nonlinear effects that prevent oscillations from growing beyond
a certain amplitude. Even for larger time steps dt, the gradient descent iter-
ations never grow unbounded, and instead the oscillations in the signal grow
to a certain amplitude, dependent on the choice of dt, and then they remain
that large and continue to oscillate. The scheme is nonconvergent, but if the
oscillations are sufficiently small, they would be within the quantization error
from saving a signal or image as 8-bit or 16-bit integers, which is commonly
done in practice.

While there is not a rigorous mathematical understanding of this phe-
nomenon, we can perform a rough heuristic argument that gives some good
insight. Essentially, in the CFL condition (6.6.19) we took a very loose upper
bound by setting CΦ = max Φ′′. Recall we used the approximation

∇+Φ′(∇−u)(k) ≈ Φ′′(∇−u(k))∆u(k)

to obtain a linear equation, but we replaced Φ′′ by CΦ. Instead, we can leave
Φ′′ and treat the equation locally, so the equivalent linear equation becomes

uj+1 = uj − dt (uj − λΦ′′(∇−u)∆uj).

We treat this equation locally, so Φ′′ is roughly constant, the CFL condition
(6.6.19) becomes

(6.6.25) dt ≤ 2

1 + 4Φ′′(∇−u)λ
.

Now, we flip the CFL condition around and write it as a condition on Φ′′, in
the form

(6.6.26) Φ′′(∇−u) ≤ 1

4λ

(
2

dt
− 1

)
.

From this, we can see that if we pick a time step dt, then the scheme will be
stable locally wherever the gradient ∇−u satisfies (6.6.26). Hence, some parts
of the solution will be stable, while others will be unstable and have growing
oscillations. But as the oscillations grow, the CFL condition (6.6.26) changes,
leading to a nonlinear interplay between the gradient and time step stability
condition.

128 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

For example, with the TV regularizer with ε > 0, i.e., Φ(t) =
√
t2 + ε2, we

have

Φ′′(t) =
ε2

(t2 + ε2)3/2
≤ ε2

t3
.

Therefore, the condition (6.6.26) holds whenever

ε2

|∇−u|3 ≤
1

4λ

(
2

dt
− 1

)
,

which can be rewritten as

(6.6.27) |∇−u|3 ≥ 4λε2dt

2− dt .

Hence, oscillations will grow until the gradient ∇−u is large enough so that
(6.6.27) holds, and then the scheme becomes stable and those oscillations will
stop growing. This gives a heuristic explanation for Figure 6.6.6. For more
details on this phenomenon, we refer the reader to [2], where this phenomenon
is described in more detail.

Exercise 6.6.14. In the proof of Theorem 6.6.11 we only used that Φ is
convex, namely Φ′′ ≥ 0. In general, Φ is often strongly convex, which means
Φ′′ ≥ cΦ for some positive constant cΦ > 0. In this exercise we assume Φ is
strongly convex with constant cΦ.

(i) Show that for every t, s ∈ R we have

(Φ′(t)− Φ′(s))(t− s) ≥ cΦ(t− s)2.

Use this to show that (in the context of the proof of Theorem 6.6.11)
that

〈Φ′(∇−uj)− Φ′(∇−u),∇−uj −∇−u〉 ≥ cΦ‖∇−ej‖2.

(ii) Modify the proof of Theorem 6.6.11 using Part (i) instead of (6.6.13) to
show that

‖uj+1 − u‖2 ≤ (1− dt)2‖uj − u‖2

provided the time step is restricted so that

dt ≤ cΦ

cΦ + 2CΦλ
.

6.7. MULTI-DIMENSIONAL DFT 129

(iii) Show that if CΦ = cΦ (which means that Φ(t) = 1
2
CΦt

2) then the time
step restriction becomes

dt ≤ 1

1 + 2CΦλ
,

which is only slightly more restrictive than the Von Neumann condition
(6.6.19).

4

6.7 Multi-dimensional DFT

We now briefly study the Discrete Fourier Transform (DFT) in higher dimen-
sions. Let

Zdn = Zn × Zn × · · · × Zn︸ ︷︷ ︸
d times,

where d ≥ 1. Elements of Zdn are denoted by the same letters, i.e., k, `, as ele-
ments of Zn. In this case k ∈ Zdn has d components k = (k(1), k(2), . . . , k(d)).
We denote the dot product of k, ` ∈ Zdn by

k · ` =
d∑
j=1

k(j)`(j).

We denote by L2(Zdn) the space of function f : Zdn → C equipped with the
inner product

〈f, g〉 =
∑
k∈Zdn

f(k)g(k).

We also have the induced norm ‖f‖2 = 〈f, f〉. The discrete cyclic convolution
of f, g ∈ L2(Zdn) is given by

(f ∗ g)(k) =
∑
`∈Zdn

f(`)g(k − `).

Note that the sums above are short-hand for d sums, and we have

∑
k∈Zdn

=
n−1∑
k(1)=0

n−1∑
k(2)=0

· · ·
n−1∑
k(d)=1

.

130 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

Definition 6.7.1. The (multi-dimensional) Discrete Fourier Transform (DFT)
is the mapping D : L2(Zdn)→ L2(Zdn) given by

(6.7.1) Df(k) =
∑
`∈Zdn

f(`)e−2πik·`/n.

The (multi-dimensional) Inverse Discrete Fourier Transform (IDFT) is the
mapping D−1 : L2(Zdn)→ L2(Zdn) given by

(6.7.2) D−1f(`) =
1

nd

∑
k∈Zdn

f(k)e2πik·`/n.

We note that the same symbols D and D−1 are used for the one dimensional
and higher dimensional DFTs. The value of d will normally be clear from
context.

It is important to point out that the multi-dimensional DFT can be viewed
as applying d one dimensional DFTs to the individual coordinates. Indeed, we
consider the case of d = 2 where we can write

Df(k) = Df(k(1), k(2))

=
n−1∑
`(1)=0

n−1∑
`(2)=0

f(`(1), `(2))e−2πi(k(1)`(1)+k(2)`(2))/n

=
n−1∑
`(1)=0

e−2πik(1)`(1)/n

 n−1∑
`(2)=0

f(`(1), `(2))e−2πik(2)`(2)/n

 .

The term in brackets above is the one dimensional DFT of f in the second
coordinate `(2), and the outer sum computes the one dimensional DFT of the
result in the first coordinate. A similar observation can be made for the case
of d ≥ 3. This means most properties of the one dimensional DFT carry over
to the multi-dimensional case, and the FFT can be directly used to efficiently
compute multi-dimensional DFTs.

We will briefly review the important properties of the multi-dimensional
DFT. The proofs are very similar to the one dimensional setting, so we leave
them to exercises.

Theorem 6.7.2. For every f ∈ L2(Zdn) we have f = DD−1f = D−1Df .
Furthermore, the following properties hold for each f, g ∈ L2(Zdn).

(i) 〈f, g〉 = 1
nd
〈Df,Dg〉,

6.7. MULTI-DIMENSIONAL DFT 131

(ii) ‖f‖2 = 1
nd
‖Df‖2,

(iii) D(f ∗ g) = Df · Dg.
Exercise 6.7.3. Prove Theorem 6.7.2. 4

The discrete derivatives introduced in Section 6.6.1 can be extended to
multi-dimensional versions. Let e1, e2, . . . , ed ∈ Rd be the standard basis vec-
tors in Rd. We define the forward difference in the jth direction,∇+

j : L2(Zdn)→
L2(Zdn), by

∇+
j u(k) = u(k + ej)− u(k).

Similarly, the backward difference ∇−j by

∇−j u(k) = u(k)− u(k − ej).
The discrete Laplacian ∆ is defined by

∆u =
d∑
j=1

∇+
j ∇−j u.

The analogous result to Proposition 6.6.2, concerning discrete integration by
parts, holds in the multi-dimensional setting.

Proposition 6.7.4. For all u, v ∈ L2(Zdn) and j = 1, 2, . . . , d, the following
hold.

(i) 〈∇−j u, v〉 = −〈u,∇+
j v〉

(ii) 〈∇+
j u, v〉 = −〈u,∇−j v〉

(iii) 〈∆u, v〉 = 〈u,∆v〉
Exercise 6.7.5. Prove Proposition 6.7.4. 4

The DFTs of the multi-dimensional gradients and Laplacian are similar to
their one dimensional counterparts. We leave the results to an exercise, which
is the generalization of Exercise 6.5.6.

Exercise 6.7.6. Complete the following exercises.

(i) Show that D(∇−j f)(k) = (1− ω−k(j))Df(k), where ω = e2πi/n.

(ii) Show that D(∇+
j f)(k) = (ωk(j)−1))Df(k).

(iii) Show that

D(∆f)(k) = 2Df(k)
d∑
j=1

(cos(2πk(j)/n)− 1). 4

132 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

6.7.1 Application: Image denoising

Python Notebook: .ipynb

We now consider an application of the multi-dimensional DFT to image
denoising. This section follows closely Sections 6.6.1 and 6.6.2, so we only
sketch the results here, leaving some of the proofs to exercises. While most
images are in d = 2 or d = 3 dimensions, we proceed in generality here.
We consider the general regularized variational approach to denoising, as in
Section 6.6.2, where we minimize the function

(6.7.3) EΦ(u) =
1

2
‖u− f‖2 + λ

d∑
j=1

‖Φ(∇−j u)‖1,

where f ∈ L2(Zdn) is the noisy image and the denoised image is the minimizer
u. The function Φ : R → R is the regularizer, which we recall from Section
6.6.2 is assumed to be twice continuously differentiable, convex, and satisfies
Φ(0) = 0. We also recall that since these conditions imply Φ is nonnegative,
we have

‖Φ(∇−j u)‖1 =
∑
k∈Zdn

Φ(∇−j u(k))).

The choice of Φ(t) = 1
2
t2 leads to Tikhonov image denoising, while Φ(t) = |t|

(or the regularized Φ(t) =
√
t2 + ε2) leads to Total Variation (TV) regulariza-

tion.
To compute the gradient of EΦ, we follow the notation in Remark 6.6.4

and the proof of Lemma 6.6.10 to obtain

(6.7.4)
d

dt

∣∣∣
t=0
EΦ(u+ tv) = 〈u− f, v〉+ λ

d∑
j=1

〈Φ′(∇−j u),∇−j v〉,

for any v ∈ L2(Zdn).

Exercise 6.7.7. Prove that (6.7.4) holds. 4
We use Proposition 6.7.4 to obtain

d

dt

∣∣∣
t=0
EΦ(u+ tv) = 〈u− f, v〉 − λ

d∑
j=1

〈∇+
j Φ′(∇−j u), v〉 = 〈∇EΦ(u), v〉,

where

∇EΦ(u) = u− f − λ
d∑
j=1

∇+
j Φ′(∇−j u).

https://colab.research.google.com/drive/1JY8ZS4bPLQSL6rYTM-ceUo1UFQHw7zWO?usp=sharing

6.7. MULTI-DIMENSIONAL DFT 133

Therefore, the Euler-Lagrange equation ∇EΦ(u) = 0 becomes

(6.7.5) u− λ
d∑
j=1

∇+
j Φ′(∇−j u) = f.

In the case of Tikhonov regularization, where Φ(t) = 1
2
t2, the equation becomes

linear and we have

(6.7.6) u− λ∆u = f.

For Tikhonov regularization, we solve the denoising equation (6.7.6) by
taking the DFT on both sides and using Exercise 6.7.6 to obtain(

1− 2λ
d∑
j=1

(cos(2πk(j)/n)− 1)

)
Du(k) = Df(k).

Solving for u we obtain

(6.7.7) u = D−1(Gλ · Df) = gλ ∗ f,

where

Gλ(k) =

(
1− 2λ

d∑
j=1

(cos(2πk(j)/n)− 1)

)−1

and Gλ = Dgλ.
For general nonlinear Φ, we solve (6.7.5) with gradient descent, which

iterates

(6.7.8) uj+1 = uj − dt
(
uj − λ

d∑
m=1

∇+
mΦ′(∇−muj)− f

)
.

To determine the CFL stability condition for the time step dt, we follow a Von
Neumann analysis for the simplified linear equation

uj+1 = uj − dt
(
uj − λCΦ

d∑
m=1

∇+
m∇−muj − f

)
,

which is equivalent, after dropping the forcing term f , to

(6.7.9) uj+1 = (1− dt)uj + dtCΦλ∆uj.

134 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

Taking the multi-dimensional DFT on both sides and using Exercise 6.7.6 we
find that

Duj+1(k) =

(
1− dt+ 2dtCΦλ

d∑
m=1

(cos(2πk(m)/n)− 1)

)
︸ ︷︷ ︸

λk

Duj(k).

We need |λk| ≤ 1 for all k ∈ Zdn to ensure stability. Note that

1− dt(1 + 4dCΦλ) ≤ λk ≤ 1.

Therefore, to ensure λk ≥ −1 we obtain the CFL condition

(6.7.10) dt ≤ 2

1 + 4dCΦλ
.

Figure 6.7.1 compares Tikhonov regularization to Total Variation regular-
ization. Notice the edges are better preserved in TV denoising. Figure 6.7.2
shows the results of TV denoising with larger values for λ, which favor the
regularizer more heavily and lead to smoother images.

Exercise 6.7.8. Formulate and prove the analogous results to Lemma 6.6.9,
Lemma 6.6.10, and Theorem 6.6.11 in the multi-dimensional setting. What is
the corresponding time step restriction, analogous to (6.6.20)? 4

Project 6.7.1 (TV Image Inpainting). Python Notebook: .ipynb
A common problem in image processing is to fill in missing pieces of an

image, which may have been corrupted by writing on an image of damage to
a painting, for example. It may also be desirable to remove an object from
an image, which can be treated by the same methods. The process of filling
in missing parts of an image is called image inpainting. Figure 6.7.3 shows an
example of part of the cameraman image that has been corrupted by writing
“Math 5467” on the image, along with the result of TV regularized inpainting
(from this project) to fill in the missing parts of the image.

For image inpainting, we assume we know the region of the image that is
corrupted and needs to be inpainted. Let f ∈ L2(Zdn) denote the corrupted
image, and let Λ ⊂ Zdn denote the set of uncorrupted (i.e., good) pixels. The
TV regularized inpainting problem is to minimize

(6.7.11) EΦ(u) =
1

2
‖δΛ · (u− f)‖2 + λ

d∑
j=1

‖Φ(∇−j u)‖1,

https://colab.research.google.com/drive/1bRZNvz7ZgcIiHkFD20CjmKM3vIsM4-Pu?usp=sharing

6.7. MULTI-DIMENSIONAL DFT 135

(a) Cameraman (b) Noisy

(c) Tikhonov (λ = 5) (d) TV (λ = 0.1)

Figure 6.7.1: A comparison of Tikhonov and Total Variation regularized image
denoising on the cameraman image.

where δΛ(k) = 1 if k ∈ Λ and δΛ(k) = 0 otherwise. Essentially we treat
inpainting as a denoising problem where the image f is known on only part of
the domain.

Complete the following steps for this project, using the Python notebook
linked above.

136 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

(a) TV (λ = 0.5) (b) TV (λ = 1)

Figure 6.7.2: Examples of TV denoising with larger values of λ.

(a) Corrupted image (b) TV inpainting

Figure 6.7.3: Example of a corrupted image and the result of TV inpainting.

(i) Show that

∇EΦ(u) = δΛ · (u− f)− λ
d∑
j=1

∇+
j Φ′(∇−j u).

(ii) Use gradient descent to minimize the TV inpainting functional to inpaint
the corrupted image in Figure 6.7.3. Note that the CFL condition on the
time step dt in gradient descent is the same as in TV denoising.

4

Project 6.7.2 (TV Image Deblurring). Python Notebook: .ipynb
Another common task in image processing is image deblurring (i.e., decon-

volution). An image blur is the convolution of an image f with a blurring
kernel g,

fblur = g ∗ f.

https://colab.research.google.com/drive/1Cp2DcN3d7R_ypHXVnMQVRsFbU9ne8fXH?usp=sharing

6.7. MULTI-DIMENSIONAL DFT 137

(a) Cameraman (b) Out-of-focus blur

Figure 6.7.4: An example of an out-of-focus blurring of the cameraman image.

For example, an out-of-focus blur, the blurring kernel g is the characteristic
function of a disk,

g(k) =

{
1, if ‖k‖ ≤ r

0, otherwise.

The radius r of the disk controls the amount of blur. Any convolution-based
blurring operation can be computed with a DFT using the convolution prop-
erty, as

(6.7.12) fblur = D−1(G · Df),

where G = Dg is the filter.
Complete the following steps for this project, using the Python notebook

linked above.

(i) Try a naive deblurring based on inverting the filter G. That is, try
computing

fdeblurred = D−1(G−1 · Dfblur).

(ii) You should find the naive deblurring works well in a perfectly noise-free
setting. Try adding noise after blurring, in the form

fblur+noise = fblur + η

138 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

where η is independent Gaussian noise (each η(k) is an Gaussian random
variable with mean zero and standard deviation σ > 0). Then try the
naive deblurring in this noisy setting, which is

fdeblurred = D−1(G−1 · Dfblur+noise).

What do you see? While the blurring operator is technically invertible, it
has vanishingly small eigenvalues and taking the inverse is not stable in
the presence of noise. Noise is always present in signal acquisition, and
it is impossible to work in noise-free settings, like in Part (i), in practice.

(iii) In order to deblur in the presence of noise, we use Total Variation regu-
larization, which minimizes the function

EΦ(u) =
1

2
‖g ∗ u− f‖2 + λ

d∑
j=1

‖Φ(∇−j u)‖1,

where f = fblur+noise. Show that

∇EΦ(u) = gT ∗ (g ∗ u− f)− λ
d∑
j=1

∇+
j Φ′(∇−j u),

where gT := D−1G. [Hint: Take a variation, and then use Parseval’s
identity to simplify.]

(iv) Use gradient descent to minimize the TV regularized deblurring energy
EΦ and deblur the image. Note that the CFL time step restriction is the
same as in TV denoising.

4

6.8 The Discrete Cosine and Sine Transforms
It is often useful in practical applications to avoid complex numbers and work
with real-valued transformations. Indeed, many embedded systems do not
have support for complex arithmetic, and due to the conjugate symmetry

Df(`) = Df(n− `)

for real valued signals f , the FFT computes twice as many coefficients are are
needed for real-valued signals, which is wasteful.

6.8. THE DISCRETE COSINE AND SINE TRANSFORMS 139

To motivate the Discrete Cosine and Sine Transforms, we recall the Fourier
Inversion Theorem 6.2.4 yields

(6.8.1) f(k) =
1

n

n−1∑
`=0

Df(`)e2πik`/n.

Throughout this section we assume that f is real-valued, that is f(k) ∈ R for
all k. In this case, the imaginary part of the right hand side above must be
identically zero. The remaining real part of the right hand side will give us
a representation formula for f in terms of only real-value quantities, and will
lead us to the Discrete Cosine and Sine Transforms.

To do this, we substitute the definition of Df(`) into (6.8.1) to obtain

(6.8.2) f(k) =
1

n

n−1∑
`=0

n−1∑
j=0

f(j)e−2πij`/ne2πik`/n.

We use Euler’s Formula to simplify the complex exponentials as follows

e−2πij`/ne2πik`/n = (cos(2πj`/n)− i sin(2πj`/n))(cos(2πk`/n) + i sin(2πk`/n))

= (cos(2πj`/n) cos(2πk`/n) + sin(2πj`/n) sin(2πk`/n))

+ i (cos(2πj`/n) sin(2πk`/n)− sin(2πj`/n) cos(2πk`/n)) .

Since f(k) is real-valued, we can ignore the imaginary part above (it must
vanish when summed in (6.8.2)), and substitute the real part into (6.8.2) to
obtain

f(k) =
1

n

n−1∑
`=0

(
n−1∑
j=0

f(j) cos(2πj`/n)

)
cos(2πk`/n)(6.8.3)

+
1

n

n−1∑
`=0

(
n−1∑
j=0

f(j) sin(2πj`/n)

)
sin(2πk`/n).

This gives a representation of f in a basis of real-valued cos and sin functions.
To derive the Discrete Cosine Transform from this, we play a trick to remove
the sin terms. The trick is to take an even extension of the function f to a
domain that is (nearly) twice as large. That is, starting with f : Zn → R, we
define the even extension fe : Z2(n−1) → R by

(6.8.4) fe(k) =

{
f(k), if 0 ≤ k ≤ n− 1,

f(2(n− 1)− k), if n ≤ k ≤ 2(n− 1)− 1.

140 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

−50 −25 0 25 50 75 100 125

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

(a) Even extension

−50 −25 0 25 50 75 100 125

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Odd extension

Figure 6.8.1: Example of the even and odd extensions of a signal on Z64

The reason for using Z2(n−1) instead of Z2n is that we do not wish to duplicate
the first and last points f(0) and f(n− 1) when reflecting evenly. Figure 6.8.1
shows an example of the even extension fe of a signal f ∈ L2(Z64). The figure
also shows the odd extension, which is defined in Exercise 6.8.2.

We now apply the representation formula (6.8.3) to the even extension fe,
taking 2(n− 1) in place of n, to obtain

fe(k) =
1

2(n− 1)

2(n−1)−1∑
`=0

A` cos

(
πk`

n− 1

)
(6.8.5)

+
1

2(n− 1)

2(n−1)−1∑
`=0

B` sin

(
πk`

n− 1

)
,

where

(6.8.6) A` =

2(n−1)−1∑
j=0

fe(j) cos

(
πj`

n− 1

)
and B` =

2(n−1)−1∑
j=0

fe(j) sin

(
πj`

n− 1

)
.

Since we took the even extension of f , it turns out that B` = 0. Indeed, we

6.8. THE DISCRETE COSINE AND SINE TRANSFORMS 141

compute

B` =

2(n−1)−1∑
j=0

fe(j) sin

(
πj`

n− 1

)

=
n−1∑
j=0

fe(j) sin

(
πj`

n− 1

)
+

2(n−1)−1∑
j=n

fe(j) sin

(
πj`

n− 1

)

=
n−1∑
j=0

f(j) sin

(
πj`

n− 1

)
+

2(n−1)−1∑
j=n

f(2(n− 1)− j) sin

(
πj`

n− 1

)

=
n−1∑
j=0

f(j) sin

(
πj`

n− 1

)
+

n−2∑
k=1

f(k) sin

(
π(2(n− 1)− k)`

n− 1

)
,

where we made the change of variables k = 2(n − 1) − j in the last line. We
now note that

sin

(
π(2(n− 1)− k)`

n− 1

)
= sin

(
2π`− πk`

n− 1

)
= − sin

(
πk`

n− 1

)
.

Substituting this above we obtain

B` =
n−1∑
j=0

f(j) sin

(
πj`

n− 1

)
−

n−2∑
k=1

f(k) sin

(
πk`

n− 1

)
= f(0) sin(0) + f(n− 1) sin(π`) = 0.

We can in fact make a similar argument to simplify A`. Following the
argument above yields

A` =
n−1∑
j=0

f(j) cos

(
πj`

n− 1

)
+

n−2∑
k=1

f(k) cos

(
π(2(n− 1)− k)`

n− 1

)
.

We now use the fact that

cos

(
π(2(n− 1)− k)`

n− 1

)
= cos

(
2π`− πk`

n− 1

)
= cos

(
πk`

n− 1

)

142 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

to obtain

A` =
n−1∑
j=0

f(j) cos

(
πj`

n− 1

)
+

n−2∑
k=1

f(k) cos

(
πk`

n− 1

)
(6.8.7)

= f(0) cos(0) + f(n− 1) cos(π`) + 2
n−2∑
j=1

f(j) cos

(
πj`

n− 1

)

= f(0) + (−1)`f(n− 1) + 2
n−2∑
j=1

f(j) cos

(
πj`

n− 1

)
.

Now, we aim to substitute B` = 0 and the expression for A` into (6.8.5) to get
the Discrete Cosine Transform. However, the nonzero part of the expression
in (6.8.5) still needs some simplification. We compute

2(n−1)−1∑
`=0

A` cos

(
πk`

n− 1

)
=

n−1∑
`=0

A` cos

(
πk`

n− 1

)
+

2(n−1)−1∑
`=n

A` cos

(
πk`

n− 1

)

=
n−1∑
`=0

A` cos

(
πk`

n− 1

)
+

n−2∑
j=1

A2(n−1)−j cos

(
πkj

n− 1

)

= A0 + (−1)kAn−1 +
n−2∑
`=1

(A` + A2(n−1)−`) cos

(
πk`

n− 1

)
.

By Exercise 6.8.1, below, we finally arrive at

(6.8.8)
2(n−1)−1∑

`=0

A` cos

(
πk`

n− 1

)
= A0 + (−1)kAn−1 + 2

n−2∑
`=1

A` cos

(
πk`

n− 1

)
.

Exercise 6.8.1. Show that A` = A2(n−1)−`. 4

Substituting B` = 0, (6.8.7) and (6.8.8) into (6.8.5) and restricting to
0 ≤ k ≤ n− 1, where fe(k) = f(k), we obtain

(6.8.9) f(k) =
1

2(n− 1)
(A0 + (−1)kAn−1) +

1

n− 1

n−2∑
`=1

A` cos

(
πk`

n− 1

)
,

where A` is given by

(6.8.10) A` = f(0) + (−1)`f(n− 1) + 2
n−2∑
k=1

f(k) cos

(
πk`

n− 1

)
.

6.8. THE DISCRETE COSINE AND SINE TRANSFORMS 143

The Discrete Cosine Transform (DCT) is the transformation that maps a real
valued function f : Zn → R to the coefficients A0, A1, . . . , An−1. The inverse
DCT is the mapping that takes the coefficients A0, . . . , An−1 and reconstructs
the function f(k) via (6.8.9). Just like with the DFT (see Section 6.3), there is
a fast recursive algorithm for computing the DCT using only O(n log n) opera-
tions. The DCT is the fundamental tool behind image and audio compression
algorithms, like mp3 and jpeg. We leave the Discrete Sine Transform to an
exercise.

