
Math 5587 – Homework 9 (Due Thursday Nov 17)

This assignment requires the use of a mathematical software package. Matlab is preferred
(since Matlab code will be provided), but you are free to use any software package of your
choosing. All computers in Vincent Hall have Matlab, Mathematica, and Maple installed. All
Linux lab computers in the college should have the same software. This includes the labs in
Vincent Hall 5 (when no class is in session) and 270D.

You can also download Matlab on your personal computer with a University license. The
software as well as instructions are available here:

http://cselabs.umn.edu/software/downloadable_software

Before downloading the software, you will need a CSELabs account:

https://wwws.cs.umn.edu/account-management

1. Let u(x) be a smooth function and set uj = u(jh) where h > 0. Find real numbers a, b
and c so that

auj + buj−1 + cuj−2

h
= u′(jh) +O(h2).

[Hint: Write down Taylor expansions for uj−1 and uj−2, and find a, b, c by inspection.]

2. For the diffusion equation ut = uxx, use centered differences for both ut and uxx. Write
down the scheme and show that it is unstable no matter what ∆x and ∆t are.

3. The Crank-Nicolson Scheme for the heat equation ut = uxx is

un+1
j = unj +

s

2

(
unj+1 − 2unj + unj−1

)
+
s

2

(
un+1
j+1 − 2un+1

j + un+1
j−1

)
,

where s = ∆t/∆x2. The scheme is implicit, since un+1 appears on both sides of the
equation, so one has to solve a linear system to find un+1 at each iteration. Show that
the Crank-Nicolson scheme is unconditionally stable, which means it is stable for all
choices of s > 0. [Hint: Perform a Von Neumann stability analysis. Set unj = eij∆xk and
show that un+1

j = λke
ij∆xk where

λk =
1− s+ s cos(∆xk)

1 + s− s cos(∆xk)
.

Then show that |λk| ≤ 1 for any choice of s.]

4. Explicit scheme for the heat equation

(a) Consider the Dirichlet problem for the heat equation

ut = uxx if 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0 if t > 0

u(x, 0) = f(x) if 0 < x < 1,

 .

http://cselabs.umn.edu/software/downloadable_software
https://wwws.cs.umn.edu/account-management

and the finite difference approximation

un+1
j = (1− 2s)unj + s

(
unj−1 + unj+1

)
if n ≥ 1 and 1 ≤ j ≤ J

un0 = unJ+1 = 0 for n ≥ 1

u0
j = f(j∆x) for 1 ≤ j ≤ J,

 .

where ∆x = 1/(J + 1) and s = ∆t/∆x2. Compute the solution unj of the finite
difference scheme for various choices of f(x) and s = 0.45, s = 0.49, s = 0.5,
and s = 0.51. Print out plots showing both stable and unstable solutions. Find a
smooth initial condition f(x) that becomes oscillatory when s = 0.5. [Hint: Use the
provided Matlab file HeatEqExplicit.m. Modify the line f = double(x>0.5) for
different initial conditions. For example f = x.^2 corresponds to initial condition
f(x) = x2.]

(b) Modify the provided code to work for homogeneous Neumann boundary conditions
ux(0, t) = ux(π, t) = 0 and repeat part (a). [Hint: The boundary conditions are
encoded in the definitions of un and up in the code. Modify these lines.]

5. Implicit scheme for the heat equation

(a) Consider the Dirichlet problem for the heat equation from Problem 4, and the
implicit scheme

(1 + 2s)un+1
j − s

(
un+1
j−1 + un+1

j+1

)
= unj if n ≥ 1 and 1 ≤ j ≤ J

un0 = unJ+1 = 0 for n ≥ 1

u0
j = f(j∆x) for 1 ≤ j ≤ J,

 .

where ∆x = 1/(J + 1) and s = ∆t/∆x2. Compute the solution unj of the finite
difference scheme for various choices of f(x) and s. Experiment with large values of
∆t (recall the implicit scheme is unconditionally stable). Print out a few plots of the
solution at various times. [Hint: Use the provided Matlab file HeatEqImplicit.m.]

(b) Modify the provided code to implement the Crank-Nicolson scheme from Problem
3. Print out a few plots of the solution at various times. [Hint: The line u = A\u
is the implicit iteration. You will need to modify this line, as well as the defintion
of A earlier in the code.]

6. Upwind scheme for conservation law for traffic flow

Consider the following convervation law for traffic flow discussed earlier in the course:

ut + ∂x(u(1− u)) = 0.

Here, u = u(x, t) is the density of traffic on the road at position x and time t. Recall
that v(u) = 1− u is the velocity of traffic and uv(u) = u(1− u) is the traffic flow. Since
u is a density we have 0 ≤ u ≤ 1. In this problem we will explore what can go wrong
with a naive scheme, and how to construct an upwind scheme.

2

(a) Write down a scheme using forward differences for ut and centered differences for
the x derivative ∂x. Implement the scheme in Matlab and run some simulations.
Is it stable? Try very small values of s = ∆t/∆x, like s = 0.01, to see if you can
make the scheme stable. Print out some plots to justify your answer