Exercise 6.8.2. Derive the Discrete Sine Transform (DST) reconstruction
formula

(6.8.11) f(k) =
1

n+ 1

n−1∑
`=0

B` sin

(
π(k + 1)(`+ 1)

n+ 1

)
,

where

B` = 2
n−1∑
k=0

f(k) sin

(
π(k + 1)(`+ 1)

n+ 1

)
,

by following the arguments in this section, except for replacing the even ex-
tension fe with the odd extension fo : Z2(n+1) → R defined by

(6.8.12) fo(k) =


0, if k = 0

f(k − 1), if 1 ≤ k ≤ n,

0, if k = n+ 1

−f(2(n+ 1)− 1− k), if n+ 2 ≤ k ≤ 2(n+ 1)− 1.

4

6.8.1 DCT-based image compression

Python Notebook: .ipynb

We briefly explore an application of the Discrete Cosine Transform to image
compression. The idea of signal or image compression with the DCT is to
compute the DCT coefficients A`, as per (6.8.10), and threshold the smallest
coefficients to zero. The nonzero coefficients are stored and the image or signal
is decompressed by taking the inverse DCT, as per (6.8.9). In the case of image
compression, we use the two dimensional DCT, which is computed row-wise
and then column-wise, similar to the multi-dimensional DFT introduced in
Section 6.7. Also, as in Section 3.5 on PCA-based image compression, we split

https://colab.research.google.com/drive/1JW-DI1PSsVzO51IXYYv8DPyZ6eh4RWx5?usp=sharing

144 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

Figure 6.8.2: The cameraman image and its Discrete Cosine Transform (DCT)
coefficients computed on 8× 8 blocks.

the image up into 8×8 blocks and perform the DCT separately on each block.
This works because small blocks in images are usually very simple and can
be well-approximated by only a few DCT coefficients. Figure 6.8.2 shows the
DCT coefficients of the cameraman image on 8× 8 blocks.

We show the results of the decompressed cameraman images at different
compression ratios in Figure 6.8.3 for the PCA-based compression from Sec-
tion 3.5 and the DCT-based compression. We show the plots of PSNR vs
compression ratio in Figure 6.8.4. DCT-based compression is generally supe-
rior at low and moderate compression ratios. This is because we keep only the
most significant DCT modes on each block, and these may differ from block to
block, wheres in PCA-based compression we used the top k PCA coefficients
over the whole image, which are good for all blocks on average, but might
yield poor quality reconstructions on some blocks. The PCA-based compres-
sion does work better than DCT at very high compression ratios, reflecting
the fact that when we use only a very small number of basis images for the
blocks, a PCA-based basis is better adapted to the particular image (in fact,
it is learned from the image, while DCT is not).

6.9 The Sampling Theorem
In these notes we generally deal with discrete signals, and the assumption is
that they have been sampled from a continuous signal at a particular sampling

6.9. THE SAMPLING THEOREM 145

(a) Compression Ratio: 12.6:1, PSNR: (PCA: 34.12 dB, DCT: 39.46 dB)

(b) Compression Ratio: 6.3:1, PSNR: (PCA: 36.61 dB, DCT: 45.16 dB)

(c) Compression Ratio: 2.1:1, PSNR: (PCA: 51.04 dB, DCT: 51.14 dB)

Figure 6.8.3: Comparison of PCA-based and DCT-based image compression
on the cameraman image at different compression ratios. Left is original,
center is PCA, and right is DCT.

146 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

1 2 4 8 16 32 64
Compression Ratio

25

30

35

40

45

50
P
ea

k
S
ig

n
al

to
N

oi
se

R
at

io
(P

S
N

R
)

in
d
B PCA-based Compression

DCT-based Compression

Figure 6.8.4: PSNR vs Compression Ratio for PCA-based and DCT-based
compression of the cameraman image. DCT-based compression is better at low
compression ratios, while PCA-based compression performs better at higher
compression ratios.

frequency. In audio processing, the continuous signal is exactly the displace-
ment of the diaphragm on the microphone, which encodes the sound waves
striking its surface. The main question we will address in this section is how
fast do we need to sample a continuous signal in order to capture all the impor-
tant information in the signal. We will find that for a sufficiently fast sampling
rate, the signal can be reconstructed perfectly from its samples, provided it is
band-limited (which means it has a maximum frequency). We will also show
how to reconstruct the signal from its samples with a simple convolution oper-
ation. This theory is referred to as the Sampling Theorem. Often then name
Shannon-Nyquist Sampling Theorem is used, since it was proved by Claude
Shannon in a 1949 paper, and some ideas, in particular the critical sampling
rate, were due to work by Harry Nyquist previously. However, many other
researchers had discovered the result independently, some before Shannon did,
so it has become more common to use the term “The Sampling Theorem”.

The standard version of the sampling theorem says that if a signal u :
R → R contains no frequencies greater than σmax, then u can be perfectly
reconstructed from its evenly spaced samples provided the sampling frequency

6.9. THE SAMPLING THEOREM 147

is greater than 2σmax. The critical frequency 2σmax is called the Nyquist rate.
Furthermore, the signal u can be reconstructed from its samples via the Sinc
Interpolation formula

(6.9.1) u(t) =
∞∑

j=−∞

u(jh) sinc

(
t− jh
h

)
,

where h is the sampling period and sinc(x) = sin(πx)
πx

is the normalized Sinc
function (defining sinc(0) = 1). The sampling frequency is 1

h
, so the Nyquist

rate condition for the Sampling Theorem is that 1
h
> 2σmax, or h < 1

2σmax
.

At sampling intervals h > 1
2σmax

aliasing occurs, where frequencies that are
too high to be represented at the sampling rate are aliased to lower frequen-
cies, creating artifacts that make reconstruction of the signal from its samples
impossible.

The proof of the version of the Sampling Theorem described above requires
the continuous Fourier Transform, which we do not cover in these notes. We
will instead prove a similar version of the Sampling Theorem for periodic sig-
nals, which can be done with the DFT theory developed in these notes and
some very basic facts about Fourier series. In particular, we assume our signal
u : R → R is periodic with period 1, and has no frequency larger than σmax,
where σmax is a positive integer. This means that the signal u has the Fourier
Series representation

(6.9.2) u(t) =
σmax∑

k=−σmax

ck e
2πikt.

The complex numbers ck are the Fourier Series Coefficients of u and we can
think of the Fourier Series as the limit as n → ∞ of the DFT. Since we do
not study the Fourier Series in these notes, we will take the representation
(6.9.2) as a starting place, and investigate whether we can reconstruct u from
its evenly spaced samples u(jh) for a sampling period h > 0 and j ∈ Z. Natu-
rally this boils down to determining whether we can deduce the Fourier Series
Coefficients ck from the samples u(jh). The answer is positive precisely when
the sampling frequency exceeds the Nyquist rate. We furthermore obtain a
reconstruction formula similar to Sinc Interpolation, as shown in the following
result.

Theorem 6.9.1. Suppose that u is given by (6.9.2) and let h = 1/n for n ∈ N
with n > 2σmax. Assume also that n is odd. Then u(t) can be reconstructed

148 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

−10 −5 0 5 10

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.9.1: Depiction of the Sinc-like kernel S(t) = sinc(t)/ sinc(ht) for
n = 21 and h = 1/21. The kernel is periodic with period n = 21.

from its evenly spaced samples u(jh) and furthermore we have

(6.9.3) u(t) =
n−1∑
j=0

u(jh)S

(
t− jh
h

)
,

where S(t) is given by

S(t) =
sinc(t)

sinc(ht)
.

Remark 6.9.2. Technically S(t) is undefined when ht is a nonzero integer,
since sinc(ht) = 0. We define S by continuity in this case (see Exercise 6.9.3).
We also note that the assumption that n is odd in Theorem 6.9.1 is only for
convenience, and a similar result holds for even n. We show a depiction of
S(t) in Figure 6.9.1.

Proof. Define the sampling function f : Z → C by f(j) = u(jh) = u(j/n).
Since u is 1-periodic, f is n-periodic on Z, so we may think of f as a function
in L2(Zn). By (6.9.2) we have

f(j) =
σmax∑

k=−σmax

ck e
2πikj/n =

σmax∑
k=−σmax

ckω
kj,

where ω = e2πi/n. Recalling the orthogonality of the exponential functions
u`(j) = ωj` (see Lemma 6.2.1), a natural way to try and obtain the coefficients

6.9. THE SAMPLING THEOREM 149

ck from the sampled function f(j) is to compute the inner product

〈f, u`〉 =
n−1∑
j=0

f(j)ω−j` =
n−1∑
j=0

σmax∑
k=−σmax

ckω
j(k−`) =

σmax∑
k=−σmax

ck

n−1∑
j=0

ωj(k−`).

As in the proof of Lemma 6.2.1, it is tempting to say that the right hand side is
nc`. However, there are in fact contributions from all k such that k = ` modulo
n, that is k = ` + np for some integer p, since in that case ωj(k−`) = ωjnp = 1
since ωn = 1. This reflects the aliasing of high frequencies when the sampling
rate is insufficiently fast. Hence, we have

〈f, u`〉 = n
σmax∑

k=−σmax

ckδ{k=` mod n},

where δ{k=` mod n} = 1 when k = ` modulo n, and zero otherwise. In order
to determine the coefficient ck, we need the sum above to have exactly one
term, namely c`. This is the case whenever σmax < n

2
, or n − 1 ≥ 2σmax, so

that if k = ` + np and |k| ≤ σmax we must have p = 0. In this case we have
〈f, u`〉 = nc`, and by (6.9.2) and the fact that h = 1/n we have

u(t) =
1

n

σmax∑
k=−σmax

〈f, uk〉 e2πikt.

Since 〈f, uk〉 = 0 for σmax < |k| ≤ n−1
2
, we can expand the range of k in the

sum to range from k = −n−1
2

to k = n−1
2

to obtain

u(t) =
1

n

n−1
2∑

k=−n−1
2

〈f, uk〉 e2πikt

=
1

n

n−1
2∑

k=−n−1
2

n−1∑
j=0

f(j)e−2πikj/ne2πikt

=
n−1∑
j=0

u(jh)

 1

n

n−1
2∑

k=−n−1
2

e2πik(t−jh)

 .

The proof is completed by invoking Exercise 6.9.3, below.

150 CHAPTER 6. THE DISCRETE FOURIER TRANSFORM

Exercise 6.9.3. Let n be odd. Show that for t 6∈ Z we have

1

n

n−1
2∑

k=−n−1
2

e2πikt =
sinc(nt)

sinc(t)
.

What happens when t ∈ Z? 4

Chapter 7

The Discrete Wavelet Transform

The Discrete Fourier Transform (DFT) basis functions u`(k) = e2πik`/n are
completely localized in the frequency domain. That is Du` = δ` has only one
nonzero entry. This allows us to decompose a signal or image very precisely
into different frequency components, which is one of the most useful properties
of the DFT in practice. This comes at the expense of complete delocalization
in the time (or for images, space) domain; i.e., the function u` is nonzero at
all grid points. Figure 7.0.1 shows the real part of u` and its DFT to illustrate
the dichotomy between time and frequency localization. This delocalization
means we are measuring frequencies across the entire signal, and not locally
in time.

In practical applications of the DFT, we address this issue of delocalization
of the basis functions by breaking the signal or image up into small blocks,
and applying the Fourier transform on each block separately. This is done, for
example, in Section 3.5 when using PCA for image compression, and Section
6.8.1 when using the Discrete Cosine Transform (DCT) for image compression.
See, for example, Figure 6.8.2 for an illustration of how the DCT is applied
locally to an image to sidestep the delocalization of the DCT basis.

When viewing the FFT or DCT on blocks as a transformation of the entire
image, we are essentially applying a windowed version of the FFT, using a
window function that is exactly equal to 1 on each block, and zero elsewhere
(the window function multiplies the Fourier basis functions, as in Figure 7.0.2).
This discontinuous window function, which is a rather crude attempt to lo-
calize the DFT basis, leads to the blocking artifacts observed in block-based
image compression (see Figure 6.8.3). Figure 7.0.2 shows the DFT of a win-
dowed version of the Fourier basis function from Figure 7.0.1, which shows
that localizing in the time domain leads to delocalization in the frequency do-
main. In fact, there is a fundamental limit to how much a function and its

151

152 CHAPTER 7. THE DISCRETE WAVELET TRANSFORM

0 20 40 60 80 100 120

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) v(k) = cos(2πk`/n)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

(b) |Dv(k)|

Figure 7.0.1: A plot the real part of a Fourier basis function and its Discrete
Fourier Transform (DFT). The function v (` = 4, n = 128) is completely
delocalized (most values are nonzero), while its DFT is highly localized (all
values vanish except one).

DFT can both be localized. The uncertainty principle [8] states that

(7.0.1) ‖f‖0‖Df‖0 ≥ n,

where ‖f‖0 is the number of nonzero values of f . This says that it is impossible
for both f and Df to both be localized (i.e., have mostly zero entries). This
bound is saturated by the Fourier basis functions u`, which satisfy ‖u`‖0 = n
and ‖Du`‖0 = 1.1

Wavelets provide a principled approach to designing a frequency transfor-
mation whose basis functions are localized, as much as is possible given the
uncertainty principle, in both the time and frequency domains. In contrast
with the DFT, the wavelet transform decomposes an image into its frequency
components at multiple scales, allowing fine scale details to be distinguished
from large ones. Like the DFT, the Wavelet transform has proven to be very
useful for image denoising and compression, and some nonlinear variations on
the wavelet transform (e.g., the scattering transform [3]) are currently used in
deep learning for feature extraction.

This section offers a brief introduction to the Wavelet Transform. We
focus mostly on Haar Wavelets, and introduce the main ideas with concrete

1In quantum mechanics, the probability distributions of the position and momentum
of a particle are the Fourier Transforms of each other. In this context, the uncertainty
principle (7.0.1) says that their distributions cannot both be localized, meaning we cannot
determine both the position and momentum of a particle with high precision. This is known
as Heisenberg’s uncertainty principle.

7.1. THE 1D HAAR WAVELET 153

0 20 40 60 80 100 120

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Windowed Fourier basis function

0 10 20 30 40 50 60

0

5

10

15

20

25

(b) Windowed DFT

Figure 7.0.2: A plot the real part of a windowed Fourier basis function and its
Discrete Fourier Transform (DFT). The windowed function is more localized
in space, while its DFT is less localized in the frequency domain, compared to
Figure 7.0.1.

examples, before giving the more abstract definitions. We also consider some
applications to image denoising, compression, and classification.

7.1 The 1D Haar Wavelet
The Wavelet Transform is based on repeatedly decomposing a signal into a low
frequency part, called the approximation coefficients, and a high frequency
part, called the detail coefficients. This is best illustrated at first with an
example. Consider the following length n = 8 signal

Signal: (7,5,6,3,2,5,4,1)

The first level of the Haar Wavelet Transformation breaks up the signal into
blocks of size 2, so (7,5), (6,3), (2,5), and (4,1). For each block (a,b),
the approximation coefficient is the sum a+b, while the detail coefficient is the
difference b-a. Thus, a one-level Haar Wavelet Transformation yields

Approximation Coeff: (12,9,7,5) and Detail Coeff: (-2,-3,3,-3)

Of course, the original signal can be easily reconstructed from the approxima-
tion and detail coefficients, so it is clear the transform is invertible.

The approximation and detail coefficients are normally placed together in
an array, with the approximation coefficients coming first, so the one-level
Haar Wavelet transform of our signal is

154 CHAPTER 7. THE DISCRETE WAVELET TRANSFORM

1-level Haar Wavelet Transform: (12,9,7,5,-2,-3,3,-3)

The Wavelet Transformation can be continued to further levels by applying
the same procedure to the approximation coefficients only. The approximation
coefficients (12,9,7,5) are split into blocks (12,9) and (7,5), and the ap-
proximation coefficients are (21,12) while the detail coefficients are (-3,-2).
The 2-level Haary Wavelet Transform is then

2-level Haar Wavelet Transform: (21,12,-3,-2,-2,-3,3,-3)

We can now perform one final Wavelet Transformation on the remaining ap-
proximation coefficients (21,12), yielding the 3-level transform

3-level Haar Wavelet Transform: (33,-9,-3,-2,-2,-3,3,-3)

At this point, we have only a single approximation coefficient remaining and
cannot perform any further iterations of the Wavelet Transform. Since each
level of the Wavelet Transform is invertible, the whole process is, regardless of
how many levels are used.

We can view the 3-level Haar Wavelet Transformation as multiplication of
the signal f = (7, 5, 6, 3, 2, 5, 4, 1) by the matrix

(7.1.1) W =



1 1 1 1 1 1 1 1
−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 0 0 0 0
0 0 0 0 −1 −1 1 1
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1


.

The rows can be interpreted as the basis functions for the Haar Wavelet Trans-
formation. Notice that the rows are mutually orthogonal, so the Wavelet
Transformation is an orthogonal change of coordinates, like the DFT.

In general, we can define a one-level Haar Wavelet Transform of a signal
f ∈ L2(Zn) of length n = 2k as the signal W1f given by

(7.1.2) W1f(j) =

{
f(2j + 1) + f(2j), if 0 ≤ j ≤ n

2
− 1

f(2j − n+ 1)− f(2j − n), if n
2
≤ j ≤ n− 1.

The first line in the definition of W1f corresponds to the approximation coef-
ficients, while the second line is the detail coefficients. The second level of the

7.2. 2D HAAR WAVELET TRANSFORM 155

Haar Wavelet Transformation acts only on the approximation coefficients, so
we have

(7.1.3) W2f(j) =


W1f(2j + 1) +W1f(2j), if 0 ≤ j ≤ n

4
− 1

W1f(2j − n
2

+ 1)− f(2j − n
2
), if n

4
≤ j ≤ n

2
− 1

W1f(j), if n
2
≤ j ≤ n− 1

In general, the `th-level Haar Wavelet Transformation is
(7.1.4)

W`f(j) =


W`−1f(2j + 1) +W`−1f(2j), if 0 ≤ j ≤ n

2`
− 1

W`−1f(2j − n
2`−1 + 1)− f(2j − n

2`−1), if n
2`
≤ j ≤ n

2`−1 − 1

W`−1f(j), if n
2`−1 ≤ j ≤ n− 1

The Haar Wavelet Transform is simple to implement recursively in a program-
ming language like Python. Algorithm 7.1 gives the Python code for a 1D
Haar Wavelet Transform of a signal whose length is a power of 2 (for other
length signals, is is common to pad with zeros or use a reflection to increase the
signal length). The inverse transform is given in Algorithm 7.1. The structure
of the Wavelet Transform is very similar to the FFT discussed in Section 6.3,
except that only half of the remaining signal is processed at each level, instead
of the entire signal. For a signal of length n = 2k, the maximum depth (i.e.,
number of levels) of the Wavelet Transform is k, and at each step the length
of the signal to be processed reduces by half. Thus, the number of operations
for the first level is 2n, the second level is 2n

2
, the third level is 2n

4
, and so on.

After k levels the number of operations is

2n

(
1 +

1

2
+ · · ·+ 1

2k−1

)
≤ 4n.

Thus, the Wavelet Transform takes a linear number of operations O(n), in
contrast with the FFT which takes O(n log2 n) operations.

7.2 2D Haar Wavelet Transform
The 2D Haar Wavelet Transformation acts on images in a similar way to the
1D version acting on signals. We assume we have an image of size n × n,
where n = 2k. One level of the 2D Haar wavelet transformation breaks up
the image into 2 × 2 blocks and computes 1 approximation coefficient and 3
detail coefficients corresponding to horizontal, vertical, and diagonal details.
The formulas for the approximation and detail coefficients can be found by

156 CHAPTER 7. THE DISCRETE WAVELET TRANSFORM

Algorithm 7.1.1 The Haar Wavelet Transformation in Python
1 import numpy as np
2

3 def haar_wavelet(f,depth):
4 g = np.zeros_like(f)
5 n2 = len(f)>>1
6 g[:n2] = f[::2] + f[1::2] #Approximation coeff
7 g[n2:] = f[1::2] - f[::2] #Detail coeff
8 if depth >= 2:
9 g[:n2] = haar_wavelet(g[:n2],depth-1)

10 return g

Algorithm 7.1.2 The Inverse Haar Wavelet Transformation in Python
1 import numpy as np
2

3 def inverse_haar_wavelet(f,depth):
4 if depth == 0:
5 return f
6 else:
7 n2 = len(f)>>1
8 h = inverse_haar_wavelet(f[:n2],depth-1)
9 g = np.zeros_like(f)

10 g[1::2] = (h + f[n2:])/2
11 g[::2] = (h - f[n2:])/2
12 return g

applying the 1D Haar Transformation to the rows of the image, and then
afterwards to the columns, in a similar way that the multi-dimensional DFT
can be decomposed into 1D DFTs of rows and columns (see Section 6.7). For
a 4× 4 patch of the image

[
a b
c d

]

7.2. 2D HAAR WAVELET TRANSFORM 157

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.4

0.2

0.0

0.2

0.4

(a) Noisy Signal

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

(b) Haar Wavelet Transform (1 level)

Figure 7.1.1: One level of the Haar Wavelet Transformation applied to a noisy
signal. Notice that much of the noise appears in the detail coefficients. Wavelet
based denoising and compression algorithms are based on thresholding the
detail coefficients.

the approximation, vertical, horizontal, and diagonal detail coefficients, de-
noted A, V,H,D, respectively, are given by

A = a+ b+ c+ d

H = −a− b+ c+ d

V = −a+ b− c+ d

D = a− b− c+ d.

The inverse transform is simple to obtain; indeed, we have

a =
1

4
(A−H − V +D)

b =
1

4
(A−H + V −D)

c =
1

4
(A+H − V −D)

d =
1

4
(A+H + V +D).

Thus, one level of the 2D Haar Wavelet Transformation is clearly invertible.
Further levels of the transform are obtained by applying the transform again
to the approximation image. Figure 7.2.1 shows the 2D Haar Wavelet Trans-
formation applied the cameraman image at levels 1 and 2, and 9, which is the
largest possible depth for a 512× 512 image.

158 CHAPTER 7. THE DISCRETE WAVELET TRANSFORM

(a) 1 Level (b) 2 Levels (c) 9 Levels

Figure 7.2.1: The Haar Wavelet Transformation of levels 1, 2, and 9 on the
cameraman image. The approximation image is placed in the upper left corner,
the horizontal detail in the lower left, the vertical detail in the upper right,
and the diagonal detail in the lower right.

7.3 Wavelet denoising and compression

Python Notebook: .ipynb

We now give some brief applications of the Haar Wavelet Transformation to
image denoising and compression. In both settings, the strategy is to thresh-
old the detail coefficients to zero. We use a basic hard thresholding here, and
the results can be greatly improved with a more sophisticated form of wavelet
coefficient shrinkage. Figure 7.3.2 shows wavelet denoising of a noisy camera-
man image. Here, we used a 2-level Haar Wavelet Transformation and set the
detail coefficients with absolute value less than 0.5 to zero.

Figure 7.3.2 shows the results of Haar Wavelet based image compression at
different compression ratios. Here, we used a 3-level Haar Wavelet Transforma-
tion, and we set the detail coefficients smaller than a given threshold to zero.
We see the compressed images appear to lose resolution as the compression ra-
tio increases. In Figure 7.3.3 we give a comparison of DCT-based compression
(from Section 6.8.1) to wavelet-based image compression. The main difference
is that DCT-based compression exhibits regular blocking artifacts on an 8× 8
grid, while wavelet-based methods show fewer blocking artifacts. On the other
hand, wavelet-based compression exhibits more low resolution artifacts.

https://colab.research.google.com/drive/1rVMCEVLXGdVRK5rAPqz-TrNKAQVSjUJC?usp=sharing

7.4. WAVELET-BASED IMAGE CLASSIFICATION 159

(a) Noisy image (b) Haar Wavelet denoising

Figure 7.3.1: Example of using a 2-level Haar Wavelet Transformation to
denoise an image. Detail coefficients with absolute value less than 0.5 were set
to zero.

(a) 13:1 (b) 22:1 (c) 32:1

Figure 7.3.2: Example of using a 3-level Haar Wavelet Transformation to
compress an image. Detail coefficients with absolute value less than 0.25 were
set to zero in (a), 0.5 in (b), and 1 in (c).

7.4 Wavelet-based image classification

The Wavelet Transform can also be used as a feature extractor for image clas-
sification, and these ideas foreshadow the development of convolutional neural
networks in Section 8.4.5. In Figure 7.4.1 we show the 1-level Haar Wavelet

160 CHAPTER 7. THE DISCRETE WAVELET TRANSFORM

(a) Haar Wavelet Compression (b) DCT Compression

Figure 7.3.3: Comparison of DCT-based compression and Haar Wavelet com-
pression on the cameraman image at a compression ratio of 32:1.

Transformation of an MNIST “0” and “1” digit. Notice the “1” has strong verti-
cal details but very few horizontal details, while the zero has both vertical and
horizontal details. We can use this kind of information to distinguish between
the two digits.

Let H(i, j) denote the horizontal detail coefficients and V (i, j) the vertical,
where i, j = 1, . . . , 14 (the images are 28× 28) for a given MNIST digit. Now,
the signs (e.g., positive or negative) of the detail coefficients are irrelevant,
since they just indicate whether the detail represents a change from black
to white or vice versa. So the first step is to take the absolute value of the
detail coefficients |H(i, j)| and |V (i, j)|. Second, we don’t care where the
detail appears in the image (in this simple example), since the digit may be
written off-center or slightly differently than other digits in the same class.
To remove the information about position, we sum the absolute values of the
detail coefficients, which is also called pooling. This gives two numbers for
every MNIST digit

(7.4.1) v =
14∑
i=1

14∑
j=1

|V (i, j)| and h =
14∑
i=1

14∑
j=1

|H(i, j)|.

Figure 7.4.2 (a) shows the horizontal and vertical scores h and v for each
“0” and “1” MNIST digit. The zeros are colored purple and the ones are

7.4. WAVELET-BASED IMAGE CLASSIFICATION 161

(a) Zero (b) One

Figure 7.4.1: One level Haar Wavelet Transform of MNIST digits.

0 10 20 30 40 50

Horizontal Detail

0

10

20

30

40

50

Ve
rti

ca
l D

et
ai

l

(a) Horizontal vs Vertical

0 10 20 30 40 50

Horizontal Detail

0

10

20

30

40

50

Ve
rti

ca
l D

et
ai

l

(b) Decision boundary

Figure 7.4.2: Classification of MNIST digits “0” and “1” with a linear decision
boundary in the horizontal and vertical detail coordinates. The digit “0” is
purple and “1” is yellow. Classification with this decision boundary correctly
classifies the digits “0” and “1” with 98.93% accuracy.

colored yellow. We can see that simply choosing a threshold for the amount of

162 CHAPTER 7. THE DISCRETE WAVELET TRANSFORM

vertical or horizontal detail alone (i.e., attempting to separate the classes with
a vertical or horizontal line) will missclassify a good fraction of the images.
However, we can clearly see in the plot that the two clusters are nearly linearly
separable, which means we can find a line that separates nearly all of the images
into their respective classes. Figure 7.4.2 (b) shows one such separating line,
which we found by inspection to be

0.75h+ v = 38.

This choice is not unique and others are possible. Thus, we can construct a
linear classifier by computing f = 0.75h+ v− 38, and checking its sign. When
f > 0 we classify the digit as a “0” and when f ≤ 0 we classify the digit as “1”.
This classification achieves 98.98% accuracy.

Remark 7.4.1. There are several key components of the Wavelet-based classi-
fication method described above. First, we note that taking the absolute value
was essential, since otherwise when we summed the detail coefficients, many
positive and negative parts would cancel out. So introducing a nonlinearity
is important. Second, the pooling step is also essential, since it introduces
translation invariance into the Wavelet feature extractor. If a digit is shifted
in any direction, the pooled features will be unchanged.

Finally, we point out that the horizontal and vertical detail coefficients are
nothing other than convolutions of the original image I with filters ψ1 and ψ2,
that is H = I ∗ ψ1 and V = I ∗ ψ2, followed by downsampling by a factor
of 2 along each axis. The downsampling is also a type of pooling operation,
and can be absorbed into the definition of the convolution (so we will omit it
below). Thus, our binary classifier has the form

y = sign (w1 · pool(σ(I ∗ ψ1)) + w2 · pool(σ(I ∗ ψ2)) + b) ,

where σ(x) = |x|, w1 = 0.75, w2 = 1, b = −38 and the pooling operation
“pool” simply sums all the pixel values in an image. This is a very simple
example of a Convolutional Neural Network (CNN) for image classification.

The network has one convolutional layer and one fully connected layer,
with a pooling step in between. The convolutional layer has two channels (i.e.,
convolution with ψ1 and ψ2) followed by a nonlinear activation function σ.
There results are then pooled to give two outputs x1 and x2 of the convolutional
layers. These are usually called features. The fully connected layer is an
arbitrary linear function of x1 and x2, i.e., w1x1 +w2x2 +b, followed by another
nonlinearity, the “sign” function.

7.5. GENERAL DISCRETE WAVELETS 163

We note that the main (and very important) difference between this exam-
ple and general CNNs is that the filters ψi and weights wi and b are automati-
cally learned from training data in the CNN setting, instead of being manually
hand-tuned like we did here, making CNNs more flexible and widely applica-
ble. It is also common to have many more convolutional filters, convolutional
layers, and fully connected layer for more complicated image classification
problems2

7.5 General discrete Wavelets

We now discuss wavelet transformations in more generality, and make non-
recursive definitions of the Wavelet Transformation, which allows for different
choices of mother wavelets. Recall from Section 7.1 that the 1D Haar Wavelet
Transformation on a signal of length n = 8 is represented by the matrix W
defined by

(7.5.1) W =



1 1 1 1 1 1 1 1
−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 0 0 0 0
0 0 0 0 −1 −1 1 1
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1


.

The rows of the matrix W are the basis vectors for the Haar Wavelet Trans-
formation. It turns out vectors can be written as rescaled and shifted versions
of a mother wavelet ψ given by

(7.5.2) ψ(t) =


0, if t < 0,

−1, if 0 ≤ t < 1
2
,

1, if 1
2
≤ t < 1,

0, if t ≥ 1.

Indeed, we consider the rescaled wavelets ψj,k ∈ L2(Z8) given by

(7.5.3) ψj,k(`) = ψ
(
2−j`− k

)
.

2On MNIST, good results (i.e., above 99%) for classification of all digits can be achieved
with two convolutional layers followed by two fully connected layers).

164 CHAPTER 7. THE DISCRETE WAVELET TRANSFORM

The rows of the Haar Wavelet Transformation (except the first) are given
exactly by the ψj,k for j = 1, 2, 3 and k = 0, . . . , 23−j − 1.

Exercise 7.5.1. Show The last 4 rows of W are exactly ψ1,0, ψ1,1, ψ1,2 and
ψ1,3, the third and forth rows of W are ψ2,0 and ψ2,1, and the second row of
W is ψ3,0. 4

The first row—the approximation coefficient—is obtained by another func-
tion called the scaling function, which in this case is

(7.5.4) ϕ(t) =


0, if t < 0,

1, if 0 ≤ t < 1,

0, if t ≥ 1.

The first row of W is the rescaled scaling function ϕ3,0(`) = ϕ(2−3`). We
note that the mother wavelet ψ and the rescaling function ϕ are precisely the
filters used to obtain the approximation and detail coefficients in the recursive
definition of the Haar Wavelet Transformation given in Section 7.1.

For a general signal of length n that is a power of 2, the Haar Wavelet
basis is given by the collection of functions ψj,k with j = 1, 2, . . . , log2(n) and
k = 0, 1, 2, . . . , 2log2(n)−j − 1, and the coarsest scale approximation coefficient
ϕlog2(n),0.

The Haar basis is an orthogonal basis.

Lemma 7.5.2. For any (j1, k1) and (j2, k2), not identically equal, we have∑
`∈Z

ψj1,k1(`)ψj2,k2(`) = 0.

Exercise 7.5.3. Proof Lemma 7.5.2. 4

While the Haar Wavelet basis is orthogonal, the vectors ψj,k do not have
unit length, so it is not an orthonormal basis. For this reason, it is also common
to choose a different normalization of the wavelets, given by

ψj,k = 2−
j
2ψ(2−j`− k).

This ensures that ‖ψj,k‖ = 1 for all j, k, so the Haar Wavelet basis is an
orthonormal basis.

This general, and non-recursive, definition of the Haar Wavelet makes it
possible to construct other types of wavelets by choosing other mother wavelets
ψ. The Haar Wavelets are all piecewise constant functions, leading to blocky

7.5. GENERAL DISCRETE WAVELETS 165

0 20 40 60 80 100

−0.1

0.0

0.1

0.2

0.3

Figure 7.5.1: Plot of the Ricker Wavelet.

piecewise constant images in the compression and denoising contexts. Thus,
it is often useful to consider other types of wavelets consisting of continuous
mother wavelets, which lead to smoother reconstructions when thresholding
away detail coefficients. One common choice is the Ricker Wavelet

(7.5.5) ψ(t) =
2√

3σπ1/4

(
1−

(
t

σ

)2
)
e−

t2

2σ2 ,

where σ is the bandwidth. We show the Ricker Wavelet in Figure 7.5.1.
The Ricker wavelet, and other constructed for continuous analysis, are not

compactly supported and so they must be truncated for discrete analysis. The
first compactly supported wavelets satisfying the orthogonality condition in
Lemma 7.5.2 are due to Ingrid Daubechies and are called Daubechies wavelets.
The 1st order Daubechies wavelet is the Haar Wavelet, and the higher order
versions have additional regularity.

166 CHAPTER 7. THE DISCRETE WAVELET TRANSFORM

Chapter 8

Machine Learning

Machine learning refers to a class of algorithms that learn to complete tasks
(like image classification or face recognition) by example, and are not explic-
itly programmed. For example, to perform handwritten digit recognition with
a machine learning algorithm, one would provide many examples (sometimes
hundreds or thousands) of images of handwritten digits and their correct nu-
merical labels, and the algorithm learns a general rule to label new instances
in a similar way. In this section, we give a brief introduction to machine
learning, and cover some basic and more advanced algorithms, including deep
neural networks.

For a python notebook with a basic introduction to some simple machine
learning algorithms in the sklearn package, see .ipynb.

8.1 Introduction

Let x1, x2, . . . , xm ∈ Rn be a collection of datapoints, and let y1, y2, . . . , ym ∈
Rk be the corresponding labels. For example, in image classification, each xi
represents all the pixel values in a particular image, and the label yi would
indicate the class to which the image belongs (e.g., a dog, cat, backpack, etc.).
For other problems like automatic image annotation, the label yi encodes the
caption for image xi, using a word to vector encoding. There is generally not
much loss in generality in assuming our datapoints and labels live in Euclidean
space (Rn and Rk, respectively), since more abstract data is normally embed-
ded in Euclidean space before applying machine learning algorithms. Normally
the labels yi are chosen from the one-hot vectors e1, e2, . . . , ek, which are just
the standard basis vectors in Rk, with ei = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Rk having
a 1 in only the ith entry. The one-hot vector ei will normally represent the

167

https://colab.research.google.com/drive/1tjiFSv1Oz6vIlEupgdMGf-YhnkLqFluy?usp=sharing

168 CHAPTER 8. MACHINE LEARNING

ith class, out of k classes in total. There are three general fields within ma-
chine learning: (1) fully supervised, (2) semi-supervised, and (3) unsupervised
learning.

8.1.1 Fully supervised learning

In fully supervised learning, the algorithm uses the training data pairs given
by (x1, y1), . . . , (xm, ym) to learn a mapping

(8.1.1) f : Rn → Rk

that generalizes the rule f(xi) = yi. Clearly there are many choices for the
function f , so the learned function is far from unique. In practice, f is normally
chosen from a class of parameterized functions f(x;ω), where ω ∈ RN are the
parameters. For example, f could be a linear function f(x;ω) = x · ω, or f
could be the output of a neural network, where ω contains all the weights in
each neuron in the network. The learning is acheived by minimizing a loss
function of the form

(8.1.2) L(ω) =
1

m

m∑
i=1

`(f(xi;ω), yi),

where ` : Rk×Rk → R is a loss function. By minimizing L, we are attempting
to tune the weights ω so that f(xi;ω) = yi for all i, or make their values as
close as possible. Possible choices for the loss ` are the L2 loss `(x, y) = |x−y|2,
or the cross-entropy loss

`(x, y) = −
k∑
j=1

x(j) log(y(j)).

While the immediate goal of training is to minimize the loss L, the real
objective is to learn a function f that correctly classifies new datapoints that
have not been seen and are not included in the training data. Generalization
error refers to the ability of an algorithm to accurately predict labels for new
previously unseen data. A model with small generalization error is said to
generalize well. Generally speaking, if the parametrization of f has too few
degrees of freedom, then f may not fit the training data well, which is called
underfitting, and thus will not generalize. If there are too many degrees of
freedom then f may overfit the training data, which is another cause of poor
generalization. The goal is to find a function f that correctly fits the training
data, in the sense that it gives the simplest explanation for the observed trends,

8.1. INTRODUCTION 169

(a) Underfitting (b) Correct fit (?) (c) Overfitting

Figure 8.1.1: Example of underfitting, correct fitting, and overfitting. The
decision about what type of fit is correct, and what constitutes an overfit or
underfit, is context dependent. In a setting where some of the datapoints are
expected to be noisy, the fit in (b) may in fact be an overfit, and (a) may be
preferable.

and is most likely to generalize. Figure 8.1.1 shows examples of underfitting,
overfitting, and a correct fit for some training data (the orange points). It is
often the case that what constitutes a correct fit is context dependent, and in
the setting of high noise levels, the underfitting example in Figure 8.1.1 (a)
could be interpreted as a correct (or close to correct) fit.

In practice, we measure generalization error by splitting our dataset into
training and testing subsets. The model is trained using the training data,
and then evaluated for generalization on the held out test data. If the model
performs well on the testing data (or gives similar performance as it did on
the training data), then the model can reasonably be expected to generalize
to new data. If the testing accuracy is much lower than the training accuracy,
then it is likely that the learned function f has overfit the training data and
will not generalize well to new unseen data. Sometimes another validation
dataset is needed to tune parameters in the algorithm, so it is also common
to split the dataset three-ways, into training, validation, and testing.

In theoretical machine learning, generalization error is defined as the differ-
ence between the empirical loss (8.1.2) after training, and the expected value of
the loss given a new data point (x, y) drawn from the same distribution as the
training data. We assume the training data (x1, y1), . . . , (xm, ym) are indepen-
dent and identically distributed random variables sampled from a probability
distribution µ on Rn ×Rk. We let ω̂ denote a minimizer of the loss in (8.1.2),
so x 7→ f(x; ω̂) =: f̂(x) is the learned function. The generalization error is

170 CHAPTER 8. MACHINE LEARNING

defined as

(8.1.3) G(f̂) =

∫
Rn
`(f̂(x), y)dµ(x, y)− 1

m

m∑
i=1

`(f̂(xi), yi).

The goal in learning is to find f̂ that minimizes the generalization error G,
which ensures that the performance on a new random datapoint with the
same statistics as the training data is similar to the training loss that was
minimized during training. There is a tremendous amount of theoretical work
in machine learning that aims to bound the generalization error G for different
machine learning models. Each machine learning model is essentially a family
of parameterized functions F , from which f̂ is chosen by minimizing the loss
(8.1.2). One way to bound the generalization error is to prove uniform bounds
over f ∈ F , that is we use the estimate

G(f̂) ≤ sup
f∈F
G(f).

If we can estimate the supremum on the right hand side, then we can con-
trol the generalization error. This is called the hypothesis space complexity
approach, since bounds on supf∈F G(f) involve measuring the size of the hy-
pothesis space F in an appropriate way (e.g., Radamacher complexity, VC
dimension, etc.). For more information we refer the reader to [14].

8.1.2 Semi-supervised learning

Fully supervised learning typically requires an abundance of labeled training
data to learn from. In many applications (e.g., medical image analysis), labeled
training examples are costly to obtain and it is desirable to have algorithms
that can achieve good performance with far fewer labeled examples than are
required in fully-supervised learning. Semi-supervised learning uses both la-
beled and unlabeled data to obtain higher performance at lower labeling rates.
In this setting, we still have training data (x1, y1), (x2, y2), . . . , (xm, ym), but
the number of training points m may be small. Additionally, we assume we
have access to a large amount of unlabeled data xm+1, xm+2, . . . , xN , where
N � m. The goal is to use the additional unlabeled data to train a better
classifier with limited labeled data. In many applications, like image classifica-
tion or speech recognition, it is essentially free to get access to large amounts
of unlabeled data (e.g., images and audio samples), so we may as well try to
make use of this data.

To see why unlabeled data may be useful in classification, consider the
datapoints in Figure 8.1.2 (a). If we only use these three red and three blue

8.1. INTRODUCTION 171

(a) 3 labels per class (b) Labeled and unlabeled data

Figure 8.1.2: Example showing how the unlabeled data (the black points) can
be useful for training a classifier. Without the unlabeled data, one cannot see
the natural geometry and cluster structure in the dataset.

points to train a classifier, in the fully supervised setting, then we have very
little information with which to train the classifier and are unlikely to gener-
alize well. If, on the other hand, we have access to the black points in Figure
8.1.2 (b), i.e., the unlabeled data, then we can use this to inform our classifier,
which in this case would split the inner circle of data from the outer one.

Semi-supervised learning comes in 2 variations. The first is the inductive
setting, where one still learns a general rule u : Rn → Rk that aims to general-
ize the training data, while using properties of the unlabeled data. The second
is the transductive setting, where we only learn labels for the additional unla-
beled datapoints xm+1, . . . , xN , i.e., the black points in Figure 8.1.2 (b). The
transductive setting does not learn a general rule, and the classifier cannot be
immediately applied to new data without retraining (or using some heuristic,
like choosing the label of the closest labeled datapoint). One way to encode
the structure of the unlabeled data is to build a graph over the data, as we did
for spectral clustering in Section 4.2. We will explore this further when we dis-
cuss graph-based learning in Section 8.2. For more details on semi-supervised
learning, we refer the reader to [5].

8.1.3 Unsupervised learning

Unsupervised learning algorithms use only the unlabeled data x1, x2, . . . , xm
for learning. Common tasks include clustering (like k-means clustering from
Section 4.1 and spectral clustering from Section 4.2), as well as dimension

172 CHAPTER 8. MACHINE LEARNING

reduction algorithms, like principal component analysis (PCA) described in
Chapter 3 and the spectral and t-SNE embeddings described in Section 8.3.2.

8.2 Graph-based semi-supervised learning
Python Notebook: .ipynb

A common way to use the unlabeled data in semi-supervised learning is to
build a graph over the data (e.g., in image classification), or use an existing
graph structure in the data (e.g., classification of webpages). Graph-based
semi-supervised learning has proven to be very effective at utilizing unlabeled
data for classification.

In this section, we assume our dataset is endowed with a weight matrixW ,
as in Section 4.2. The weight matrix W is an m×m matrix whose (i, j) entry
encodes the similarity between datapoints i and j (our dataset consists of m
points). Recall from Section 4.2 that the weight matrix has all nonnegative
entries, and W (i, j) is large when datapoints i and j are similar, and small
or zero otherwise. We assume in this section that the weight matrix is sym-
metric W = W T , though there are important applications of non-symmetric
adjacency matrices. When building a graph over a dataset, we can use the
Gaussian weights described in Section 4.2 (see (4.2.1)), or often times we build
a k-nearest neighbor graph, where each datapoint is connected to its k-nearest
Euclidean neighbors, with weights that are similar to the Gaussian weights.
Figure 8.2.1 shows an example of a k-nearest neighbor graph over a synthetic
dataset.

In graph-based semi-supervised learning, we are given a small amount of
labeled data on the graph. Let Im = {1, 2, . . . ,m} denote the indices of all our
datapoints. We assume there is a subset of the nodes Γ ⊂ Im that are assign
ed label vectors from the one-hot vectors

Sk = {e1, e2, . . . , ek} .

We can treat the labels as a function g : Γ → Sk, where g(i) is the label of
node i ∈ Γ. Recall that if the ith node belongs to the jth class then we set
g(i) = ej. The task in graph-based semi-supervised learning is to extend these
labels from the subset Γ to the rest of the graph is a meaningful way. Of
course, there are infinitely many ways the labels can be extended, so we must
place some conditions or assumptions on the learned labels.

It is common in practice to take the semi-supervised smoothness assump-
tion, which stipulates that the learned labels should vary as smoothly as pos-

https://colab.research.google.com/drive/1s1AN59icvak3OAukI_wA8VQmqjGGIVOn?usp=sharing

8.2. GRAPH-BASED SEMI-SUPERVISED LEARNING 173

Figure 8.2.1: An example of a k-nearest neighbor graph.

sible, and in particular, should not change rapidly within high density regions
of the graph, which are likely to be clusters with the same label. Laplacian
regularized learning imposes the semi-supervised smoothness assumption by
minimizing the function

(8.2.1) E(u) =
1

4

m∑
i=1

m∑
j=1

W (i, j)‖u(i)− u(j)‖2

over labeling functions u : Im → Rk, subject to u = g on Γ, that is, that the
known labels are correct. After minimizing E, the label for i is determined by
the largest component of u(i), that is

Label of i = arg max
1≤j≤k

{u(i) · ej}.

The function E is the same type of smoothness functional we encountered
in Section 4.2 when discussing spectral clustering, and is called a regularizer.
Minimizing E ensures the label function u varies smoothly over the graph, en-
forcing the semi-supervised smoothness assumption. The reader should notice
the similarities with the Tikhonov and Total Variation denoising discussed,
for example, in Section 6.7.1 (in particular, the energy E is similar to the one

174 CHAPTER 8. MACHINE LEARNING

used for image inpainting). The Laplacian learning technique was first intro-
duced in [20], and has been widely used since in machine learning. It is also
sometimes called label propagation.

To minimize E we use gradient descent. There are several ways to compute
the gradient; we will follow the functional analysis approach using the Gateaux
derivative (or directional derivative) discussed in Remark 6.6.4. For this, we
need to define an inner product. Here, we will use the inner product for
u, v : Im → Rk defined by

(8.2.2) 〈u, v〉d =
m∑
i=1

d(i)u(i)Tv(i),

where d : Im → R are the degrees, given by d(i) =
∑m

j=1 W (i, j). The induced
norm is

‖u‖2
d = 〈u, u〉d =

m∑
i=1

d(i)‖u(i)‖2.

Of course, other choices of inner product are possible, and it is perhaps more
natural to omit the degree. We will see the usefulness of including the degree
below.

We recall from Remark 6.6.4 that the gradient ∇E(u) of E at u is defined
by the identity

d

dt

∣∣∣
t=0
E(u+ tv) = 〈∇E(u), v〉d.

The idea is that we compute the directional derivative on the left hand side,
and then identify the gradient by rewriting the result in the form on the
right above. Since the gradient depends on the choice of inner product, it is
sometimes common to denote the gradient as ∇dE(u), but we will not do so
here. We leave the computation of the directional derivative to an exercise.

Exercise 8.2.1. Show that

d

dt

∣∣∣
t=0
E(u+ tv) =

m∑
i=1

m∑
j=1

W (i, j)(u(i)− u(j))Tv(i).

4

Given the result of Exercise 8.2.1, we define the graph Laplacian as

(8.2.3) Lu(i) =
m∑
j=1

W (i, j)(u(i)− u(j)).

8.2. GRAPH-BASED SEMI-SUPERVISED LEARNING 175

The matrix of the Laplacian as a linear operator is exactly the same as the
graph Laplacian introduced earlier in Section 4.2 in (4.2.6). The results of
Exercise 8.2.1 can be written as

d

dt

∣∣∣
t=0
E(u+ tv) =

m∑
i=1

(Lu(i))Tv(i) = 〈d−1Lu, v〉.

Notice that the d−1 appeared due to the definition of the inner product (8.2.2)
involving the degree function d. Therefore, the gradient of E is

(8.2.4) ∇E(u) = d−1Lu.

Using gradient descent to minimize E amounts to the iteration

(8.2.5) ut+1 = ut − dt∇E(ut)

for a time step dt. At each iteration we set the known label values uk+1 = g on
Γ, and we initialize at u0(j) = g(j) for j ∈ Γ and u0(j) = 0 otherwise. Now,
we cannot use a Von Neumann analysis to choose a stable time step, as we did
in Section 6.6.2, since we do not have the Fourier Transform in this setting.
We instead use a maximum principle argument to determine stability. Due to
our definition of the inner product (8.2.2) involving the degree, it turns out
that dt ≤ 1 results in a stable scheme.

Lemma 8.2.2. If 0 < dt ≤ 1 then for all t ≥ 1 and 1 ≤ i ≤ m we have

(8.2.6) ‖ut(i)‖ ≤ max
1≤i≤m

‖u0(i)‖.

Proof. We write out gradient descent (8.2.5) as

ut+1(i) = ut(i)−
dt

d(i)

m∑
j=1

W (i, j)(ut(i)− ut(j))

= ut(i)−
dt

d(i)

m∑
j=1

W (i, j)ut(i) +
dt

d(i)

m∑
j=1

W (i, j)ut(j)

= (1− dt)ut(i) +
dt

d(i)

m∑
j=1

W (i, j)ut(j).

176 CHAPTER 8. MACHINE LEARNING

Taking the norm on both sides and using the triangle inequality (2.1.4) we
have

‖ut+1(i)‖ ≤ ‖(1− dt)ut(i)‖+

∥∥∥∥∥ dt

d(i)

m∑
j=1

W (i, j)ut(j)

∥∥∥∥∥
≤ |1− dt|‖ut(i)‖+

dt

d(i)

m∑
j=1

W (i, j)‖ut(j)‖

≤
(

max
1≤j≤m

‖ut(j)‖
)(
|1− dt|+ dt

d(i)

m∑
j=1

W (i, j)

)

≤
(

max
1≤j≤m

‖ut(j)‖
)

(|1− dt|+ dt) .

In order to ensure the amplification factor is less than or equal to 1 at each
step, we need

|1− dt|+ dt ≤ 1.

This is equivalent to

−(1− dt) ≤ 1− dt ≤ 1− dt.

The upper inequality is trivial, and the lower one yields 0 ≤ 2(1−dt) or dt ≤ 1.
In this case we have

‖ut+1(i)‖ ≤ max
1≤j≤m

‖ut(j)‖.

Continuing by induction we arrive at (8.2.6), which completes the proof.

Remark 8.2.3. We may wish to go beyond stability and instead prove con-
vergence of the iterations as k → ∞ to a solution of the equation ∇E = 0,
that is

(8.2.7)

{
Lu(i) = 0, if i ∈ Im \ Γ

u(i) = g(i), otherwise.

Proving convergence is more involved, since it depends on other properties of
the graph that we have not discussed. If the graph is connected, then the
solution of (8.2.7) is unique and gradient descent converges to this solution.
However, when the graph is not connected, the equation (8.2.7) may not have
a unique solution for gradient descent to converge to (it may have infinitely
many solutions). Gradient descent can still be shown to converge, but the
limit is dependent on the initial condition u0.

8.3. GRAPH-BASED EMBEDDINGS 177

10 20 40 80 160

85.4 (4.4) 91.7 (1.2) 93.4 (0.5) 94.3 (0.3) 94.8 (0.1)

Table 8.2.1: Laplace learning on MNIST with 10, 20, 40, 80, and 160 labels
per class. The average (standard deviation) classification accuracy over 100
trials is shown.

To see that the solution of (8.2.7) exists and is unique when the graph
is connected, recall that by the Rank-Nullity Theorem we only need to show
that solutions are unique. Take two solutions u, v of (8.2.7) and subtract them
w = u − v. Then w satisfies Lw = 0 on Im \ Γ and w = 0 on Γ. We then
compute

0 =
m∑
i=1

w(i)TLw(i) =
m∑
i=1

w(i)T
m∑
j=1

W (i, j)(w(i)− w(j))

=
1

2

m∑
i=1

m∑
j=1

W (i, j)‖w(i)− w(j)‖2,

where the last line follows a similar argument as Exercise 8.2.1. It follows that
w = 0, and so solutions are unique.

We now give a short example application to the classification of MNIST
digits. Here, we use a k = 10 nearest neighbor graph, in the same was as in
Section 4.2.2, using Euclidean distance between pixel values. We experimented
with different label rates, randomly choosing 10, 20, 40, 80, and 160 labels per
class (equivalent to 100, 200, 400, 800, and 1600 labels). For each label rate,
we ran 100 trials randomizing which images are labeled. Table 8.2 shows
the results of the experiment. We can see the method gives good accuracy
results even with only a hanful of training examples, showing the power of
semi-supervised learning.

8.3 Graph-based embeddings

Python Notebook: .ipynb

Another application of graph-based learning is dimension reduction, which
is used to simplify high dimensional data by embedding it into a much lower
dimensional Euclidean space while preserving important properties of the

https://colab.research.google.com/drive/135dAjW--23KJSzzFE8X-PlCakrqLeFNy?usp=sharing

178 CHAPTER 8. MACHINE LEARNING

dataset. We are again in the graph-based setting in this section and we assume
we have an m×m weight matrix W representing our dataset.

8.3.1 Spectral embedding

One of the oldest and most widely used embeddings is the spectral embedding,
which uses the eigenvectors of the graph Laplacian matrix L = D−W , where
we recall from Sections 4.2 and 8.2 that D is the diagonal matrix with degrees
d(i) =

∑m
j=1W (i, j) on the diagonal. Spectral embeddings are the founda-

tion of the dimension reduction techniques in diffusion maps [6], Laplacian
eigenmaps [1], and spectral clustering [16].

Let v1, v2, v3, . . . be the normalized eigenvectors of L, in order of increasing
eigenvalues 0 = λ1 ≤ λ2 ≤ · · · . The spectral embedding corresponding to L
is the map Φ : Im → Rk (recall Im = {1, 2, . . . ,m} are the indices of our
datapoints) given by

(8.3.1) Φ(i) = (v1(i), v2(i), . . . , vk(i)).

Since the first eigenvector v1 is the trivial constant eigenvector, it is also com-
mon to omit this to obtain the embedding

Φ(i) = (v2(i), v3(i), . . . , vk+1(i)).

There are other normalizations of the graph Laplacian that are commonly
used, such as the symmetric normalization L = D−1/2(D−W)D−1/2, and the
spectral embedding for a normalized Laplacian is defined analogously. Figure
8.3.1 shows a spectral embedding of the MNIST digits 0, 1, and 2 using both
the unnormalized and normalized graph Laplacians into k = 2 dimensions. In
this case, we omitted v1. Both normalizations achieve good separation between
the classes in the embedding.

The intuition behind the spectral embedding is encapsulated in the follow-
ing simple result.

Proposition 8.3.1. If A ⊂ Im is a disconnected component of the graph,
which means that W (i, j) = 0 for all i ∈ A and j ∈ Im \A, then the indicator
function of A, denoted uA, satisfies

LuA = (D −W)uA = 0.

Proof. The indicator function uA satisfies uA(i) = 1 if i ∈ A and uA(i) = 0
otherwise. For i ∈ A we compute

LuA(i) =
m∑
j=1

W (i, j)(uA(i)− uA(j)) =
∑
j∈A

W (i, j)(uA(i)− uA(j)) = 0,

8.3. GRAPH-BASED EMBEDDINGS 179

(a) Unnormalized (b) Normalized

Figure 8.3.1: Example of spectral embeddings of the 0, 1, and 2 digits of the
MNIST dataset using the unnormalized L = D−W and symmetric normalized
L = D−1/2(D −W)D−1/2 graph Laplacians.

since A is a disconnected component of Im. Similarly, if i 6∈ A, then

LuA(i) =
m∑
j=1

W (i, j)(uA(i)− uA(j)) =
∑
j 6∈A

W (i, j)(uA(i)− uA(j)) = 0,

since uA(i) = uA(j) = 0 in the sum above. This completes the proof.

Remark 8.3.2. Proposition 8.3.1 shows that the indicator functions of discon-
nected components of the graph are eigenfunctions of the graph Laplacian L
with smallest eigenvalue λ = 0. In fact, the multiplicity of the zero eigenvalue
is exactly the number of disconnected components of the graph. If the first k
eigenvectors v1, v2, . . . , vk are indicator functions of disconnected components,
then the spectral embedding (8.3.1) boils down to Φ(i) = ej when i belongs to
the jth cluster. So the spectral embedding maps the clusters to the one hot vec-
tors representing them. Of course, in practice data is not perfectly clustered
already, and a graph may have no disconnected components. Furthermore,
when we compute the eigenvectors vi, we may get any arbitrary rotation of
the eigenvectors; eigenvectors are by no means unique when the eigenmode
has multiplicity greater than 1. Spectral embeddings work because they are
stable under perturbations of the ideal setting, and give approximately ideal
embeddings for clusters that are nearly separated.

180 CHAPTER 8. MACHINE LEARNING

8.3.2 t-SNE embedding

We now briefly discuss another graph-based embedding called t-distributed
stochastic neighbor embedding (t-SNE), which is a method for visualizing high
dimensional data originally proposed by van der Maaten and Hinton [18]. In
the past few years t-SNE has become extremely popular in the natural sciences
(e.g., gene analysis and math biology) for visualizing data and discovering
cluster structure. The mathematical theory behind t-SNE is currently far
from complete.

The starting point for t-SNE is an m×m weight matrix W . As usual, the
weight matrix is assumed to be nonnegative, andW (i, j) denotes the similarity
between nodes i and j. We do not assume that W is symmetric; it may be the
case that W represents a k-nearest neighbor graph, where W (i, j) = 1 if j is
one of the k nearest neighbors of i. We assume the diagonals of W vanish, so
W (i, i) = 0. We then construct a matrix P by normalizing and symmetrizing
W as follows

(8.3.2) P =
1

2m
(D−1W +W TD−1),

where D is the diagonal matrix of degrees d(i) =
∑m

j=1W (i, j). We note that
the sum of all entries in P is one, that is 1TP1 = 1. That is, we can think of
P as a probability distribution. To see this we note that the diagonal of D is
exactly W1, and thus D−1W1 = 1 and hence 1TW TD−1 = 1T . Therefore

1TP1 =
1

2m
(1TD−1W1 + 1TW TD−11) =

1

2m
(1T1 + 1T1) = 1.

Note also that since W (i, i) = 0 we have P (i, i) = 0. We also have that P is
symmetric, so P (i, j) = P (j, i).

t-SNE aims to find embedded points y1, y2, . . . , ym ∈ Rk, where usually
k = 2 or k = 3, so that the similarity between yi and yj matches P (i, j) as
closely as possible. The similarity matrix for the yi, denoted Q, is the m×m
matrix defined by

(8.3.3) Q(i, j) =
(1 + ‖yi − yj‖2)−1∑
` 6=s(1 + ‖ys − y`‖2)−1

.

The sum in the denominator is over all ` = 1, . . . ,m and s = 1, . . . ,m with
` 6= s. Notice the entries of the matrix Q also sum to 1, so it can be interpreted
as a probability distribution as well. Here, we also set Q(i, i) = 0.

t-SNE chooses the points yi to minimize the distance between the probabil-
ity distributions P andQ. In particular, t-SNE minimizes the Kullback-Leibler

8.3. GRAPH-BASED EMBEDDINGS 181

divergence between P and Q, given by

(8.3.4) E(y1, y2, . . . , yk) = D(P‖Q) :=
∑
i 6=j

P (i, j) log

(
P (i, j)

Q(i, j)

)
.

Again, the sum is over all i = 1, . . . , n and j = 1, . . . n with i 6= j. Notice
that the Kullback-Leibler divergence is zero when P = Q. We also note that
since limx→0+ x log x = 0, we interpret the term in the sum as zero whenever
P (i, j) = 0, regardless of the value of Q(i, j). If Q(i, j) = 0 and P (i, j) 6= 0,
then the Kullback-Leibler divergence is infinite. The Kullback-Leibler diver-
gence is always nonnegative, though this is not directly clear from the definition
(it is due to Gibbs’ inequality).

Let us say a few words about the choice of the Kullback-Leibler diver-
gence, in place of some other distance between probability distributions. In
fact, since D(P‖Q) is not symmetric in P and Q it is even natural to won-
der whether the symmetrized Kullback-Leibler divergence D(P‖Q)+D(Q‖P)
would be more suitable. The choice of the non-symmetric Kullback-Leibler is
actually quite intentional in t-SNE. The Kullback-Leibler divergence places a
strong emphasis on ensuring that Q(i, j) is positive and matches P (i, j) well
whenever P (i, j) � 0. That is t-SNE emphasizes preserving local structure
from the high dimensional space in the embedded space. Of course we cannot
preserve all structures in the embedding, since there is far more complexity
in high dimensions and some information must be lost in the embedding. For
example, in d = 10 dimensional Euclidean space we can place 11 points that
are mutually equidistant, which is impossible in any lower dimension, and this
structure would be removed by the embedding. Notice in the Kullback-Leibler
divergence there is little to no penalty placed on discrepancy between P (i, j)
and Q(i, j) when P (i, j) = 0 or P (i, j) � 1. Thus, t-SNE does not seek to
ensure that points far apart in the original high dimensional space remain far
apart in the embedding. This is the relaxation that allows the embedding to
give meaningful and useful results, even though two or three dimensional space
cannot capture all of the details and nuances of high dimensional data.

t-SNE uses gradient descent to minimize E, starting from a random initial
configuration. The only place the yi appear is through Q, so we may as well
simplify the energy to read

E(y1, y2, . . . , yk) = −
∑
i 6=j

P (i, j) logQ(i, j),

at least for the purposes of computing ∇E. By the definition of Q in (8.3.3)

182 CHAPTER 8. MACHINE LEARNING

we can split E into two terms

E(y1, y2, . . . , yk) =
∑
i 6=j

P (i, j) log(1 + ‖yi − yj‖2)

(8.3.5)

+ log

(∑
i 6=j

(1 + ‖yi − yj‖2)−1

)
.

Note we used that
∑

i 6=j P (i, j) = 1 above. The gradient of E has a component
in the direction of each yi, which we denote by∇yiE. We compute the gradient
∇y` of both terms above separately. Throughout the computation let δij denote
the Kronecker delta, satisfying δij = 1 if i = j and δij = 0 otherwise. We now
compute, via the chain rule, that

∇y`

∑
i 6=j

P (i, j) log(1 + ‖yi − yj‖2)

=
∑
i 6=j

P (i, j)∇y` log(1 + ‖yi − yj‖2)

=
∑
i 6=j

P (i, j)(1 + ‖yi − yj‖2)−1∇y`‖yi − yj‖2.

If ` = i then by (2.4.2) we have

∇y`‖yi − yj‖2 = 2(yi − yj).
Similarly, if ` = j then

∇y`‖yi − yj‖2 = ∇y`‖yj − yi‖2 = 2(yj − yi).
If ` 6= i and ` 6= j, then ∇y`‖yi − yj‖2 = 0. Therefore we have

∇y`

∑
i,j:i 6=j

P (i, j) log(1 + ‖yi − yj‖2)

= 2
∑
i,j:i 6=j

P (i, j)(1 + ‖yi − yj‖2)−1(δ`i − δ`j)(yi − yj)

= 2
∑
j:j 6=`

P (`, j)(1 + ‖y` − yj‖2)−1(y` − yj)

− 2
∑
i:i 6=`

P (i, `)(1 + ‖yi − y`‖2)−1(yi − y`)

= 4
∑
j:j 6=`

P (`, j)(1 + ‖y` − yj‖2)−1(y` − yj).

8.3. GRAPH-BASED EMBEDDINGS 183

Note that we are indexing in the sums above which variables are summed over.
In the first lines, the sums are over both i and j, while in the remaining lines
the sums are over a single index, either i or j, but not both. Letting Z denote
the normalization factor Z =

∑
i 6=j(1 + ‖yi − yj‖2)−1 we have

(8.3.6) (1 + ‖y` − yj‖2)−1 = ZQ(`, j).

This gives a simpler form for the gradient of the first term, namely

(8.3.7) ∇y`

∑
i,j:i 6=j

P (i, j) log(1 + ‖yi − yj‖2) = 4Z
∑
j:j 6=`

P (`, j)Q(`, j)(y` − yj).

For the gradient of the second term in (8.3.5), we simply compute

∇y` log

(∑
i 6=j

(1 + ‖yi − yj‖2)−1

)
= Z−1

∑
i 6=j

∇y`(1 + ‖yi − yj‖2)−1

= −Z−1
∑
i 6=j

(1 + ‖yi − yj‖2)−2∇y`‖yi − yj‖2

= −2Z−1
∑
i 6=j

(1 + ‖yi − yj‖2)−2(δ`i − δ`j)(yi − yj)

= −2Z
∑
i 6=j

Q(i, j)2(δ`i − δ`j)(yi − yj),

where we used the identity (8.3.6) in the final line. Using an argument similar
to the first part, evaluating the Kronecker deltas, we arrive at the gradient for
the second piece as

(8.3.8) ∇y` log

(∑
i 6=j

(1 + ‖yi − yj‖2)−1

)
= −4Z

∑
j:j 6=`

Q(`, j)2(y` − yj),

Combining (8.3.7) and (8.3.8), and replacing ` with i, we have

(8.3.9) ∇yiE = 4Z
∑
j:j 6=i

P (i, j)Q(i, j)(yi − yj)− 4Z
∑
j:j 6=i

Q(i, j)2(yi − yj).

The first term in the gradient is an attraction term, which pulls the points yi
and yj together when their weights P (i, j) and Q(i, j) are similar and large.

184 CHAPTER 8. MACHINE LEARNING

Figure 8.3.2: A t-SNE embedding of 2500 images from the MNIST dataset,
with colors corresponding to the digit labels of each image.

The second term is a repulsion term that attempts to spread out nearby points.
The terms in the gradient can be combined to simplify its form as

∇yiE = 4Z
∑
j:j 6=i

(P (i, j)−Q(i, j))Q(i, j)(yi − yj),

but the separation in terms of attraction and repulsion terms is convenient.
The t-SNE energy E is minimized by gradient descent

yk+1
i = yk − h∇yiE(yk1 , y

k
2 , . . . , y

k
m),

where h > 0 is the time step. We show in Figure 8.3.2 an example of a t-SNE
embedding of 2500 images from the MNIST dataset. We can see that the
embedding preserves the structure (e.g., the classes) in the dataset.

For moderate and larger numbers of points m, gradient descent is very slow
to converge, so it was proposed in [18] to exaggerate the attractive forces at
the beginning of gradient descent, called early exaggeration. For the first few
hundred iterations of gradient descent, the gradient ∇yiE is replaced by

∇yiE = 4Zα
∑
j:j 6=i

P (i, j)Q(i, j)(yi − yj)− 4Z
∑
j:j 6=i

Q(i, j)2(yi − yj),

where α > 1 is the early exaggeration amplification factor, often chosen around
α = 10. The early exaggeration period strongly favors attraction forces, and

8.3. GRAPH-BASED EMBEDDINGS 185

(a) After early exaggeration (b) Final embedding

Figure 8.3.3: An example of the t-SNE embedding after the early exaggeration
phase and the final embedded, for a small version of MNIST with only 500
images from the digits 0, 1, 2, and 3.

quickly begins to form clusters in the embedded space. The later phase of
gradient descent, after early exaggeration, restores the repulsive forces and
spreads out the clusters more evenly. Figure 8.3.3 shows the results of a t-
SNE MNIST embedding of 500 images of the digits 0, 1, 2, adn 3 at the end
of early exaggeration, and at the end of the t-SNE embedding procedure.

Up to now, we have not discussed how to construct the weight matrix W
for t-SNE, and have assumed it is given (recall P is constructed from W in
(8.3.2)). It turns out this is important for achieving useful results with t-SNE.
The construction used in [18] has the form

W (i, j) = exp

(
−‖xi − xj‖

2

2σ2
i

)
,

where σi is tuned independently for each xi, in a similar way as a k-nearest
neighbor graph. The value of σi is tuned to a specified perplexity level, usually
in the range 5 to 50. The perplexity of the ith row of W (i, j) is 2H(i), where

H(i) = −
m∑
j=1

p(j) log p(j)

is the entropy of the distribution p given by p(j) = W (i, j)/
∑m

k=1W (i, k).
The value of σi is determined so that the perplexity 2H(i) equals a desired
user-specified value. The entropy H measures how well-spread out a prob-
ability distribution is. A uniform distribution has high entropy and a dirac

186 CHAPTER 8. MACHINE LEARNING

(a) MNIST

(b) Mixture of Gaussians

(c) Parabolic curve

Figure 8.3.4: t-SNE embeddings of a subset of MNIST, a mixture of two
Gaussians in 10 dimensions, and a parabolic curve in 5 dimensions. The
perplexity values from left to right are 5, 30 and 50. The mixture of Gaussians
are two standard normal distributions translated a distance of

√
10 apart in

10 dimensional Euclidean space, while the parabolic curve is defined by x5 =
x4 = x3 = x2 = x2

1 for x1 ∈ [0, 1].

distribution has low entropy. In particular, the entropy H(i) is monotonically
increasing with σi, and so a bisection search can be used to find σi. Larger
values of σi are roughly equivalent to using a larger neighborhood in the graph
construction.

To give an idea of how t-SNE works on other datasets, we show in Figure
8.3.4 the results of applying t-SNE to a mixture of Gaussians distribution,
with two standard normal point clouds in 10 dimensional space separated by a
distance of

√
10, and a parabolic curve x5 = x4 = x3 = x2 = x2

1 for x1 ∈ [0, 1]

8.4. NEURAL NETWORKS 187

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(a) ReLU

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

(b) Sigmoid

Figure 8.4.1: Plots of the ReLU and Sigmoid activation functions. Both activa-
tion functions have the behavior that they give zero, or close to zero, responses
when the input is below a certain threshold, and give positive responses above.

in 5 dimensional Euclidean space. Clearly the embedding does not preserve
properties of the curve, like its connectivity or curvature information.

8.4 Neural networks
This section is a very brief introduction to artificial neural networks and deep
learning. We will cover fully connected networks, convolutional neural net-
works, and some basic theory including the back propagation equations for
computing gradients, and universal function approximation theorems. For a
more in depth view of deep learning we refer the reader to [11].

8.4.1 Fully connected networks

Artificial neural networks, which we will call neural networks from now on, are
parameterized functions made up of simple building blocks: linear functions
and simple nonlinearities. The basic building block is a neuron

f(x) = σ(ωTx+ b),

which is a function f : Rn → R consisting of a linear function x 7→ ωTx + b
(here, ω ∈ Rn is the weight and b ∈ R is the bias), composed with a nonlinear
activation function σ : R → R. A common choice for the activation function
is the rectified linear unit (ReLU)

(8.4.1) σ(t) = max{t, 0}.

188 CHAPTER 8. MACHINE LEARNING

Figure 8.4.2: An example of a fully connected neural network with three hidden
layers. The blue nodes are the hidden layers, the red is the input, and the green
is the output. The hidden layers have width n1 = 2, n2 = 6, and n3 = 4 and
the number of input variables is n0 = 6.

Another popular choice is the sigmoid activation

(8.4.2) σ(t) =
1

1 + e−t
.

Figure 8.4.1 shows both activation functions. The key property of an activation
functions is that the response is zero, or close to zero, for inputs below a certain
threshold, and then positive (i.e., activated) above a threshold. This model
for a neuron is very loosely based on neurons in human and animal brains,
which are activated only when their input rises to a certain threshold, but the
analogy should not be taken further than this. Let us briefly mention that
the advantage of the sigmoid activation is that it is continuously differentiable
(in fact, smooth), while ReLU activations are Lipschitz continuous but not
differentiable at t = 0. On the other hand, the ReLU activations are 1-
homogeneous, meaning σ(at) = aσ(t) for a > 0.

A fully connected neural network is an interconnection of many neurons
organized into a number of layers, so that each neuron in the kth layer takes
as its inputs all the outputs of neurons from the (k − 1)st layer. Figure 8.4.2
shows a toy example of a fully connected neural network. The internal layers

8.4. NEURAL NETWORKS 189

(the blue ones in the figure) are called hidden layers and the units in these
layers called hidden units. The red layer corresponds to the input variables
(in R6 here) and the green layer the output (in R2 here). A neural network is
trained for a particular task by adjusting all the weights and biases in achieve
correct behavior. As we shall see, the structure of a neural network makes it
extremely flexible in its ability to approximate a wide range of functions with
ease, which is one main reason for their success.

In more compact notation, we can write a fully connected neural network
with L layers recursively as

(8.4.3) fk = σk(Wkfk−1 + bk), k = 1, . . . , L,

where f0 ∈ Rn0 is the input to the network, fk ∈ Rnk for k = 1, . . . , L− 1 are
the values of the network at the hidden layers, fL is the output of the neural
network, and nk is the number of hidden nodes in the kth layer. Notice we
are including all the neurons for the kth layer in the compact and vectorized
notation in (8.4.3). The weights Wk ∈ Rnk×nk−1 and biases bk ∈ Rnk are the
learnable parameters in the neural network. The functions σk : R → R are
the activation functions for each layer, which we allow to be different. When
applying σk to a vector x ∈ Rm, we apply σk componentwise to x. We note that
without a nonlinear activation function σk, a neural network would simply be
a linear function from Rn0 to RnL (being a composition of linear functions).

The output of the neural network fL ∈ RnL is typically fed into a loss
function L : RnL → R which measures the performance of the network for the
given learning task. The value of the output fL clearly depends on the weights
Wk, biases bk, and the input to the network f0. We write fL(x) to denote
the value of the output of the network fL given the input is f0 = x. Neural
networks are trained by minimizing the loss L(xL) with respect to the choices
of the weights Wk and biases bk. Typically the loss has the form

(8.4.4) L(W1, b1, . . . ,WL, bL) =
m∑
i=1

`(fL(xi), yi),

where (xi, yi) for i = 1, . . . ,m are the training data.
The loss is normally minimized by some version of gradient descent. Let

∂L
∂Wk

and ∂L
∂bk

denote the gradients of L with respect to Wk and bk, respectively.
The gradient ∂L

∂Wk
is the nk × nk−1 matrix whose (i, j) entry is the partial

derivative of L in Wk(i, j). Likewise, the gradient ∂L
∂bk
∈ Rnk is the vector

whose ith entry is the partial derivative of L in bk(i). Gradient descent for
minimizing L corresponds to updating the weights Wk and biases bk according

190 CHAPTER 8. MACHINE LEARNING

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 Iter: 0
Iter: 100
Iter: 200
Iter: 300
Iter: 400
Iter: 800
Iter: 1500
Iter: 2000
Iter: 3000
Iter: 10000

(a) Training iterations

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−3

−2

−1

0

1

2

3

Target Function
Neural Network

(b) Neural network vs target

Figure 8.4.3: A toy example of fitting the function sin(πx) with a 2-layer
neural network with 100 hidden nodes. In (a) we show the intermediate results
over 10000 steps of gradient descent on the L1 loss, and in (b) we show the
final trained network compared to the target function sin(πx). The L1 loss
is restricted to the interval [−1, 1] and the neural network extends linearly
outside of this domain (due to the choice of ReLU activations).

to

(8.4.5) W j+1
k = W j

k − α
∂L
∂Wk

and bj+1
k = bjk − α

∂L
∂bk

,

where α > 0 is the time step, also called the learning rate. Each step of gradient
descent improves the performance of the network for the task at hand, which
is interpreted as learning. We note that each gradient depends on the current
values W j

k and bjk, that is

∂L
∂Wk

=
∂L
∂Wk

(W j
1 , b

j
1, . . . ,W

j
L, b

j
L) and

∂L
∂bk

=
∂L
∂bk

(W j
1 , b

j
1, . . . ,W

j
L, b

j
L).

We suppress this dependence for notational convenience.
As a toy example we consider training a 2-layer neural network to approx-

imate the function sin(πx). We use the L1 loss

L(fL) =
m∑
i=1

|fL(xi)− sin(πxi)|

for evenly spaced points−1 = x1 ≤ x2 ≤ · · · ≤ xm = 1. We chosem = 200 and
used a 2-layer neural network with 100 hidden nodes and a ReLU activation

8.4. NEURAL NETWORKS 191

function. We ran gradient descent for 10000 iterations. Figure 8.4.3 (a) shows
the intermediate steps of gradient descent and Figure 8.4.3 (b) shows the final
neural network function compared to the target function sin(πx). Since the
network is only trained on the interval [−1, 1], the values do not agree with the
target function outside this interval. The choice of ReLU activations causes
the network to extend the function linearly outside the training domain. We
also mention that the weights in the network were initialized randomly, which
leads to faster convergence than zero intialization.

For modern machine learning problems with very large training sets, it
is sometimes impractical to compute the full gradients ∂L

∂Wk
and ∂L

∂bk
, since

the loss (8.4.4) involves all of the training data, which may not even fit into
memory all at once. Stochastic gradient descent (SGD) alleviates this concern
by computing the gradient over a random subset of the training data. That
is, we compute the gradients in Wk and bk of the loss

L̃(W1, b1, . . . ,WL, bL) =
∑
i∈I

`(fL(xi), yi),

where I ⊂ {1, 2, . . . , n} is a random subset, called a mini-batch. The mini-
batch changes at each iteration of SGD. One pass over all the mini-batches in
the dataset is called an epoch, and training usually proceeds for some number
of ephochs, say 100.

Various other trickes are used in the optimization, and there are by now
too many to properly describe. One of the more important ones is momentum,
which modifies the gradient descent step (8.4.5) to be

W j+1
k = W j

k − α
∂L
∂Wk

+ β(W j
k −W j−1

k),

and
bj+1
k = bjk − α

∂L
∂bk

+ β(bjk − bj−1
k),

where β ∈ [0, 1] is the momentum parameter. Momentum can help to speed
up convergence of gradient descent. Chapter 9 gives a rigorous analysis of
gradient descent, including momentum descent and SGD.

8.4.2 Back propagation

Since the neural network is an L-fold composition of functions, the gradients
can be computed with the chain rule. However, computing each gradient sep-
arately is wasteful and expensive. It turns out there are relationships between

192 CHAPTER 8. MACHINE LEARNING

gradients (also following from the chain rule), that can be used to efficiently
compute all gradients ∂L

∂Wk
and ∂L

∂bk
for k = 1, . . . , L in one sweep of the neu-

ral network. This is known as back propagation. While all types of neural
networks admit a type of back propagation for computing gradients, we will
proceed with the analysis for the case of a fully connected neural network,
as introduced in Section 8.4.1. The extension to other types of networks is
straightforward.

We need some additional notation before describing the back propaga-
tion equations. Recall the fully connected neural network recursion equation
(8.4.3). For notational simplicity, we will write

(8.4.6) zk = Wkfk−1 + bk,

so that (8.4.3) becomes fk = σk(zk). Let ∂L
∂zk
∈ Rnk denote the gradient of L

with respect to zk. Recall we treat all vectors as column vectors. We also let
Dk be the diagonal nk × nk matrix with diagonal entries given by the vector
σ′k(zk). That is

Dk = diag(σ′k(zk)).

The following back propagation result allows us to relate the gradients of L at
one layer with gradients at layer k − 1 to gradients at layer k.

Theorem 8.4.1 (Back propagation). For k = 2, . . . , L we have

(8.4.7)
∂L
∂zk−1

= Dk−1W
T
k

∂L
∂zk

,

(8.4.8)
∂L
∂Wk

=
∂L
∂zk

fTk−1, and
∂L
∂bk

=
∂L
∂zk

.

Remark 8.4.2. Theorem 8.4.1 suggests an algorithm, called back propagation,
for efficiently computing the gradients ∂L

∂Wk
and ∂L

∂bk
. We first compute ∂L

∂zL

based on the form of the loss function L = L(σL(zL)) (note that σL is often
the identity, in which case L = L(zL)). Then we compute the gradients ∂L

∂zk
for

k = L−1, L−2, . . . , 2, 1 using the recursion (8.4.7). Note that the form of the
recursion (8.4.7) requires we propagate backwards through the network from
the last layer L to the first layer, hence the name back propagation (in general
Dk−1W

T
k is not invertible—it is usually not even square!—so we cannot write

∂L
∂zk

in terms of ∂L
∂zk−1

and are forced to propagate backwards). After computing
∂L
∂zk

for all k = 1, . . . , L, we easily compute ∂L
∂Wk

and ∂L
∂bk

using the identities in
(8.4.8).

8.4. NEURAL NETWORKS 193

Proof of Theorem 8.4.1. We first establish (8.4.8). To do this, we need to com-
pute the (i, j)th entry of the matrix ∂L

∂Wk
, which is the partial derivative ∂L

∂Wk(i,j)
.

We note that in (8.4.6), the entryWk(i, j) appears only in the component zk(i),
in which case we have

zk(i) =

nk−1∑
`=1

Wk(i, `)fk−1(`).

Thus, by the chain rule we have

∂L
∂Wk(i, j)

=
∂L

∂zk(i)

∂zk(i)

∂Wk(i, j)
=

∂L
∂zk(i)

fk−1(j).

This establishes (8.4.8).
Now, in terms of zk, the neural network recursion (8.4.3) can be written as

zk = Wkfk−1 + bk = Wkσk−1(zk−1) + bk.

Writing this out in coordinates we have

zk(i) =

nk−1∑
`=1

Wk(i, `)σk−1(zk−1(`)) + bk(i).

Differentiating in zk−1(j) we have

∂zk(i)

∂zk−1(j)
= Wk(i, j)σ

′
k−1(zk−1(j)).

We now use the chain rule to compute

∂L
∂zk−1(j)

=

nk∑
i=1

∂L
∂zk(i)

∂zk(i)

∂zk−1(j)

=

nk∑
i=1

∂L
∂zk(i)

Wk(i, j)σ
′
k−1(zk−1(j))

=

(
W T
k

∂L
∂zk

)
(j)σ′k−1(zk−1(j))

=

(
Dk−1W

T
k

∂L
∂zk

)
(j),

which completes the proof.

194 CHAPTER 8. MACHINE LEARNING

Exercise 8.4.3. The traditional neural network architecture

fk = σk(Wkfk−1 + bk), k = 1, . . . , L,

often yields worse performance for deeper networks with more layers compared
to shallower networks. The main issue it that training is difficult, due to
vanishing gradients or gradient blowup (where the gradients either become
very small and training does not progress, or become very large and training
is unstable). This is not so surprising; consider the case where σk(t) = t is the
identity and the biases bk = 0 vanish. Then

fL(x) = WLWL−1 · · ·W2W1x.

The L-fold product is very sensitive to the spectral norms of the matrices; when
the eigenvalues are larger than one in magnitude it blows up exponentially,
while when they are less than one it decay to zero exponentially.

The Residual Neural Network (ResNet) architecture [12] is a recent devel-
opment in deep learning that solves this problem by changing the architecture
to

(8.4.9) fk = fk−1 +Wk,1σk(Wk,2fk−1 + bk), k = 1, . . . , L.

The idea is to have each layer learn the residual fk − fk−1, which allows the
network to easily skip layers, by setting fk = fk−1. Thus, a deeper network
with ResNet architecture should not perform worse than a shallower network.
The ResNet architecture should remind you of the discretization of an ordinary
differential equation (ODE), and many recent works have exploited this to
explain the stability of ResNet.

Each ResNet layer has two weight matrices Wk,1 and Wk,2 and a bias bk.
Derive the back propagation equations to compute ∂L

∂Wk,1
, ∂L
∂Wk,2

, and ∂L
∂bk

for
ResNet. You should closely follow Theorem 8.4.1 with appropriate changes for
ResNet. You can assume that all layers have the same number of hidden units
so that fk and fk−1 have the same dimensions. 4

8.4.3 Classification with neural networks

Python Notebook: .ipynb

We briefly discuss the application of fully connected neural networks to
classification problems. For a k-class classification problem, the output of the
neural network fL(x) has k components, so fL(x) ∈ Rk for x the input of the

https://colab.research.google.com/drive/1Pbt6AGr4zZbZUNuiKajQ-AZ_e9GNJBiJ?usp=sharing

8.4. NEURAL NETWORKS 195

network. In other words, the number of nodes in the last layer is nL = k.
Recall that our label vectors are given as one hot vectors e1, . . . , ek in Rk (i.e.,
the standard basis vectors), where ei represents the ith class. The classification
of x is taken to be the largest component of fL(x); in particular, we do not
need fL to exactly fit the one-hot label vectors, and just need the largest
components to be correct, which is an easier task.

In order to normalize the output of the network, normally fL(x) is fed
into a soft-max function. The output of the neural network fL(x) applied to
a training dataset of m data points x1, x2, . . . , xm consists of m vectors each
of length k (for SGD, m is the number of training data points in the current
mini-batch). Let z1, . . . , zm ∈ Rk denote these output vectors, so zi = fL(xi).
The soft-max function converts these into probability vectors p1, . . . , pm ∈ Rk

given by

pi(j) :=
ezi(j)∑k
q=1 e

zi(q)
.

The loss used for classification is normally the negative log likelihood loss.
Letting y1, . . . , ym ∈ Rk denote the one hot vectors representing the classes of
the training data, the negative log likelihood loss is

(8.4.10) L(fL) = −
m∑
i=1

yTi log(pi).

Letting `i ∈ {1, . . . , k} denote the class of node i, which is just the position of
the 1 in the one-hot vector yi, we can write the loss as

L(fL) = −
m∑
i=1

log(pi(`i))

= −
m∑
i=1

log

(
ezi(`i)∑k
j=1 e

zi(j)

)

= −
m∑
i=1

zi(`i) +
m∑
i=1

log

(
k∑
j=1

ezi(j)

)

= −
m∑
i=1

zi · yi +
m∑
i=1

log

(
k∑
j=1

ezi(j)

)

= −
m∑
i=1

fL(xi)
Tyi +

m∑
i=1

log

(
k∑
j=1

efL(xi)
T ej

)
.

196 CHAPTER 8. MACHINE LEARNING

Figure 8.4.4: Synthetic data on rings consisting of two classes.

The loss thus breaks into two terms. Minimizing the first term attempts to
maximize fL(xi)

Tyi, which attempts to make the output of the network fL(xi)
align as closely as possible with the one-hot label vector yi. Minimizing the
second term acts to normalize the loss to ensure it is bounded below and
cannot be minimized simply by scaling fL. We also note that the soft-max
and negative log-likelihood are chosen to be compatible, so that the log and
exponential cancel out. In practice, the computation is done using the last
line above, leading to better numerical stability.

For our first test, we consider a toy synthetic classification problem with
the data given in Figure 8.4.4. The data consists of two classes that are
not linearly separable. We used a 2-layer neural network with 100 hidden
nodes and trained using 3000 iterations of full batch gradient descent with
the negative log likelihood loss. We show in Figure 8.4.5 the evolution of the
decision boundary over the training iterations, showing how it adapts to the
training data. The final decision boundary attains a good margin between the
two classes.

For our next test, we consider classification of MNIST digits. For a sim-
ple first experiment, we used a 2-layer neural network with 10 hidden nodes.
After 1000 iterations of full batch gradient descent the testing accuracy was
around 93% and did not change much with further training. One might naively
think that the 10 hidden layers w0, . . . , w9 would learn the 10 MNIST digits
0, 1, . . . , 9. However, in Figure 8.4.6 we show the weights in the hidden lay-

8.4. NEURAL NETWORKS 197

(a) Iteration 0 (b) Iteration 50 (c) Iteration 100

(d) Iteration 150 (e) Iteration 200 (f) Iteration 250

(g) Iteration 300 (h) Iteration 350 (i) Iteration 400

(j) Iteration 500 (k) Iteration 1500 (l) Iteration 3000

Figure 8.4.5: Example of the evolving decision boundary during training of a
2-layer neural network to classify the data given in Figure 8.4.4.

ers as 2D images. None of them bear any resemblance to an MNIST digit.
Instead, the network appears to be learning to look for pixels in particular

198 CHAPTER 8. MACHINE LEARNING

Figure 8.4.6: The 10 hidden nodes for MNIST classification. While one might
naively think that each hidden layer would resemble one of the MNIST digit
classes, the reality is far different, leading to issues with interpretability of the
classifier.

locations in each image to determine the class. This leads to difficulties with
interpretability of the neural network classifier, and in this case is a form of
severe overfitting. For example, if we shift the images slightly then the pixels
for each digit will be in new locations and the classifier will perform poorly.
As a test, we shifted the images in the test set to the right, and the testing
accuracy decreased from 93% to 87% with a single pixel shift, and down to
62% with a 2-pixel shift! Convolutional neural networks (CNN), introduced
in Section 8.4.5 use a multi-resolution analysis and pooling, which introduces
translation invariance and can remedy this problem to some degree (though
CNNs are not invariant to rotations or scalings).

Of course, one can get better results by using more hidden nodes (though
not better in terms of the overfitting phenomenon described above). Using a
2-layer network with 32 hidden layers trained for 1000 iterations of full batch
gradient descent yields around 97% accuracy for both training and testing,
indicating there is no overfitting. In Figure 8.4.7 (a) we show a plot of how
the training and testing accuracy evolve over training. If we decrease the
amount of training data, this moderately sized network is easily able to overfit
the training data. In Figure 8.4.7 (b), (c), and (d) we show the same results
for 10000, 1000, and 100 training images. For 1000 and 100 training images,
the training accuracy hits 100% fairly quickly and the testing accuracy levels
off at a much smaller value, indicating the network is overfitting the training
data. In general, it is difficult to train classifiers with a limited amount of
training data.

8.4.4 Universal approximation

One reason for the general effectiveness of neural networks is their ability to
approximate any continuous function to arbitrary accuracy (with a sufficient
number of units). This is called universal approximation. We will cover the
basic theory for functions of a scalar variable (i.e., one dimension), in order to
easily illustrate the main ideas.

8.4. NEURAL NETWORKS 199

0 20 40 60 80 100 120 140
Iterations

20

30

40

50

60

70

80

90

100
Ac

cu
ra
cy

Training
Testing

(a) 60000 Training images

0 20 40 60 80 100 120 140
Iterations

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Training
Testing

(b) 10000 Training images

0 20 40 60 80 100 120 140
Iterations

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Training
Testing

(c) 1000 Training images

0 20 40 60 80 100 120 140
Iterations

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Training
Testing

(d) 100 Training images

Figure 8.4.7: Plots of the training and testing accuracy during training on the
MNIST dataset with different training set sizes. For 60000 training images, the
training and testing accuracy are very similar, indicating there is no overfitting.
We see a small amount of overfitting with 10000 training images, and much
more with 1000 and 100 training images. The results change very little beyond
the 140 iterations shown in the figures.

We will show that a 2-layer neural network with ReLU activations and N
hidden units, given by

(8.4.11) fN(x) =
N∑
i=1

ai(wix+ bi)+,

can approximate any continuous function u : R→ R, given a sufficient number
of parameters n. The tunable weights in the network are a1, a2, . . . , aN ∈ R,
b1, b2, . . . , bN ∈ R, and w1, w2, . . . , wN ∈ R, and a+ = max{a, 0} is the ReLU

200 CHAPTER 8. MACHINE LEARNING

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

(a) ReLU bump

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0.0

0.1

0.2

0.3

0.4

(b) Sigmoid bump

Figure 8.4.8: Examples of bump functions constructed from 2-layer neural net-
works with ReLU and sigmoid activations. The sigmoid bump is constructed
differently than the ReLU bump in Theorem 8.4.4 and requires only 2 hidden
nodes, namely g(x) = σ(x + 1) − σ(x − 1), since the sigmoid activation, see
Figure 8.4.1, is bounded and does not grow linearly like ReLU.

activation.
We say a function u : R→ R is Lipschitz continuous if there exists C > 0

such that

(8.4.12) |u(x)− u(y)| ≤ C|x− y|.
The smallest such constant is called the Lipschitz constant of u and denoted

(8.4.13) Lip(u) = sup
x,y∈R
x 6=y

|u(x)− u(y)|
|x− y| .

We now show that 2-layer ReLU networks can linearly interpolate functions
from samples, leading to a universal approximation result with quantitative
estimates on the number of neurons required.

Theorem 8.4.4. Let ε > 0, let u : R → R be Lipschitz continuous, and let
R > 0. There exists a 2-layer ReLU neural network fN(x) of the form (8.4.11)
with N = 6(RLip(u)ε−1 + 1) hidden nodes such that

(8.4.14) max
−R≤x≤R

|fN(x)− u(x)| ≤ ε.

Furthermore, if u′ is Lipschitz continuous then we need only

(8.4.15) N = 6(R
√

Lip(u′)ε−1 + 1)

hidden nodes.

8.4. NEURAL NETWORKS 201

Proof. Consider the bump function

g(x) = (x+ 1)+ − 2x+ + (x− 1)+,

which is depicted in Figure 8.4.8 (a). The bump function g is exactly a 2-layer
ReLU neural network with 3 hidden nodes. It has 9 parameters in total, since
each node has 3 parameters. Furthermore, we can obtain any dilation, shift
and scaling of g with a 2-layer network with 3 hidden nodes. Indeed, for any
a, b, c ∈ R we have

ag(b(x− c)) = ag(bx− bc)
= a(bx− bc+ 1)+ − 2a(bx− bc)+ + a(bx− bc− 1)+,

which is again a 2-layer neural network with 3 hidden nodes. Furthermore, it
is clear that a 2-layer network can form any linear combination of dilated and
shifted bump functions of the form

(8.4.16)
m∑
i=1

aig(bi(x− ci)).

Such a function is a 2-layer neural network with 3m hidden nodes and 9m pa-
rameters. The rest of the proof shows how to approximate u by a superposition
of bump functions of the form (8.4.16).

Let h > 0, to be determined later, and define xi = hi for i ∈ Z. We define
the function

fN(x) =
m∑

i=−m

u(xi)g(h−1(x− xi)),

where m ∈ N is the least integer greater than or equal to h−1R, so m ≤
h−1R + 1. This ensures that x−m ≤ R and xm ≥ R. Note that this is a 2-
layer neural network with N = 3(2m+ 1) ≤ 6(h−1R+ 1) hidden nodes. Since
g(x) = 0 for |x| ≥ 1 we have

g(h−1(xj − xi)) =

{
1, if i = j

0, otherwise.

Therefore the function fN exactly interpolates u at the points xi; that is

(8.4.17) fN(xi) = u(xi) for i = −m, . . . ,m.

Furthermore, the function fN is piecewise linear, and the only points of non-
differentiability are the xi. So on the interval [xi, xi+1] the function fN is a

202 CHAPTER 8. MACHINE LEARNING

linear function that interpolates u(xi) and u(xi+1). There is only one such
linear interpolation, and it is given by

(8.4.18) fN(x) =

(
1− x− xi

h

)
u(xi) +

(
x− xi
h

)
u(xi+1) for xi ≤ x ≤ xi+1.

Since u is Lipschitz we have for xi ≤ x ≤ xi+1 that

|u(xi)− u(x)| ≤ Lip(u)|x− xi| ≤ Lip(u)h

and similarly |u(xi+1)− u(x)| ≤ Lip(u)h. Therefore

|fN(x)− u(x)| =
∣∣∣∣(1− x− xi

h

)
u(xi) +

(
x− xi
h

)
u(xi+1)− u(x)

∣∣∣∣
=

∣∣∣∣(1− x− xi
h

)
(u(xi)− u(x)) +

(
x− xi
h

)
(u(xi+1)− u(x))

∣∣∣∣
≤
(

1− x− xi
h

)
|u(xi)− u(x)|+

(
x− xi
h

)
|u(xi+1)− u(x)|

≤
(

1− x− xi
h

+
x− xi
h

)
Lip(u)h

≤ Lip(u)h.

Choosing h = Lip(u)−1ε completes the proof of (8.4.14) when u is Lipschitz
continuous.

If u′ is Lipschitz continuous, then we rewrite (8.4.18) as

fN(x) = mi(x− xi) + u(xi),

where
mi =

u(xi+1)− u(xi)

h
.

Since u′ is Lipschitz, u is everywhere differentiable. By the mean value theorem
there exists x∗ ∈ [xi, xi+1] such that u′(x∗) = mi. We now compute

fN(x)− u(x) = mi(x− xi) + u(xi)− u(x)(8.4.19)
= mi(x− x∗) +mi(x∗ − xi) + u(xi)− u(x)

= u(xi)− u(x∗)− u′(x∗)(xi − x∗)
+ u(x∗) + u′(x∗)(x− x∗)− u(x).

Now, we recall that by Taylor expansion we have

(8.4.20) |u(x)− u(x∗)− u′(x∗)(x− x∗)| ≤
1

2
Lip(u′)|x− x∗|2.

8.4. NEURAL NETWORKS 203

Indeed, to see this we simply integrate

u(x)− u(x∗) =

∫ x

x∗

u′(t) dt

=

∫ x

x∗

u′(x∗) dt+

∫ x

x∗

(u′(t)− u′(x∗)) dt

= u′(x∗)(x− x∗) +

∫ x

x∗

(u′(t)− u′(x∗)) dt.

For the rest of the argument assume x > x∗, the other case is is similar. Then
we have

|u(x)− u(x∗)− u′(x∗)(x− x∗)| ≤
∣∣∣∣∫ x

x∗

(u′(t)− u′(x∗)) dt
∣∣∣∣

≤
∫ x

x∗

|u′(t)− u′(x∗)| dt

≤ Lip(u′)

∫ x

x∗

t− x∗ dt

=
1

2
Lip(u′)|x− x∗|2,

which establises the Taylor expansion claim.
Applying the Taylor expansion (8.4.20) in (8.4.19) we obtain

|fN(x)− u(x)| ≤ Lip(u′)h2.

Setting h =
√

Lip(u)−1ε completes the proof of (8.4.15) in the case that u′ is
Lipschitz continuous.

Remark 8.4.5. The proof of Theorem 8.4.4 shows that the function

(8.4.21) fN(x) =
m∑

i=−m

yig(h−1(x− xi)),

exactly fits the data (xi, yi), that is fN(xi) = yi. Thus, a 2-layer neural
network with O(N) hidden nodes can fit N datapoints exactly, even if that
data has no structure and is, say, random noise (at least in dimension n = 1).
This means that neural networks have the capacity and potential to memorize
labels, especially due to the fact that modern deep learning operates in the
severely overparameterized regime where there are far more parameters than
training datapoints.

204 CHAPTER 8. MACHINE LEARNING

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Smooth labels

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Noisy labels

Figure 8.4.9: Example of a network fitting smooth and noisy data. The net-
work has 10000 hidden nodes and only 40 training points. After 10000 itera-
tions of full batch gradient descent, the network does not fit the noise in (b),
even though a network with only 40 nodes could fit it perfectly.

Nonetheless, neural networks generally do not overfit, and the reasons for
this are still unresolved and somewhat mysterious. In Figure 8.4.9 we compare
a neural network trained on a smooth labeling function and a noisy one. We
used a 2-layer network with ReLU activations and 10000 hidden nodes, while
only using 40 training datapoints and the L1 loss. The network could have
chosen a function that exactly fits the noise in Figure 8.4.9 (b). However,
the network chooses instead to ignore the noise, indicating that overfitting
and generalization in deep learning are closely connected to the optimzation
algorithms used to train deep neural networks.

Remark 8.4.6. In n dimensions, where n ≥ 2, the bump function construction
used here requires a network with n+ 1 layers, but can otherwise be made to
work. More sophisticated proof techniques can be used to show that 2-layers
is sufficient to approximate any continuous function on Rn.

We now turn to the problem of approximating polynomials. It turns out
that deep ReLU networks are very efficient at polynomial approximation. We
start with approximating f(x) = x2. We define

g(x) =

{
2x, if 0 ≤ x ≤ 1

2

2− 2x, , if 1
2
≤ x ≤ 1,

8.4. NEURAL NETWORKS 205

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 g1

g2

g3

(a) gi

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 f0

f1

f2

f3

x2

(b) fi

Figure 8.4.10: A depicition of the functions fi and gi used in approximating
the parabola x2.

and the m-fold composition

gm = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
m times

.

The function g = g1 is a bump function, like we used in Theorem 8.4.4, and
can be constructed with a 2-layer ReLU network with 3 hidden nodes. Since
gm is simply the m-fold composition of g, we can implement gm with an m+ 1
layers (m-hidden layer) ReLU network with O(m) nodes.

The function gm is a sawtooth function with 2m−1 teeth. Figure 8.4.10
shows g1, g2 and g3. To see this, we note that gm+1(x) = g(gm(x)) and so

g′m(x) = g′(gm−1(x))g′m−1(x).

Since g′1(x) = ±2 we see that g′m(x) = ±2m, and furthermore

g′m(x) =

{
2g′m−1(x), if 0 ≤ gm−1(x) ≤ 1

2

−2g′m−1(x), if 1
2
≤ gm−1(x) ≤ 1.

Thus, going from gm−1 to gm, we are flipping the upper half of all the teeth
downwards, and scaling the teeth by a factor of 2, which doubles the number
of teeth. From this, we see that

(8.4.22) g′m(x) =

{
2m, if 2j

2m
≤ x ≤ 2j+1

2m

−2m, if 2j+1
2m
≤ x ≤ 2j+2

2m
,

206 CHAPTER 8. MACHINE LEARNING

where j is an integer j = 0, 1, . . . , 2m−1 − 1.
Let fm(x) be the piecewise linear approximation of the parabola f(x) = x2

with 2m pieces, so that fm
(
k

2m

)
=
(
k

2m

)2 for k = 0, . . . ,m. The functions
f0, f1, f2 and f3 are depicted in Figure 8.4.10. By arguments similar to those
used in Theorem 8.4.4 we have that

(8.4.23) |fm(x)− x2| ≤ 2−2m.

The following lemma gives a surprising relationship between fm and gm, and
shows that fm can be computed very efficiently by deep ReLU networks.

Lemma 8.4.7. For any 0 ≤ x ≤ 1 and m ≥ 1 we have

(8.4.24) fm(x) = x−
m∑
k=1

gk(x)

22k
.

Proof. We first claim that

(8.4.25) fm − fm−1 = − gm
22m

.

To see this, we consider how the slope f ′m differs from f ′m−1. Consider the jth

piecwise linear interval for fm−1, which is [2−(m−1)j, 2−(m−1)(j + 1)]. On this
interval we have

f ′m−1(x) =

(
2−(m−1)(j + 1)

)2 −
(
2−(m−1)j

)2

2−(m−1)
= 2−(m−1)(2j + 1).

The function fm has twice as many pieces, each with half the width, and splts
this inverval in half. On the first half of the interval [2−(m−1)j, 2−(m−1)(j + 1

2
)]

fm has slope

f ′m(x) =

(
2−(m−1)(j + 1

2
)
)2 −

(
2−(m−1)j

)2

2−m
= 2−(m−1)(2j + 1

2
).

Therefore, on the first half of the interval we have

f ′m(x)− f ′m−1(x) = 2−(m−1)(1
2
− 1) = −2−m.

A very similar argument shows that on the second half of the interval [2−(m−1)(j+
1
2
), 2−(m−1)(j + 1)] we have

f ′m(x)− f ′m−1(x) = 2−m.

8.4. NEURAL NETWORKS 207

The somewhat surprising conclusion is that the difference in slopes is indepen-
dent of the interval j we are considering. It follows that

f ′m(x)− f ′m−1(x) = −g
′
m(x)

22m
.

Integrating both sides from x = 0 to x = t and using that fm(0) = 0 = gm(0)
we have

fm(t)− fm−1(t) = −gm(t)

22m

for any 0 ≤ t ≤ 1. This establishes the claim (8.4.25).
Summming (8.4.25) over m = 1 to m = k, the left hand side telescopes to

give

fk(x)− f0(x) = −
k∑

m=1

gm(x)

22m
.

The proof is completed by noting that f0(x) = x.

By Lemma 8.4.7, we see that the function fm can be expressed as a linear
combination of g1, . . . , gm. Since g1 can be implemnted as a 2-layer ReLU
network, the m-fold composition gm can be computed using a network with
O(m) layers and O(m) hidden nodes. In fact, this network will compute all the
intermediate gi as well, and by using skip connections to a final layer, we can
implement fm with a ReLU network with O(m) layers and nodes. Recalling the
approximation error in (8.4.23), we see that a ReLU network with O(m) nodes
can approximate x2 to accuacy 2−2m. If we choose an accuracy ε = 2−2m, then
we find that m = 1

2
log2(ε−1). This discussion is summarized in the following

result.

Theorem 8.4.8. For any ε > 0 there exists a ReLU network f with O(log(ε−1))
layers and nodes such that

|f(x)− x2| ≤ ε for 0 ≤ x ≤ 1.

Theorem 8.4.8 is much sharper than Theorem 8.4.4, which requiredO(ε−1/2)
nodes for the same approximation.

Once we can approximation x2, we can immediately extend these results
to polynomials. Note that

xy =
1

4
(x+ y)2 − 1

4
(x− y)2.

Therefore, we can compute the multiplication xy via linear functions com-
posed with x2. This allows us to show that there exists a ReLU network with

208 CHAPTER 8. MACHINE LEARNING

O(2 log(ε−1)) that approximates the multiplicaiton xy to accuracy ε. This al-
low us to implement x3 to accuracy ε with a ReLU network with O(3 log(ε−1))
nodes, and in general xk can be implemented with O(k log(ε−1)). In fact, we
have the following theorem.

Theorem 8.4.9. Let g be a polynomial of degree k. For any ε > 0 there exists
a ReLU network f with O(k log(ε−1)) hidden nodes such that

|f(x)− g(x)| ≤ ε for 0 ≤ x ≤ 1.

These improved rates can be extended to, for example, real analytic func-
tions, which are well approximated globally by polynomials, and to smooth
functions, which are well-approximated locally by polynomials.

Exercise 8.4.10. Extend the argument in Theorem 8.4.4 to a general activa-
tion function σ. What conditions should σ satisfy to make the same argument
work? The bump function construction will be different for bounded activa-
tions, like the sigmoid activation depicted in Figure 8.4.1. Figure 8.4.8 (b)
shows the sigmoid bump function g(x) = σ(x+ 1)− σ(x− 1). 4

8.4.5 Convolutional Neural Networks

Python Notebook: .ipynb

This section offers a brief introduction to Convolutional Neural Networks
(CNN). We refer the reader to [11] for more details. CNNs are the most
powerful machine learning tools for image processing and computer vision.
They can be interpreted as special cases of the fully connected neural networks
discussed in Section 8.4.1 that are adapted to image process by introducing
locality and translation invariance into the network. The main operation is
the convolution of a (2N + 1)× (2N + 1) matrix W and an image I, given by

(W ∗ I)(i, j) =
N∑

p,q=−N

W (N + 1 + p,N + 1 + q)I(i+ p, j + q).

The convolution replaces the linear mapping in the fully connected neuron
(8.4.3). The output of the convolution W ∗ I is an image as well, normally
taken to be slightly smaller so that (i + p, j + q) is within the image domain
for all −N ≤ p, q ≤ N . For example, if N = 1 then we are working with 3× 3
filters, and a 28× 28 pixel MNIST image would be reduced to 26× 26 pixels
after the convolution. The convolution is the same type of operation we saw in

https://colab.research.google.com/drive/1TjMlvAgZkvMZ_jJhj2U8GWgGJRsOgBoE?usp=sharing

8.4. NEURAL NETWORKS 209

Figure 8.4.11: An example of a typical Convolutional Neural Network (CNN)
architecture.

Chapter 6 with the Discrete Fourier Transform and Chapter 7 in the context
of the Haar Wavelet. It is the most basic image processing operation, and
different types of filters can look for edges or other types of geometric shapes
locally in the image.

The filters are restricted to be local, in that they are normally 3 × 3 or
slightly larger (say, 7 × 7 for higher resolution images). Each filter looks for
a particular local feature in the image. The convolution operation applies
the filter at every location (i, j) in the image I, which is to say the filter is
translation invariant. The convolution will detect features wherever they lie
in the image.

It is important to note that a single filter W has very few parameters (i.e.,
a 3× 3 filter has 9 parameters), and is applied to every pixel in the image. If
there are n pixels where it is possible to apply the filter, without overlapping
the boundary of the image, then the output of this single filter is the same size
as n fully connected neurons (8.4.3). Thus, by forcing locality and translation
invariance, CNNs use drastically fewer parameters compared to fully connected
neural networks. This makes it more difficult to overfit with CNNs and allows
for faster training, which are some of their main advantages.

Just like with fully connected networks, CNNs use activation functions,
normally ReLU, after each layer, and can stack many layers deep. Now, while
the convolution is translation invariant in the sense that the same filters are
applied to every point in the image, the filtered imageW ∗I is indeed different
when the image I is translated (the filtered image is translated as well). To
realize translation invariance in CNNs, a subsampling technique called pooling
is used. Pooling subsamples the filtered images between two layers, usually
using max-pooling or average-pooling.

For example, max-pooling by 2 in each direction corresponds to splitting

210 CHAPTER 8. MACHINE LEARNING

Figure 8.4.12: Example of some images from the FashionMNIST dataset. Each
image is a 28× 28 pixel image of an item of clothing from a fashion catalog.

the image into 2 × 2 pixel blocks, and replacing each block with a single
pixel taking the maximum pixel value over the block (or average for average-
pooling). It is immediately clear that max pooling makes the subsampled
image invariant to small shifts. Pooling also allows future layers to detect
more global features within the image, yielding a multi-scale image analysis,
similar to Wavelets (see Chapter 7).

Figure 8.4.11 shows an example of a 2-layer CNN architecture. As in
the figure, for image classification, the output of the convolutional part of the
network is normally fed into a fully connected network, which uses the features
extracted by the convolutional part to make classification predictions.

We ran an experiment testing a simple convolutional neural network for

8.4. NEURAL NETWORKS 211

Figure 8.4.13: The 32 3 × 3 filters from the first layer of the convolutional
neural network for classifying MNIST digits.

classification of the MNIST and FashionMNIST image datasets. FashionM-
NIST is a drop-in replacement for MNIST, except here the classes are dif-
ferent items of clothing with pictures taken from a fashion catalog. Figure
8.4.12 shows an example of some of the FashionMNIST images. The Fash-
ionMNIST dataset is more challenging to classify, compared to MNIST, but
is still a toy problem for modern machine learning. We used a 4 layer neural
network where the first two layers are convolutional layers, and the last two
are fully connected layers, and all activations are ReLU. The first layer has 32
channels (which means 32 convolutional filters W), while the second layer has
64 channels. The filter sizes are all 3 × 3, meaning the first layer reduces the
28 × 28 pixel MNIST images down to 26 × 26, and the second layer reduces
them further to 24 × 24. After the second layer there is a max-pooling by 2
operation, reducing the images to 12 × 12. These 64 images of size 12 × 12
are then flattened into a long array of length 64× 12× 12 = 9216, and this is
interpreted as the features of the image, which are then fed into the fully con-
nected part of the network. The hidden layer has 128 nodes, and the output
has 10 components, since there are 10 classes.

We used stochastic gradient descent (SGD) with batch size 64 and ran the
training for 14 epochs (passes over the whole training set) with a learning
rate of α = 1 that is reduced by a multiplicative factor of 0.7 each epoch.
We used the full 60000 training set, and tested on the held out 10000 images
from the testing set. For MNIST we obtained 99.04% testing accuracy and on
FashionMNIST we obtained 92.55% accuracy.

It is interesting to view the learned weights and filter responses. Figure
8.4.13 shows the 32 filters (size 3× 3) from the first layer. Figure 8.4.14 shows
the 32 corresponding filtered images from the first layer, for a single MNIST
2 digit. Figure 8.4.15 shows the outputs of the second layer, which can be

212 CHAPTER 8. MACHINE LEARNING

Figure 8.4.14: The 32 channels of output from the first convolutional layer
acting on an image of a 2.

Figure 8.4.15: The 64 channels of output from the second convolutional layer
acting on an image of a 2. Notice the channels appear to be detecting edges
in various directions.

interpreted as looking for edges in various directions in the image.
We also experimented with the same pixel shifting test, to examine the

translation invariance of CNNs. On MNIST a single pixel shift reduced ac-
curacy to 98.07%, a 2 pixel shift to 92.06%, and a 3 pixel shift to 75%. For
FashionMNIST a single pixel shift reduced accuracy to 89.73%, a 2 pixel shift
to 75.94%, and a 3-pixel shift gives 47.38%. We can see there is more robust-
ness to shifting images, but only by a small amount. Other special techniques,
like data augmentation, are required to train a network that is invariant to
larger shifts.

Chapter 9

Optimization

Optimization—finding minimizers of functions—is one of the most important
problems in science and engineering. The most common optimization meth-
ods, especially in machine learning, are first order methods that use only the
gradient ∇f of the function f to be minimized. For problems that are smaller
in size, so that the Hessian ∇2f can be computed and inverted, Newton’s
method is a second order optimization algorithm that can achieve much faster
quadratic convergence rates. This chapter is mostly focused on theoretical
convergence results for gradient descent, including stochastic gradient descent,
with an additional section that briefly covers Newton’s method.

9.1 Gradient descent
Python Notebook: .ipynb

Gradient descent aims to minimize an objective function f : Rn → R via
the iterative procedure

(9.1.1) xk+1 = xk − α∇f(xk).

The parameter α > 0 is the time step (often called the learning rate when
using gradient descent to train machine learning algorithms).

Exercise 9.1.1. Fix x and define

(9.1.2) T (y) = f(x) +∇f(x)T (y − x) +
1

2α
‖y − x‖2.

Show that T is minimized by

y = x− α∇f(x).

213

https://colab.research.google.com/drive/16sHMBimXHqH3-S1J9hX6FsfOstdr1wdO?usp=sharing

214 CHAPTER 9. OPTIMIZATION

Thus, the gradient descent iteration (9.1.1) can be viewed as repeatedly min-
imizing the approximation (9.1.2), centered at x = xk, until convergence. 4

In this section, we give a basic analysis of the convergence of gradient
descent. Throughout this section we assume the objective function f : Rn →
R is a smooth function that admits a global minimizer x∗ ∈ Rn. That is
f(x∗) ≤ f(x) for all x ∈ Rn. For the moment, the minimizer may not be
unique, and the function f need not be convex. We denote the optimal value
of f by f∗ := f(x∗).

We will use the notions of Lipschitzness of ∇f and ∇2f , introduced in
Section 2.5, and notions of convexity (and strong convexity) introduced in
Section 2.6. The reader not familiar with these notions should review the
relevant sections of Chapter 2.

9.1.1 The sublinear rate

Our first result is a general convergence result for gradient descent.

Theorem 9.1.2. Assume ∇f is L-Lipschitz and that α ≤ 1
L
. Then for any

integer t ≥ 1 we have

(9.1.3) min
0≤k≤t

‖∇f(xk)‖2 ≤ 2(f(x0)− f∗)
αt

.

Proof. The proof is split into two parts.
1. We first show that

(9.1.4) f(xk+1) ≤ f(xk)−
α

2
‖∇f(xk)‖2

provided α ≤ 1
L
. To see this, we use a first order Taylor expansion of f (see

Theorem 2.5.3) to obtain

(9.1.5) f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖x− y‖2

for all x, y ∈ Rn. We use this to deduce

f(xk+1) ≤ f(xk) +∇f(xk)
T (xk+1 − xk) +

L

2
‖xk+1 − xk‖2

= f(xk)− α∇f(xk)
T∇f(xk) +

α2L

2
‖∇f(xk)‖2

= f(xk)−
(
α− α2L

2

)
‖∇f(xk)‖2.

9.1. GRADIENT DESCENT 215

Notice we used the gradient descent iteration (9.1.1) in the second line above.
This shows that gradient descent decreases the energy f provided αL

2
≤ 1, or

α ≤ 2
L
. To find the optimal α—the value that gives the largest decrease in

f—we maximize the quantity α− α2L
2

over α, yielding α = 1
L
. Therefore, there

is no loss in optimality by making the restriction α ≤ 1
L
. Using this restriction

yields α− α2L
2
≥ α

2
, which establishes (9.1.4).

2. We now rearrange (9.1.4) and sum over k to obtain

α

2

t∑
k=0

‖∇f(xk)‖2 ≤
t∑

k=0

(f(xk)− f(xk+1)) = f(x0)− f(xt+1),

since the sum in the middle term above is telescoping. We use the lower bound

t∑
k=0

‖∇f(xk)‖2 ≥ (t+ 1) min
0≤k≤t

‖∇f(xk)‖2

to obtain
min

0≤k≤t
‖∇f(xk)‖2 ≤ 2(f(x0)− f(xt+1))

α(t+ 1)
.

The proof is completed by noting that f∗ ≤ f(xt+1) and replacing t + 1 with
t.

Theorem 9.1.2 shows that after t steps of gradient descent, we are guaran-
teed to find a point xk, for some 0 ≤ k ≤ t, for which ‖∇f(xk)‖2 = O

(
1
t

)
.

It is important to point out that k may not be equal to t in general, i.e., xk
may not be the most recent gradient descent iterate. The convergence rate
O
(

1
t

)
is very slow and is referred to as sublinear convergence. Nevertherless,

using very few assumptions on f , Theorem 9.1.2 shows that gradient descent
converges to a critical point of f in the sense that

lim
t→∞

min
0≤k≤t

‖∇f(xk)‖2 = 0.

Since we made no assumptions about f , aside from Lipschitz continuity, there
may be critical points that are not global minima of f (e.g., local minima,
saddle points, or maxima). In particular, Theorem 9.1.2 does not show that
gradient descent converges to a minimizer of f .

To show that gradient descent converges to a global minimizer of f , we
need to place an additional assumption on f to ensure that all critical points
are minimizers. The simplest such assumption is convexity. Section 2.6 reviews
some basic theory of convex functions, giving several different equivalent def-
initions of convexity. For our purposes in this section, the most convenient

216 CHAPTER 9. OPTIMIZATION

definition of convexity is that f lies above its tangent planes (see Theorem
2.6.5 (iii)). That is, a convex function f satisfies

(9.1.6) f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn.
Our next result can be viewed as the extension of Theorem 9.1.2 to convex

functions.

Theorem 9.1.3. Assume f is convex, ∇f is L-Lipschitz, and take α ≤ 1
L
.

Then for any integer t ≥ 1 we have

(9.1.7) f(xt)− f∗ ≤
‖x0 − x∗‖2

2αt
,

where x∗ is any minimizer of f .

Proof. We start with the energy decreasing inequality (9.1.4) from Theorem
9.1.2, which requires the restriction α ≤ 1

L
. Let x∗ ∈ Rn be a minimizer of f ,

so f(x∗) = f∗. Since f is convex, we can use (9.1.6) with y = x∗ and x = xk
to obtain

f(x∗) ≥ f(xk) +∇f(xk)
T (x∗ − xk).

Rearranging we have

f(xk) ≤ f(x∗) +∇f(xk)
T (xk − x∗).

Inserting this into (9.1.4) we have

f(xk+1) ≤ f(xk)−
α

2
‖∇f(xk)‖2(9.1.8)

≤ f(x∗) +∇f(xk)
T (xk − x∗)−

α

2
‖∇f(xk)‖2

= f∗ +
1

2α

(
2α∇f(xk)

T (xk − x∗)− α2‖∇f(xk)‖2
)

= f∗ +
1

2α

(
‖xk − x∗‖2 − ‖xk − x∗ − α∇f(xk)‖2

)
= f∗ +

1

2α

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
.

We now subtract f∗ from both sides and sum over k to obtain
t−1∑
k=0

(f(xk+1)− f∗) ≤
1

2α

t−1∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
=

1

2α

(
‖x0 − x∗‖2 − ‖xt − x∗‖2

)
≤ ‖x0 − x∗‖2

2α
,

9.1. GRADIENT DESCENT 217

where we used that the sum on the right hand side of the first line is telescoping.
By (9.1.4), the values of f are decreasing with gradient descent, so we have
that

t−1∑
k=0

(f(xk+1)− f∗) ≥ t(f(xt)− f∗).

Inserting this above completes the proof.

Theorem 9.1.3 shows that gradient descent on a convex function f con-
verges to the minimum value f∗ at a rate of O

(
1
t

)
after t iterations. This

sublinear convergence rate is very slow. In order to minimize f to within
ε > 0 of the optimal value f∗ requires t = O(ε−1) steps. The reason for this
slow convergence is that a general convex function f may be arbitrarily flat
near a minimum x∗, meaning that the gradient ∇f is very small and gradient
descent proceeds slowly towards x∗.

9.1.2 Linear convergence with the PL inequality

To obtain a better convergence rate, we need to make an additional assumption
about how flat f can be at minima. A standard assumption to make is strong
convexity. We recall from Section 2.6 that f is µ-strongly convex if

(9.1.9) f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖x− y‖2

for all x, y ∈ Rn. Other equivalent definitions of strong convexity are given in
Theorem 2.6.5, but this one is most useful in the proofs in this section. It is
important to point out that if f is µ-strongly convex and ∇f is L-Lipschitz,
then we must have µ ≤ L. Indeed, if we compare (9.1.5) and (9.1.9) we obtain

L

2
‖x− y‖2 ≥ µ

2
‖x− y‖2

for all x, y ∈ Rn, and so L ≥ µ.
Notice that if we take x = x∗ in (9.1.9) then ∇f(x∗) = 0 and we get

(9.1.10) f(y) ≥ f∗ +
µ

2
‖y − x∗‖2.

This shows that x∗ is the unique minimizer of f , since f(y) > f∗ for all y 6= x∗.
This also shows that f grows at least quadratically, like µ

2
‖x− x∗‖2, near the

minimizer x∗.

218 CHAPTER 9. OPTIMIZATION

We now give a very useful consequence of strong convexity. If f is µ-
strongly convex, then we can minimize both sides of (9.1.9) over y ∈ Rn to
find that

f∗ = min
y∈Rn

f(y) ≥ f(x) + min
y∈Rn

{
∇f(x)T (y − x) +

µ

2
‖x− y‖2

}
.

The minimum on the right hand side is attained (by differentiating in y) at
y satisfying ∇f(x) + µ(y − x) = 0, or y − x = − 1

µ
∇f(x). Substituting this

above we find that

f∗ ≥ f(x)− 1

µ
‖∇f(x)‖2 +

1

2µ
‖∇f(x)‖2

Simplifying we obtain

(9.1.11)
1

2
‖∇f(x)‖2 ≥ µ(f(x)− f∗)

for all x ∈ Rn. Eq. (9.1.11) is known as the Polyak-Lojasiewicz (PL) inequality.
Every µ-strongly convex function satisfies the PL inequality, but the converse is
not true. In fact, there are non-convex functions that satisfy the PL inequality
(9.1.11).

Exercise 9.1.4. Show that the function f(x) = x2 + 3 sin2(x) satisfies the PL
inequality (9.1.11) with µ = 1

32
, but f is not convex. [Hint: Use the equivalent

definition of convexity that f ′′(x) ≥ 0.] 4

Finally, let us also note that if we combine the PL inequality (9.1.11) with
(9.1.10) (which requires strong convexity) we obtain

1

2
‖∇f(x)‖2 ≥ µ(f(x)− f∗) ≥

µ2

2
‖x− x∗‖2.

In other words, we have the bound

(9.1.12) ‖x− x∗‖ ≤
1

µ
‖∇f(x)‖.

Thus, for a strongly convex function, the distance to the minimizer is controlled
by the norm of the gradient vector.

The next result shows that gradient descent converges at a linear rate
provided f satisfies the PL inequality. This includes strongly convex functions
as a special case, but also covers many nonconvex functions.

9.1. GRADIENT DESCENT 219

Theorem 9.1.5. Assume f satisfies the PL inequality (9.1.11), ∇f is L-
Lipschitz, and take α ≤ 1

L
. Then for any integer t ≥ 0 we have

(9.1.13) f(xt)− f∗ ≤ (1− αµ)t(f(x0)− f∗).

Proof. We start with (9.1.4) from Theorem 9.1.2 and apply the PL inequality
(9.1.11) to obtain

f(xk+1) ≤ f(xk)−
α

2
‖∇f(xk)‖2 ≤ f(xk)− αµ(f(xk)− f∗),

provided α ≤ 1
L
. Subtracting f∗ from both sides and rearranging we find that

f(xk+1)− f∗ ≤ (1− αµ)(f(xk)− f∗).

Note that since α ≤ 1
L
and µ ≤ L, we have α ≤ 1

µ
, and so 1−αµ ≥ 0. Applying

this recursively completes the proof.

The convergence rate in Theorem 9.1.5 is called linear because the error
f(xt)−f∗ decreases by a constant factor 1−αµ at each iteration. Plotting the
error f(xk)− f∗ on a log-log scale would show a linear relationship with slope
log(1 − αµ). This linear convergence rate is much faster than the sublinear
O
(

1
t

)
rate we obtained for convex functions in Section 9.1.1. Indeed, for the

sublinear rate, we need t = O(ε−1) iterations to find xk with f(xk) − f∗ ≤ ε,
while for the linear rate we require only t = O(log(ε−1)) iterations.

Remark 9.1.6. It is also natural to ask how quickly xk is converging to x∗.
For this, we require strong convexity. If f is µ-strongly convex, we can use
(9.1.10) with y = xt and Theorem 9.1.5 to find that

µ

2
‖xt − x∗‖2 ≤ f(xt)− f∗ ≤ (1− αµ)t(f(x0)− f∗).

Thus, in the squared Euclidean norm, xt converges to x∗ at the same linear
convergence rate as in Theorem 9.1.5, provided f is µ-strongly convex.

9.1.3 Momentum descent

Python Notebook: .ipynb
Even in the strongly convex setting (or, under the weaker PL inequality

(9.1.11)), where gradient descent converges linearly, the convergence still slows
down considerably near the minimizer. This is due to the fact that the gradient
∇f vanishes at the minimizer, and is small nearby, which slows down the
progress of gradient descent. To compensate, one can try to take larger time

https://colab.research.google.com/drive/1Qkc6tOKsPT7RFoNHTfhCWUE9CQO0KvA4?usp=sharing

220 CHAPTER 9. OPTIMIZATION

(a) α = 0.05, 12 steps (b) α = 0.01, 50 steps

Figure 9.1.1: Gradient descent on a parabolic function with different choices of
time steps. For larger time steps the iterations bounce back and forth, limiting
progress towards the minimizer, while for smaller time steps the descent path
is more direct.

steps in gradient descent, but this often leads to a bouncing effect, where
the iterations bounce back and forth across the energy landscape, which also
limits progress towards the minimizer. Figure 9.1.1 (a) shows an example of
the bouncing effect for large time steps. The function f is given by

f(x, y) = (x+ y)2 + 8(x− y)2,

which is strongly convex with a global minimum at x = y = 0. The bouncing
effect is caused by placing too much trust in the gradient direction, which in
general does not point towards the minimizer, and cannot be trusted outside
of a small local neighborhood. For smaller time steps, as in Figure 9.1.1 (b),
we do not see this effect, but we require more steps to reach a similar energy
level.

The convergence of gradient descent can be accelerated by utilizing mo-
mentum in the descent. Momentum methods are loosely based on the idea
of rolling a ball with some positive mass down the energy landscape, in the
presence of friction forces to slow down the ball. Momentum can build up
speed over time, provided the descent directions are similar over many steps,
leading to faster convergence near the minimizer. When the descent directions
change rapidly over each step, like in the bouncing effect in Figure 9.1.1 (a),

9.1. GRADIENT DESCENT 221

(a) α = 0.05, β = 0.1, 12 steps (b) α = 0.01, β = 0.25, 50 steps

Figure 9.1.2: Heavy ball method for different choices of time step and momen-
tum parameter. Momentum acts to average out the descent direction in time,
limiting the bouncing effect for larger time steps. Momentum builds up speed
and makes more progress towards the minimizer in the same number of steps
as gradient descent (see Figure 9.1.1).

momentum acts to average out the descent directions over time and reduces
the amount of bouncing and backtracking, leading again to faster convergence.

One of the oldest momentum based methods is the heavy ball method of
Polyak [17]. The heavy ball method iterates

(9.1.14) xk+1 = xk − α∇f(xk) + β(xk − xk−1),

where α is the time step and β ∈ [0, 1] is the momentum parameter, where x1 =
x0. Figure 9.1.2 (a) shows how momentum corrects the bouncing effect from
Figure 9.1.1 (a) at large time steps. Figure 9.1.2 (b) shows how momentum
makes more progress towards the minimizer in the same number of steps, even
in the absence of the bouncing effect.

To explain the analogy to a rolling ball, it is useful to consider the con-
tinuum version of gradient descent and the heavy ball method. For gradient
descent (9.1.1), we can rewrite the equation as

xk+1 − xk
α

= −∇f(xk).

By assuming xk = x(αt) for a smooth curve x(t), we find that the left hand
side is merely a forward differences approximation for x′(t), and so gradient

222 CHAPTER 9. OPTIMIZATION

descent is equivalent in the continuum to the ordinary differential equation
(ODE)

(9.1.15) x′(t) = −∇f(x(t)).

Remark 9.1.7. The continuum perspective often makes the convergence anal-
ysis easier, since we can use calculus and the chain rule. Suppose x(t) solves
(9.1.15) with x(0) = x0 ∈ Rn and assume f is µ-strongly convex. Let x∗ ∈ Rn

denote the unique minimizer of f . We first note that we can rearrange (9.1.15)
to read

d

dt
(x(t)− x∗) = −(∇f(x(t))−∇f(x∗)),

since ∇f(x∗) = 0 and d
dt
x∗ = 0. We now take the dot product of both sides of

the equation above with x(t)− x∗ to obtain

(9.1.16) (x(t)− x∗)T
d

dt
(x(t)− x∗) = −(∇f(x(t))−∇f(x∗))

T (x(t)− x∗).

By the chain rule, the left hand side is precisely

(x(t)− x∗)T
d

dt
(x(t)− x∗) =

d

dt

1

2
‖x(t)− x∗‖2.

By the strong convexity of f (see Theorem 2.6.5 (iv)) we have

(∇f(x(t))−∇f(x∗))
T (x(t)− x∗) ≥ µ‖x(t)− x∗‖2.

Inserting these observations into (9.1.16) we have

(9.1.17)
d

dt
‖x(t)− x∗‖2 ≤ −2µ‖x(t)− x∗‖2.

It follows that (see Exercise 9.1.8)

(9.1.18) ‖x(t)− x∗‖2 ≤ ‖x0 − x∗‖2e−2µt.

This is the continuum equivalent of the linear convergence rate for gradient
descent provided in the discrete setting by Theorem 9.1.3.

Exercise 9.1.8. Suppose that e(t) ≥ 0 satisfies e′(t) ≤ ae(t) for a ∈ R. Show
that e(t) ≤ e(0)eat. [Hint: Show that d

dt
log(e(t)) ≤ a and integrate both sides

from 0 to t. Then exponentiate both sides.] 4

9.1. GRADIENT DESCENT 223

We can rearrange the heavy ball method iteration (9.1.14) in a similar way
as we did for gradient descent to obtain

(9.1.19)
xk+1 − 2xk + xk−1

α
+

1− β
α

(xk − xk−1) = −∇f(xk).

The first term looks like a finite approximation for the second derivative x′′(t),
while the second term is a backward difference approximation of the first
derivative x′(t). The following exercise clarifies this.

Exercise 9.1.9. Show that

x(t)− x(t− h)

h
= x′(t) +O(h),

and
x(t+ h)− 2x(t) + x(t− h)

h2
= x′′(t) +O(h2)

for a smooth curve x(t). To do this, use the Taylor expansions

x(t± h) = x(t)± x′(t)h+
h2

2
x′′(t)± h3

6
x′′′(t) +O(h4). 4

Due to Exercise 9.1.9, we have to think of α as the square root of the time
step, so α =

√
h for a time step h, and we take xk to be a discretization of a

smooth curve x(t) with step size h, so xk = x(ht). In this case (9.1.19) can be
viewed as a discretization of the ODE

(9.1.20) x′′(t) + ax′(t) = −∇f(x(t)),

where a = 1−β√
α
. This ODE corresponds to Newton’s law of motion for a

body under the forcing of −∇f and friction coefficient a. We can see that
β ∈ [0, 1] is required for positivity of the friction coefficient, which ensures the
system will dissipate energy and slow down over time. For β > 1, the friction
coefficient becomes negative, which is nonphysical and leads to growth of the
total energy, and possibly nonconvergence. Of course, one can always take β <
0, but this will just lead to an excessive amount of friction, slowing down the
progress towards the minimizer and often giving worse performance compared
to gradient descent. Also, notice that the form of the friction coefficient a =
1−β√
α

suggests that we can choose β as a function of α to keep the amount of
friction fixed. That is, we can choose β = 1− a√α. This keeps the amount of
friction in the system fixed as α is changed.

The analysis of the heavy ball method is more involved, compared to gra-
dient descent. It turns out it is simpler to study the continuum heavy ball

224 CHAPTER 9. OPTIMIZATION

ODE (9.1.20). We provide a result on this first, before turning our analysis to
the discrete scheme. The following result is the analog of the result proved in
Remark 9.1.7 for gradient descent.

Theorem 9.1.10. Suppose x(t) solves (9.1.20) with x(0) = x0 ∈ Rn, x′(0) =
0, and assume f is L-Lipschitz and µ-strongly convex. Let x∗ ∈ Rn denote the
unique minimizer of f . Then we have

(9.1.21) ‖x(t)− x∗‖2 ≤ 1

3µ

(
3L+ 2a2

)
‖x0 − x∗‖2 exp

(
− 2µat

3L+ 2a2

)
.

Remark 9.1.11. By Remark 9.1.7 and Theorem 9.1.10, both gradient descent
and the heavy ball method converge at the exponential rate e−ct in the con-
tinuum, though for different constants c > 0. It is not clear from these results
why the heavy ball method can converge more quickly; indeed, neither method
necessarily converges to x∗ faster in the continuum. The difference in the two
methods only appears upon discretizing the methods with the backward Euler
scheme. The heavy ball method involves a second derivative in time, which
allows for a much larger time step (learning rate) α in the discretization, al-
lowing the discrete scheme to converge faster to the minimizer x∗. We prove
this in a special case in the discrete setting later, in Theorem 9.1.13.

Proof of Theorem 9.1.10. Let y(t) = x(t)− x∗ and note that y satisfies

(9.1.22) y′′(t) + ay′(t) = −∇f(x(t)),

since y′(t) = x′(t) and y′′(t) = x′′(t). Define the energy

(9.1.23) e(t) =
3

2
‖y′(t)‖2 + 3(f(x(t))− f∗) +

a2

2
‖y(t)‖2 + ay(t)Ty′(t),

where f∗ = f(x∗). By strong convexity of f (see (9.1.10)) we have

e(t) ≥ 3

2
‖y′(t)‖2 +

3µ

2
‖x(t)− x∗‖2 +

a2

2
‖y(t)‖2 + ay(t)Ty′(t)

=
3

2
‖y′(t)‖2 +

3µ

2
‖y(t)‖2 +

1

2

(
‖ay(t) + y′(t)‖2 − ‖y′(t)‖2

)
= ‖y′(t)‖2 +

3µ

2
‖y(t)‖2 +

1

2
‖ay(t) + y′(t)‖2

≥ 3µ

2
‖y(t)‖2.

Therefore, e(t) ≥ 0 and in particular

(9.1.24) ‖x(t)− x∗‖2 = ‖y(t)‖2 ≤ 2

3µ
e(t).

9.1. GRADIENT DESCENT 225

The rest of the proof will focus on showing that e(t) decays to zero exponen-
tially fast.

We differentiate e(t) and use (9.1.22) and the identities x′ = y′ and x′′ = y′′

to compute

e′(t) = 3y′(t)Ty′′(t) + 3∇f(x(t))Tx′(t) + a2y(t)Ty′(t) + a‖y′(t)‖2 + ay(t)Ty′′(t)

= 3y′(t)T (y′′(t) +∇f(x(t))) + ay(t)T (y′′(t) + ay′(t)) + a‖y′(t)‖2

= −3a‖y′(t)‖2 − a∇f(x(t))Ty(t) + a‖y′(t)‖2

= −2a‖y′(t)‖2 − a(∇f(x(t))−∇f(x∗))
T (x(t)− x∗)

≤ −2a‖y′(t)‖2 − aµ‖x(t)− x∗‖2

= −a(µ‖y(t)‖2 + 2‖y′(t)‖2),

where we note that we again used strong convexity of f (see Theorem 2.6.5
(iv)) in the last inequality (in addition to ∇f(x∗) = 0).

By the Cauchy-Schwarz inequality and ab ≤ 1
2
a2 + 1

2
b2 we have

ay(t)Ty′(t) ≤ ‖ay(t)‖‖y′(t)‖ ≤ a2

2
‖y(t)‖2 +

1

2
‖y′(t)‖2.

Since ∇f is L Lipschitz we have

f(x(t))− f∗ ≤
L

2
‖x(t)− x∗‖2 =

L

2
‖y(t)‖2,

and so

e(t) ≤ 3

2
‖y′(t)‖2 +

3L

2
‖y(t)‖2 +

a2

2
‖y(t)‖2 +

a2

2
‖y(t)‖2 +

1

2
‖y′(t)‖2

=

(
3L

2
+ a2

)
‖y(t)‖2 + 2‖y′(t)‖2

=

(
3L+ 2a2

2µ

)
µ‖y(t)‖2 + 2‖y′(t)‖2

≤
(

3L+ 2a2

2µ

)(
µ‖y(t)‖2 + 2‖y′(t)‖2

)
,

where the last inequality follows from the fact that L ≥ µ and so

3L+ 2a2

2µ
≥ 3L

2µ
≥ 3

2
≥ 1.

Therefore we have

µ‖y(t)‖2 + 2‖y′(t)‖2 ≥ 2µe(t)

3L+ 2a2
.

226 CHAPTER 9. OPTIMIZATION

Substituting this into the upper bound on e′(t) deduced above, we obtain

e′(t) ≤ − 2µae(t)

3L+ 2a2
.

Since e(t) ≥ 0 it follows from Exercise 9.1.8 that

e(t) ≤ e(0) exp

(
− 2µat

3L+ 2a2

)
.

Combining this with (9.1.24) yields

(9.1.25) ‖x(t)− x∗‖2 ≤ 2e(0)

3µ
exp

(
− 2µat

3L+ 2a2

)
.

The proof is completed by using that y′(0) = 0 in the upper bound on e(t)
above to deduce that

e(0) ≤
(

3L

2
+ a2

)
‖y(0)‖2 =

(
3L

2
+ a2

)
‖x0 − x∗‖2,

and inserting this into (9.1.25).

The analysis of the discrete heavy ball method is more challenging. To
simlify the setting, we will analyze the discrete method in the special case of
solving the linear system

(9.1.26) Ax = b,

where A is an n × n positive definite and symmetric matrix (e.g., a discrete
Laplacian). We can solve this equation by minimizing

f(x) =
1

2
xTAx− xT b.

In this case, the gradient of f is ∇f(x) = Ax− b and the Hessian is ∇2f(x) =
A (see Section 2.4). Since A is symmetric and real-valued, the normalized
eigenvectors v1, v2, . . . , vn of A form an orthonormal basis for Rn, and the
corresponding eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn are all strictly positive. We
denote the smallest eigenvalue by µ = λ1, since this is the same as the µ in
the definition of strong convexity (9.1.9), or the PL inequality (9.1.11). The
Lipschitz constant of the gradient L is the largest eigenvalue L = λn.

9.1. GRADIENT DESCENT 227

Let x∗ ∈ Rn denote the solution of (9.1.26). Writing x∗ in the basis of
eigenvectors of A we have

x∗ =
n∑
i=1

(xT∗ vi)vi.

Applying A on both sides we have

Ax∗ =
n∑
i=1

λi(x
T
∗ vi)vi.

Since b = Ax∗ we can write b in the same basis to find that
n∑
i=1

(bTvi)vi = b = Ax∗ =
n∑
i=1

λi(x
T
∗ vi)vi.

Equating coefficients on both sides we have

xT∗ vi = λ−1
i bTvi.

Therefore, in the basis v1, . . . , vn, we can write x∗ as

(9.1.27) x∗ =
n∑
i=1

λ−1
i (bTvi)vi.

Our first result is a warm-up analysis of gradient descent in this special
case.

Theorem 9.1.12. Suppose xk satisfies

(9.1.28) xk+1 = xk − α(Axk − b)
for all k ≥ 1, and assume α ≤ 1

L
. Then we have

(9.1.29) (1− αL)k ≤ ‖xk − x∗‖‖x0 − x∗‖
≤ (1− αµ)k.

Proof. Let’s write (9.1.28) for k and k − 1 for convenience

xk = xk−1 − α(Axk−1 − b).
Taking the dot product with vi on both sides yields

xTk vi = xTk−1vi − α(xTk−1Avi − bTvi)
= xTk−1vi − αλixTk−1vi + αbTvi

= xTk−1vi(1− αλi) + αbTvi.

228 CHAPTER 9. OPTIMIZATION

Repeating the same computation for xTk−1vi and substituting above yields

xTk vi = xTk−2vi(1− αλi)2 + αbTvi(1− αλi) + αbTvi.

Repeating recursively we obtain

xTk vi = xT0 vi(1− αλi)k + αbTvi

k−1∑
j=0

(1− αλi)j.

The sum on the right hand side is a geometric series, which sums to

k−1∑
j=0

(1− αλi)j =
1− (1− αλi)k

αλi
.

Substituting above we obtain

xTk vi = xT0 vi(1− αλi)k + λ−1
i bTvi − λ−1

i bTvi(1− αλi)k

= (x0 − λ−1
i b)Tvi(1− αλi)k + λ−1

i bTvi.

Therefore

xk =
n∑
i=1

(xTk vi)vi

=
n∑
i=1

(x0 − λ−1
i b)Tvi(1− αλi)kvi +

n∑
i=1

λ−1
i (bTvi)vi

=
n∑
i=1

(x0 − λ−1
i b)Tvi(1− αλi)kvi + x∗,

and so

xk − x∗ =
n∑
i=1

(x0 − λ−1
i b)Tvi(1− αλi)kvi.

Since v1, . . . , vn is an orthonormal basis for Rn we have

‖xk − x∗‖2 =
n∑
i=1

[
(x0 − λ−1

i b)Tvi
]2

(1− αλi)2k.

The proof is completed by noting that
n∑
i=1

[
(x0 − λ−1

i b)Tvi
]2

= ‖x0 − x∗‖2

9.1. GRADIENT DESCENT 229

and
(1− αL)2k ≤ (1− αλi)2k ≤ (1− αµ)2k,

provided α ≤ 1
L
.

Theorem 9.1.12 shows that gradient descent for solving Ax = b converges
at a linear rate, which is at least 1 − αµ and at most 1 − αL. In particular,
the rate cannot be faster than linear.

We now extend this analysis to the heavy ball method.

Theorem 9.1.13. Suppose xk satisfies

(9.1.30) xk+1 = xk − α(Axk − b) + β(xk − xk−1)

for all k ≥ 2 and x1 = x0. Let α ≤ 1
L
and assume

(9.1.31) (1−√αµ)2 ≤ β ≤ 1.

Then for all k ≥ 2 we have

(9.1.32) ‖xk − x∗‖2 + ‖xk+1 − x∗‖2 ≤ 2βk‖x0 − x∗‖2.

Remark 9.1.14. Theorem 9.1.13 suggests that the optimal choice for β is
β = (1 − √αµ)2. In this case, we can take square roots on both sides of
(9.1.32) and drop the k + 1 term to obtain

‖xk − x∗‖ ≤
√

2(1−√αµ)k‖x0 − x∗‖.

Comparing this to the rate for gradient descent, Eq. (9.1.28) from Theorem
9.1.12, we see that the heavy ball method has a faster linear convergence rate
of 1 − √αµ, compared to 1 − αµ for gradient descent. We also note that
by taking the largest allowable time step of α = 1

L
in both theorems, we get

convergence rates of 1 − κ for gradient descent and 1 − √κ for the heavy
ball method, where κ = µ

L
is the condition number of the matrix A. For a

poorly conditioned matrix, where κ is very small, the heavy ball method gives
a substantial improvement in the convergence rate.

We also mention that Theorem 9.1.13 can be extended to smooth functions
f that are µ-strongly convex [17].

Proof of Theorem 9.1.13. We take the dot product with vi on both sides of
(9.1.30) to find that

xTk+1vi = xTk vi − α(xTkAvi − bTvi) + β(xTk vi − xTk−1vi)

= xTk vi − α(λix
T
k vi − bTvi) + β(xTk vi − xTk−1vi).

230 CHAPTER 9. OPTIMIZATION

For notational convenience, we write ck = xTk vi and bi = αbTvi, so that the
iteration above can be written as

ck+1 = (1 + β − αλi)ck − βck−1 + bi.

Since this iteration involves the last two iterates, we need to write the iteration
in the form

(9.1.33)
[
ck+1

ck

]
=

[
1 + β − αλi −β

1 0

]
︸ ︷︷ ︸

B

[
ck
ck−1

]
+

[
bi
0

]
.

Iterating this equality we find that

(9.1.34)
[
ck+1

ck

]
= Bk

[
c1

c0

]
+

k−1∑
j=0

Bj

[
bi
0

]
.

To complete the proof, we need to compute the eigenvalues of B. The charac-
teristic polynomial for the matrix B is

pi(λ) = λ2 − (1 + β − αλi)λ+ β.

The roots of the characteristic polynomial (i.e., the eigenvalues of B) are

λ =
1

2

(
1 + β − αλi ±

√
(1 + β − αλi)2 − 4β

)
.

The discriminant (1 + β − αλi)2 − 4β is negative precisely when

β ≥
(

1−
√
αλi

)2

,

which is guaranteed by the assumptions β ≥
(
1−√αµ

)2 and α ≤ 1
L
. In this

case, both roots of pi are complex-valued and have magnitudes

|λ|2 =
1

4

(
(1 + β − αλi)2 + 4β − (1 + β − αλi)2

)
= β.

In particular, λ = 1 is not an eigenvalue of B, and so I − B is invertible and
we can use the geometric series formula

k−1∑
j=0

Bj = (I −B)−1 −Bk(I −B)−1.

9.1. GRADIENT DESCENT 231

A direct computation shows that

(I −B)−1

[
bi
0

]
=

[
α−1λ−1

i bi
α−1λ−1

i bi

] [
xT∗ vi
xT∗ vi

]
and so

k−1∑
j=0

Bj

[
bi
0

]
= (I −Bk)

[
xT∗ vi
xT∗ vi

]
.

It also follows that the spectral norm of B is bounded by
√
β and so ‖Bkx‖2 ≤

βk‖x‖2 for any vector x. Applying these observations in (9.1.34) we have

(xTk vi − xT∗ vi)2 + (xTk+1vi − xT∗ vi)2 =

∥∥∥∥[xTk+1vi − xT∗ vi
xTk vi − xT∗ vi

]∥∥∥∥2

=

∥∥∥∥[ck+1 − xT∗ vi
ck − xT∗ vi

]∥∥∥∥2

=

∥∥∥∥Bk

[
c1 − xT∗ vi
c0 − xT∗ vi

]∥∥∥∥2

≤ βk
∥∥∥∥[c1 − xT∗ vi
c0 − xT∗ vi

]∥∥∥∥2

= βk
∥∥∥∥[xT0 vi − xT∗ vixT0 vi − xT∗ vi

]∥∥∥∥2

= 2βk(xT0 vi − xT∗ vi)2.

Summing over i we have

‖xk − x∗‖2 + ‖xk+1 − x∗‖2 ≤ 2βk‖x0 − x∗‖2,

which completes the proof.

9.1.4 Nesterov’s Accelerated Gradient Descent

Python Notebook: .ipynb
In the case where f is convex, but not strongly convex, it is still possible to

apply momentum methods to obtain faster convergence compared to gradient
descent using Nesterov Accelerated Gradient Descent method [15]. To describe
one variation of Nesterov’s method, we set λ0 = 0 and define λk by

(9.1.35) λk =
1 +

√
1 + 4λ2

k−1

2
.

https://colab.research.google.com/drive/1Qkc6tOKsPT7RFoNHTfhCWUE9CQO0KvA4?usp=sharing

232 CHAPTER 9. OPTIMIZATION

Nesterov’s accelerated gradient descent method then corresponds to the iter-
ation scheme

(9.1.36)


yk+1 = xk − α∇f(xk)

xk+1 = yk+1 +
λk − 1

λk+1

(yk+1 − yk),

with initial guess x1 = y1. Nesterov’s method has two steps. First there is
a standard gradient descent step, and then there is an extraplolation beyond
this with a momentum type term. It is useful to view them in the opposite
order, though. For example, combining the two steps together yields

yk+1 = xk − α∇f(xk)

= yk + βk(yk − yk−1)− α∇f(yk + βk(yk − yk−1)),

where βk = λk−1
λk+1

. Replacing yk with xk for comparison, we have

xk+1 = xk + βk(xk − xk−1)− α∇f(xk + βk(xk − xk−1)).

We compare this to the heavy ball method (9.1.14), which reads

xk+1 = xk + β(xk − xk−1)− α∇f(xk).

Aside from the fact that the momentum parameter β is not constant in Nes-
terov’s method, the main difference is that Nesterov can be viewed as taking
the momentum step first, and then evaluating the gradient at the extrapolated
point xk + βk(xk − xk−1), instead of at xk. This allows for a correction in case
the momentum step moves in the wrong direction.

As we shall see below (see Theorem 9.1.17), Nesterov’s accelerated gradient
descent method converges at a rate of O

(
1
t2

)
for convex functions, which is

clear improvement over theO
(

1
t

)
rate for gradient descent (see Theorem 9.1.2).

It turns out theO
(

1
t2

)
rate is optimal for minimizing convex functions with first

order (gradient-based) methods. Figure 9.1.3 shows a comparison of gradient
descent, the heavy ball method, and Nesterov’s accelerated gradient descent
for minimizing a quadratic function.

Before proving the O
(

1
t2

)
convergence rate for Nesterov’s method, we make

a few observations about λk. First, note that since λ0 = 0 we have

λ1 =
1 + 1

2
= 0.

We also note that the choice of λk in (9.1.35) was made so that the following
holds:

(9.1.37) λ2
k−1 = λ2

k − λk = λk(λk − 1).

9.1. GRADIENT DESCENT 233

0 10 20 30 40 50

Number of steps (t)

10−4

10−3

10−2

10−1

100

f
(x
t)
−
f

(x
∗)

Gradient Descent

Heavy Ball

Nesterov

Figure 9.1.3: Comparison of gradient descent, the heavy ball method, and
Nesterov acceleration for minimizing a quadratic function. We set α = 0.01,
β = 0.7, and took 50 steps for each method.

We also note that λk grows linearly in k, and in fact we have the following
elementary result.

Proposition 9.1.15. For all k ≥ 1 we have

(9.1.38)
k

2
≤ λk ≤

k

2
+

1

4
(3 + log(k)).

Remark 9.1.16. Proposition 9.1.15 says that λk ∼ k
2
as k →∞, which simply

means that
lim
k→∞

λk
k
2

= 1.

Using this asymptotic, the momentum coefficient in Nesterov is asympototic
to

λk − 1

λk+1

∼
k
2
− 1
k+1

2

=
k − 2

k + 1
.

It is common in Nesterov acceleration to replace the moment update step in
(9.1.36) with the asymptotic equivalent

(9.1.39) xk+1 = yk+1 +
k − 2

k + 1
(yk+1 − yk),

234 CHAPTER 9. OPTIMIZATION

since the method is simpler to implement and interpret. The same O
(

1
t2

)
convergence rate that we prove in Theorem 9.1.17 can be established with a
similar proof for the alternative momentum update (9.1.39).

Proof of Proposition 9.1.15. We first show that

(9.1.40)
k

2
≤ λk ≤ k.

To see this, we note that

λk ≥
1 +

√
4λ2

k−1

2
=

1

2
+ λk−1,

and using
√
a2 + b2 ≤ a+ b we have

λk ≤
1 + 1 + 2λk−1

2
= 1 + λk−1.

Then (9.1.40) follows by induction.
We now make the bound more precise, by noting that

λk =
1 +

√
1 + 4λ2

k−1

2
=

1

2
+ λk−1

√
1 +

1

4λ2
k−1

for k ≥ 2 so that λk−1 > 0. Since f(x) =
√

1 + x is a concave function, we
have √

1 + x = f(x) ≤ f(0) + f ′(0)x = 1 +
1

2
x.

Substituting this above yields

λk ≤
1

2
+ λk−1

(
1 +

1

8λ2
k−1

)
=

1

2
+ λk−1 +

1

8λk−1

.

Since λk−1 ≥ k−1
2

we see that

λk − λk−1 ≤
1

2
+

1

4(k − 1)

for k ≥ 2. Summing from k = 2 to k = t we have

λt − 1 ≤ 1

2
(t− 1) +

1

4

t∑
k=2

1

k − 1
.

9.1. GRADIENT DESCENT 235

Therefore

λt ≤
t

2
+

1

2
+

1

4

t∑
k=2

1

k − 1
.

We finally note that
t∑

k=2

1

k − 1
≤ 1 +

∫ t

2

1

x− 1
dx = 1 + log(t− 1)− log(1) ≤ 1 + log(t).

Substituting this above compeletes the proof for t ≥ 2. For t = 1 we can easily
check the inequality holds since λ1 = 1.

We now turn to the proof of the O
(

1
t2

)
convergence rate for Nesterov’s

accelerated gradient descent method.

Theorem 9.1.17. Assume f is convex and ∇f is L-Lipschitz. If α ≤ 1
L
then

Nesterov’s accelerated gradient descent satisfies

(9.1.41) f(yt)− f(x∗) ≤
2‖x1 − x∗‖2

α(t− 1)2
.

Proof. As in the proof of Theorem 9.1.2, we start with the inequality (9.1.4),
which in this case reads

(9.1.42) f(yk+1) ≤ f(xk)−
1

2α
‖yk+1 − xk‖2,

and holds provided α ≤ 1
L
. Since f is convex, we can use (9.1.6) with x = xk

to obtain

f(y) ≥ f(xk) +∇f(xk)
T (y − xk) = f(xk)−

1

α
(yk+1 − xk)T (y − xk)

for any y ∈ Rn. Rearranging we have

f(xk) ≤ f(y)− 1

α
(yk+1 − xk)T (xk − y).

Inserting this into (9.1.42) we have

(9.1.43) f(yk+1)− f(y) ≤ − 1

2α

(
‖yk+1 − xk‖2 + 2(yk+1 − xk)T (xk − y)

)
for any y ∈ Rn. We now use (9.1.43) with y = yk, and multiply both sides by
λk − 1 to obtain

(λk − 1)(f(yk+1)− f(yk))(9.1.44)

≤ −λk − 1

2α

(
‖yk+1 − xk‖2 + 2(yk+1 − xk)T (xk − yk)

)
.

236 CHAPTER 9. OPTIMIZATION

We also set y = x∗ in (9.1.43) to obtain

(9.1.45) f(yk+1)− f(x∗) ≤ −
1

2α

(
‖yk+1 − xk‖2 + 2(yk+1 − xk)T (xk − x∗)

)
.

We now carefully add (9.1.44) and (9.1.45). Let us set δk = f(yk) − f(x∗).
Then when we add the left hands of the two equations we obtain

λkf(yk+1)− (λk − 1)f(yk)− f(x∗) = λkδk+1 − (λk − 1)δk.

Proceeding to add the right hand sides as well, we obtain

λkδk+1 − (λk − 1)δk

≤ −λk
2α
‖yk+1 − xk‖2 − 1

α
(yk+1 − xk)T (λkxk − (λk − 1)yk − x∗).

We now multiply by λk on both sides above and use (9.1.37) to obtain

λ2
kδk+1 − λ2

k−1δk

≤ − 1

2α

(
‖λk(yk+1 − xk)‖2 + 2λk(yk+1 − xk)T (λkxk − (λk − 1)yk − x∗)

)
= − 1

2α

(
‖λk(yk+1 − xk) + λkxk − (λk − 1)yk − x∗‖2

− ‖λkxk − (λk − 1)yk − x∗‖2
)

= − 1

2α

(
‖λkyk+1 − (λk − 1)yk − x∗‖2 − ‖λkxk − (λk − 1)yk − x∗‖2

)
= − 1

2α

(
‖(λk − 1)(yk+1 − yk) + yk+1 − x∗‖2 − ‖λkxk − (λk − 1)yk − x∗‖2

)
= − 1

2α

(
‖λk+1(xk+1 − yk+1) + yk+1 − x∗‖2 − ‖λkxk − (λk − 1)yk − x∗‖2

)
= − 1

2α

(
‖λk+1xk+1 − (λk+1 − 1)yk+1 − x∗‖2 − ‖λkxk − (λk − 1)yk − x∗‖2

)
,

where we used the Nesterov acclerated gradient descent update (9.1.36) for
xk+1 in the last line. Both sides above are telescoping sums. Summing from
k = 1 to t− 1 and using λ0 = 0 and λ1 = 1 we obtain

λ2
t−1(f(yt)− f(x∗)) = λ2

t−1δt ≤
1

2α
‖x1 − x∗‖2.

Dividing by λ2
t−1 and applying (9.1.40) completes the proof.

9.1. GRADIENT DESCENT 237

Exercise 9.1.18. Assume f is convex, and let x(t) satisfy the gradient descent
ODE

x′(t) = −∇f(x(t))

with x(0) = x0. Show that

f(x(t))− f(x∗) ≤
‖x0 − x∗‖2

2t

where x∗ ∈ Rn is any minimizer of f . Hint: Define the energy

e(t) = t(f(x(t))− f(x∗)) +
1

2
‖x(t)− x∗‖2

and show that e′(t) ≤ 0 so that e(t) ≤ e(0). 4

Exercise 9.1.19. Consider the version of Nesterov’s accelerated gradient de-
scent in the form

(9.1.46)


yk+1 = xk − α∇f(xk)

xk+1 = yk+1 +
k − 2

k + 1
(yk+1 − yk).

(i) Show that Nesterov’s accelerated gradient descent given in (9.1.46) sat-
isfies

xk+1 − 2xk + xk−1

α
+ak

xk − xk−1√
α

= −∇f(xk)+
k − 2

k + 1
(∇f(xk−1)−∇f(xk)),

where ak = 3√
α(k+1)

.

(ii) Assume xk = x(
√
αk) is the discretization of a smooth curve x(t) for

t ≥ 0. Explain why it follows from part (i) that when we send α→ 0 we
obtain that x solves the ordinary differential equation (ODE)

(9.1.47) x′′(t) +
3

t
x′(t) = −∇f(x(t)).

This ODE is sometimes called continuous time Nesterov. From the con-
tinuum point of view, we can see that Nesterov’s method is simlar to the
heavy ball method with time-dependent friction a(t) = 3

t
. The friction

starts off very large, but vanishes as t→∞, which allows for accelerated
convergence for non-strongly convex functions that may be extremely flat
near their minima.

238 CHAPTER 9. OPTIMIZATION

(iii) Assume f is convex and let x(t) satisfy (9.1.47) with x(0) = x0 and
x′(0) = 0. Show that

f(x(t))− f(x∗) ≤
2‖x0 − x∗‖2

t2
,

where x∗ ∈ Rn is any minimizer of f . Hint: Define the energy functional

e(t) = t2(f(x(t))− f(x∗)) + 2

∥∥∥∥x(t) +
t

2
x′(t)− x∗

∥∥∥∥2

,

and show that e′(t) ≤ 0 for all t ≥ 0, so that e(t) ≤ e(0), from which
the result follows. After differentiating e(t), you will find the inequality
below useful, which follows from convexity of f .

f(x(t))− f(x∗) ≤ ∇f(x(t))T (x(t)− x∗). 4

9.1.5 Stochastic gradient descent

Python Notebook: .ipynb
In machine learning, we often are tasked with optimizing functions of the

form

(9.1.48) f(x) =
1

n

n∑
i=1

fi(x).

For example, when training neural networks, x represents the trainable weights
in the network and fi(x) = `(gL(x̃i;x), ỹi) where (x̃i, ỹi) are training data, gL
is an L-layer neural network, and ` is the loss function.

It can sometimes be computationally burdensome, especially in deep learn-
ing where n can be very large, to evaluate the full gradient

(9.1.49) ∇f(x) =
1

n

n∑
i=1

∇fi(x),

in order to take steps of gradient descent

xk+1 = xk − α∇f(xk).

In order to accelerate computations, we can approximate the gradient of f
by the gradient of any of the fi. This yields the stochastic gradient descent
(SGD) algorithm

(9.1.50) xk+1 = xk − αk∇fik(xk),

https://colab.research.google.com/drive/160q5nvG7L3acCdEVzFv260xpy59tUZy1?usp=sharing

9.1. GRADIENT DESCENT 239

where ik is an index in the range {1, . . . , n} chosen uniformly at random at
each step. Note we have also allowed the learning rate (time step) αk to vary
with k as well; we shall see the importance of this later on.

Remark 9.1.20. The version of SGD described above has a batch size of 1.
In general, we may choose a batch size b ≥ 1 and use the mini-batch SGD
optimization method

xk+1 = xk −
αk
b

∑
j∈Ik

∇fj(xk),

where Ik ⊂ {1, . . . , n} is a set of b indices indicating the mini-batch and is
randomly chosen at each iteration. While we choose to study b = 1 in this
section, to simplify the exposition, all results extend, with minor adjusments,
to mini-batch SGD with b ≥ 2.

This section requires some familiarity with probability, in particular, with
properties of expectation. Since the coordinate ik is chosen uniformly at ran-
dom, the expectation of ∇fik(xk) conditioned on xk,1 denoted Ek∇fik(xk) is
simply

(9.1.51) Ek∇fik(xk) =
1

n

n∑
i=1

∇if(xk) = ∇f(xk).

We thus have that ∇fik is an unbiased estimator of ∇f . Let us write
ξk = ∇fik(xk)−∇f(xk)

so that SGD (9.1.50) has the form

(9.1.52) xk+1 = xk − αk(∇f(xk) + ξk).

Thus, we can view SGD as a noisy version of gradient descnet, corrupted by
the noise vector ξk. Note that by (9.1.51) we have Ekξk = 0, so the noise
vector has mean zero.

In order to establish convergence of SGD, we need to assume the variance
of the noise vector ξk is bounded. In particular, we assume there exists σ ≥ 0
such that

(9.1.53) Ek‖ξk‖2 ≤ σ2.

1For the reader not familiar with probability, the conditional expectation Ek∇fik(xk)
is the expectation of ∇fik(xk) over just the choice of ik. In particular, we are (not yet)
considering the expectation over the previous choices ik−1, ik−2, . . . , i1. To be precise, the
conditional expectation Ek∇fik(xk) can be defined by the first equality in (9.1.51), and
should be considered as is itself a random variable, since it depends on xk.

240 CHAPTER 9. OPTIMIZATION

To give some more insight into this condition, let us expand Ek‖ξk‖2 as

Ek‖ξk‖2 = Ek‖∇fik(xk)−∇f(xk)‖2

=
1

n

n∑
i=1

‖∇fi(xk)−∇f(xk)‖2

=
1

n

n∑
i=1

(
‖∇fi(xk)‖2 − 2∇f(xk)

T∇fi(xk) + ‖∇f(xk)‖2
)

=
1

n

n∑
i=1

‖∇fi(xk)‖2 − 2∇f(xk)
T 1

n

n∑
i=1

∇fi(xk) + ‖∇f(xk)‖2

=
1

n

n∑
i=1

‖∇fi(xk)‖2 − 2∇f(xk)
TEk∇fik(xk) + ‖∇f(xk)‖2

=
1

n

n∑
i=1

‖∇fi(xk)‖2 − 2∇f(xk)
T∇f(xk) + ‖∇f(xk)‖2

=
1

n

n∑
i=1

‖∇fi(xk)‖2 − ‖∇f(xk)‖2.

Therefore, the condition (9.1.53) is equivalent to assuming that

(9.1.54)
1

n

n∑
i=1

‖∇fi(x)‖2 ≤ ‖∇f(x)‖2 + σ2

for all x ∈ Rn. We can also write this in terms of conditional expectation,
since we have

(9.1.55) Ek‖∇fik(xk)‖2 =
1

n

n∑
i=1

‖∇fi(xk)‖2 ≤ ‖∇f(xk)‖2 + σ2.

As usual, we always assume f is bounded below and attains its minimum
value, which we denote by f∗ = minRn f .

We are now equipped to prove convergence of SGD.

Theorem 9.1.21. Assume f is L-Lipschitz. Let xk satisfy (9.1.50) and as-
sume that Ekξk = 0 and Ek‖ξk‖2 ≤ σ2 for σ ≥ 0. If αk ≤ 1

L
then we have

(9.1.56) min
0≤k≤t−1

E‖∇f(xk)‖2 ≤ 2(f(x0)− f∗)∑t−1
k=0 αk

+ Lσ2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
.

In addition, if f is convex, then we have

(9.1.57) min
1≤k≤t

(Ef(xk)− f∗) ≤
‖x0 − x∗‖2

2
∑t−1

k=0 αk
+
Lσ2

∑t−1
k=0 α

2
k

2
∑t−1

k=0 αk
.

9.1. GRADIENT DESCENT 241

Proof. The proof of (9.1.56) follows Theorem 9.1.2 closely, with modifications
to account for stochasticity. Since f is L-Lipschitz we have

f(xk+1) = f(xk − αk∇fik(xk))

≤ f(xk)− αk∇f(xk)
T∇fik(xk) +

Lα2
k

2
‖∇fik(xk)‖2.

Taking the conditional expectation Ek on both sides and using (9.1.51) and
(9.1.55) we obtain

Ekf(xk+1) ≤ f(xk)− αk‖∇f(xk)‖2 +
Lα2

k

2
‖∇f(xk)‖2 +

Lα2
kσ

2

2
.

Using the assumption that αk ≤ 1
L
we have Lα2

k

2
≤ αk

2
and so

(9.1.58) Ekf(xk+1) ≤ f(xk)−
αk
2
‖∇f(xk)‖2 +

Lα2
kσ

2

2
.

Rearranging this we have

αk‖∇f(xk)‖2 ≤ 2(f(xk)− Ekf(xk+1)) + Lα2
kσ

2.

We now take the expectation on both sides over all the previous choices of
i0, i1, . . . , ik−1 during SGD. This expectation is denoted simply by E, and we
recall the law of iterated expectations

EEkf(xk+1) = Ef(xk+1).

This yields

αkE‖∇f(xk)‖2 ≤ 2E(f(xk)− f(xk+1)) + Lα2
kσ

2.

We now sum both sides above over k = 0, . . . , t− 1 to obtain

t−1∑
k=0

αkE‖∇f(xk)‖2 ≤ 2
t−1∑
k=0

E(f(xk)− f(xk+1)) + Lσ2

t−1∑
k=0

α2
k.

The second summation above is a telescoping sum, which yields

(9.1.59)
t−1∑
k=0

αkE‖∇f(xk)‖2 ≤ 2(f(x0)− Ef(xt)) + Lσ2

t−1∑
k=0

α2
k.

242 CHAPTER 9. OPTIMIZATION

We now lower bound the left hand side as follows:
t−1∑
k=0

αkE‖∇f(xk)‖2 ≥
(

t−1∑
k=0

αk

)
min

0≤k≤t−1
E‖∇f(xk)‖2.

Dividing both sides of (9.1.59) by
∑t−1

k=0 αk and using the lower bound above,
yields

min
0≤k≤t−1

E‖∇f(xk)‖2 ≤ 2(f(x0)− Ef(xt))∑t−1
k=0 αk

+ Lσ2

∑t−1
k=0 α

2
k∑t−1

k=0 αk
.

The proof of (9.1.56) is completed by using bound Ef(xt) ≥ minRn f = f∗.
To prove (9.1.57) when f is convex, we follow the proof of Theorem 9.1.3

closely. Let x∗ ∈ Rn be any minimizer of f , so that f∗ = f(x∗). Applying
the argument in Eq. (9.1.8) from Theorem 9.1.3 to the bound in Eq. (9.1.58)
yields

Ekf(xk+1) ≤ f∗ +
1

2αk

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+
Lα2

kσ
2

2
.

We now rearrange the equation and take expectations on both sides to obtain

αk(Ef(xk+1)− f∗) ≤
1

2
E
(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+
Lα2

kσ
2

2
.

Summing over k and using that the second sum is telescoping, we have

t−1∑
k=0

αk(Ef(xk+1)− f∗) ≤
1

2

(
‖x0 − x∗‖2 − E‖xt − x∗‖2

)
+
Lσ2

2

t−1∑
k=0

α2
k

≤ 1

2
‖x0 − x∗‖2 +

Lσ2

2

t−1∑
k=0

α2
k.

Dividing by
∑t−1

k=0 αk and lower bounding the left hand side as in the first part
proof yields (9.1.57).

Theorem 9.1.21 shows that the convergence rate for SGD with σ > 0
depends on the additional quantity

(9.1.60) At :=

∑t−1
k=0 α

2
k∑t−1

k=0 αk
.

We must therefore choose the learning rate αk at each step so that At → 0 as
quickly as possible. The following result characterizes common choices for αk.

9.1. GRADIENT DESCENT 243

Proposition 9.1.22. The following hold.

(i) For a consant learning rate αk = α we have At = α and SGD does not
converge.

(ii) For the choice αk = α/(k + 1)p for 0 < p < 1
2
we have

At ≤ 21−2pα

(
1− p
1− 2p

)
t−p.

(iii) For the choice αk = α/
√
k + 1 we have

At ≤ (1− p)α log(t+ 1)t−
1
2 .

(iv) For the choice αk = α/(k + 1)p for 0 < p < 1
2
we have

At ≤ α

(
1− p
2p− 1

)
tp−1.

(v) For the choice αk = α/(k + 1) we have

At ≤
α

(2p− 1)(1 + log(t))
.

Proof. The proof of (i) is straightforward.
For (ii) and (iii), we note that for any 0 < p < 1 we have

t−1∑
k=0

αk = α
t−1∑
k=0

1

(k + 1)p
≥ α

∫ t

0

1

xp
dx =

αt1−p

1− p ,

while for p = 1 we have
t−1∑
k=0

αk = α
t−1∑
k=0

1

k + 1
≥ α

(
1 +

∫ t

1

1

x
dx

)
= α(1 + log(t)).

For any 0 < p < 1
2
we have

t−1∑
k=0

α2
k = α2

t−1∑
k=0

1

(k + 1)2p

≤ α2

∫ t

0

1

(x+ 1)2p
dx

≤ α2(t+ 1)1−2p

1− 2p

≤ 21−2pα2t1−2p

1− 2p
.

244 CHAPTER 9. OPTIMIZATION

This establishes (ii).
For (iii), if p = 1

2
we have

t−1∑
k=0

α2
k = α2

t−1∑
k=0

1

k + 1
≤ α2

∫ t

0

1

x+ 1
dx ≤ α2 log(t+ 1).

For (iv) and (v) we take 1
2
< p ≤ 1 and compute

t−1∑
k=0

α2
k = α2

t−1∑
k=0

1

(k + 1)2p
≤ α2

∫ t

0

1

(x+ 1)2p
dx ≤ α2

2p− 1
.

This completes the proof.

Proposition 9.1.22 shows that the optimal power p is p = 1
2
, and up to

logarithmic factors, the convergence rate is At = O(t−
1
2). The proposition

only considers 0 < p ≤ 1; for p > 1 both sums
∑t−1

k=0 αk and
∑t−1

k=0 α
2
k are

convergent, and so At does not converge to zero, and hence SGD does not
converge.

We finally turn to the analysis of SGD for f that are µ-strongly convex.

Theorem 9.1.23. Assume f is L-Lipschitz and µ-strongly convex. Let xk
satisfy (9.1.50) and assume that Ekξk = 0 and Ek‖ξk‖2 ≤ σ2 for σ ≥ 0. For
the choice of αk = 1

µk+L
we have for k ≥ 2 that

Ef(xk)− f∗ ≤
1

k + β

(
β(f(x0)− f∗) +

3Lσ2

2µ2
log(k + β)

)
,

where β = L
µ
− 1 ≥ 0.

Proof. We start from (9.1.58) in Theorem 9.1.21, which reads

Ekf(xk+1) ≤ f(xk)−
αk
2
‖∇f(xk)‖2 +

Lα2
kσ

2

2
.

Applying the PL-inequality (9.1.11), which holds for µ-strongly convex func-
tions, we have

Ekf(xk+1) ≤ f(xk)− αkµ(f(xk)− f∗) +
Lα2

kσ
2

2
.

Subtract f∗ from both sides and rearrange to obtain

Ekf(xk+1)− f∗ ≤ (1− αkµ)(f(xk)− f∗) +
Lα2

kσ
2

2
.

9.1. GRADIENT DESCENT 245

Taking expectations on both sides and setting ek = E(f(xk)− f∗) yields

ek+1 ≤ (1− αkµ)ek +
Lα2

kσ
2

2
.

We now make the choice αk = 1
µk+L

, which satisfies αk ≤ 1
L
for all k, and

ek+1 ≤
(

1− 1

k + 1 + β

)
ek +

Lσ2

2µ2(k + 1 + β)2
,

where β = L
µ
− 1 ≥ 0. Iterating we have

ek+1 ≤
(

k + β

k + 1 + β

)((
k − 1 + β

k + β

)
ek−1 +

Lσ2

2µ2(k + β)2

)
+

Lσ2

2µ2(k + 1 + β)2

=

(
k − 1 + β

k + 1 + β

)
ek−1 +

Lσ2

2µ2(k + 1 + β)

(
1

k + β
+

1

k + 1 + β

)
.

Continuing by induction we find that

ek+1 ≤
β

k + 1 + β
e0 +

Lσ2

2µ2(k + 1 + β)

k+1∑
j=1

1

j + β
.

The series above can be bounded by

k+1∑
j=1

1

j + β
≤ 1

1 + β
+

∫ k+1

1

1

x+ β
dx ≤ 1 + log(k + 1 + β).

This yields

ek+1 ≤
1

k + 1 + β

(
βe0 +

Lσ2

2µ2
(1 + log(k + 1 + β))

)
.

The proof is completed by using the bound

1 ≤ 2 log(2) ≤ 2 log(k + 1 + β)

for k ≥ 1 and then replacing k + 1 with k.

Theorem 9.1.23 shows that strong convexity improves the O(k−
1
2) conver-

gence rate of SGD to O(k−1) up to log factors, but this rate is still sublinear,
and in particular, SGD does not enjoy the linear convergence rates for strongly
convex function that we saw in our analysis of gradient descent.

246 CHAPTER 9. OPTIMIZATION

9.2 Newton’s method
Python Notebook: .ipynb

Recalling Exercise 9.1.1, we can interpret of each step of gradient descent
as minimizing

T (y) = f(x) +∇f(x)T (y − x) +
1

2α
‖y − x‖2.

We can view this as minimizing the linear approximation of f , with a penalty
term to ensure the minimum exists and the step sizes are small. Since T
may not approximate f all that well away from the point x, gradient descent
requires a small step size α to ensure convergence, which leads to slow conver-
gence with at most linear rates.

A natural way to improve upon gradient descent is to replace the first
order Taylor expansion in T (y) with a second order Taylor expansion of f .
Recalling Theorem 2.5.7 and omitting the Taylor remainder term, the second
order quadratic approximation of f given by Taylor expansion is

(9.2.1) L(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x).

The function L is the quadratic function that best approximates f near x.
Each step of Newton’s method for optimization is based on minimizing L.
Taking the gradient in y we have

∇L(y) = ∇f(x) +∇2f(x)(y − x).

Setting ∇L(y) = 0 yields

(9.2.2) y = x− [∇2f(x)]−1∇f(x),

provided∇2f(x) is an invertible matrix. Newton’s method iterates (9.2.2) until
convergence, that is, we generate a sequence of points x0, x1, x2, . . . satisfying

(9.2.3) xk+1 = xk − [∇2f(xk)]
−1∇f(xk)

for k ≥ 1. In this section we analyze the convergence rate of Newton’s method.
To prove convergence of Newton’s method, we assume that f is µ-strongly

convex for µ > 0. This implies that the Hessian matrix ∇2f(x) is positive
definite and its smallest eigenvalue is at least µ. In particular, ∇2f(x) is
invertible, and the operator (or spectral) norm of ∇2f(x)−1 is 1/µ. This
implies that

(9.2.4) ‖∇2f(x)−1y‖ ≤ 1

µ
‖y‖,

for any x, y ∈ Rn.

https://colab.research.google.com/drive/1X2dXKNlwQr_XZI5gmknLgVajXRZn84oW?usp=sharing

9.2. NEWTON’S METHOD 247

Theorem 9.2.1. Let f : Rn → R. Assume that f is µ-strongly convex, ∇2f
is L-Lipschitz and

β :=
L

2µ2
‖∇f(x0)‖ < 1.

Then Newton’s method converges as k →∞ to the unique minimizer of f , and
furthermore for any k ≥ 0 we have

(9.2.5) ‖∇f(xk)‖ ≤
2µ2

L
β2k .

Proof. We define

e(k) =
L

2µ2
‖∇f(xk)‖.

The overall strategy of the proof will be to show that

(9.2.6) e(k + 1) ≤ e(k)2.

This is exactly quadratic convergence, provided β = e(0) < 1. To prove
(9.2.6), we first note that the Newton iteration (9.2.3) satisfies

0 = ∇f(xk) +∇2f(xk)(xk+1 − xk).

Therefore, by the Taylor expansion in Theorem 2.5.9 and (9.2.4) we have

e(k + 1) =
L

2µ2
‖∇f(xk+1)‖

=
L

2µ2
‖∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)‖

≤ L

2µ2
· L

2
‖xk+1 − xk‖2

=
L2

4µ2
‖[∇2f(xk)]

−1∇f(xk)‖2

≤ L2

4µ2
· 1

µ2
‖∇f(xk)‖2

= e(k)2.

This establishes (9.2.6).
Iterating (9.2.6) we obtain

e(k) ≤ e(0)2k = β2k ,

which completes the proof.

248 CHAPTER 9. OPTIMIZATION

Remark 9.2.2. The condition β < 1 in Theorem 9.2.1 essentially states that
we must initialize Newton’s method sufficiently close to the minimizer in order
to guarante convergence. If the initial guess x0 not sufficiently close to x∗, it
is possible Newton’s method will not converge. In practice, Newton’s method
is usually modified with a time step in the form

xk+1 = xk − α[∇2f(xk)]
−1∇f(xk).

The selection of the time step α is often done with a backtracking line search,
which attemps to find the best α to give the largest decrease in the objective
function f . With the backtracking line search, Newton’s method is provably
convergent from any initial guess x0, except that the method may take many
steps before it enters the quadratic convergence regime where β < 1.

Remark 9.2.3. As before, we can convert Theorem 9.2.1 into a rate for ‖xk−
x∗‖ by using (9.1.12) to obtain

‖xk − x∗‖ ≤
2µ

L
β2k .

Bibliography

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural computation, 15(6):1373–1396, 2003.

[2] M. Benyamin, J. Calder, G. Sundaramoorthi, and A. Yezzi. Accelerated
variational PDEs for efficient solution of regularized inversion problems.
Journal of Mathematical Imaging and Vision, 62(1):10–36, 2020.

[3] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE
transactions on pattern analysis and machine intelligence, 35(8):1872–
1886, 2013.

[4] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of mathematical imaging
and vision, 40(1):120–145, 2011.

[5] O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised learning. MIT,
2006.

[6] R. R. Coifman and S. Lafon. Diffusion maps. Applied and computational
harmonic analysis, 21(1):5–30, 2006.

[7] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of computation, 19(90):297–301,
1965.

[8] D. L. Donoho and P. B. Stark. Uncertainty principles and signal recovery.
SIAM Journal on Applied Mathematics, 49(3):906–931, 1989.

[9] D. F. Gleich. Pagerank beyond the web. SIAM Review, 57(3):321–363,
2015.

[10] T. Goldstein and S. Osher. The split Bregman method for L1-regularized
problems. SIAM journal on imaging sciences, 2(2):323–343, 2009.

249

250 BIBLIOGRAPHY

[11] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[13] S. G. Johnson and M. Frigo. A modified split-radix FFT with fewer arith-
metic operations. IEEE Transactions on Signal Processing, 55(1):111–
119, 2006.

[14] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine
learning. MIT press, 2018.

[15] Y. E. Nesterov. A method for solving the convex programming problem
with convergence rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269,
pages 543–547, 1983.

[16] A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis
and an algorithm. Advances in neural information processing systems,
2:849–856, 2002.

[17] B. T. Polyak. Some methods of speeding up the convergence of itera-
tion methods. Ussr computational mathematics and mathematical physics,
4(5):1–17, 1964.

[18] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008.

[19] U. Von Luxburg. A tutorial on spectral clustering. Statistics and com-
puting, 17(4):395–416, 2007.

[20] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning
using gaussian fields and harmonic functions. In Proceedings of the 20th
International conference on Machine learning (ICML-03), pages 912–919,
2003.

	Introduction
	Course Information
	Python
	Background on audio, images, and data analysis
	Audio
	Images
	Data science and machine learning

	Linear Algebra Review
	Notation
	Projection
	Diagonalization of symmetric matrices
	Vector calculus
	Taylor expansion
	Convex functions

	Principal Component Analysis
	Fitting the best linear subspace
	PCA dimension reduction
	How many principal directions?
	Robust PCA
	PCA-based Image Compression
	PCA-based Handwritten Digit Recognition

	Clustering
	k-Means Clustering
	Clustering MNIST digits

	Spectral Clustering
	The graph Laplacian and Fiedler vector
	Clustering MNIST digits

	PageRank
	Convergence of the random surfer
	Personalized PageRank for image retrieval

	The Discrete Fourier Transform
	Complex numbers and Euler's formula
	The Forward and Inverse Transforms
	The Fast Fourier Transform (FFT)
	Parseval's Identities
	Convolution and the DFT
	Application: Signal denoising
	Tikhonov regularization
	Total Variation regularization

	Multi-dimensional DFT
	Application: Image denoising

	The Discrete Cosine and Sine Transforms
	DCT-based image compression

	The Sampling Theorem

	The Discrete Wavelet Transform
	The 1D Haar Wavelet
	2D Haar Wavelet Transform
	Wavelet denoising and compression
	Wavelet-based image classification
	General discrete Wavelets

	Machine Learning
	Introduction
	Fully supervised learning
	Semi-supervised learning
	Unsupervised learning

	Graph-based semi-supervised learning
	Graph-based embeddings
	Spectral embedding
	t-SNE embedding

	Neural networks
	Fully connected networks
	Back propagation
	Classification with neural networks
	Universal approximation
	Convolutional Neural Networks

	Optimization
	Gradient descent
	The sublinear rate
	Linear convergence with the PL inequality
	Momentum descent
	Nesterov's Accelerated Gradient Descent
	Stochastic gradient descent

	Newton's method

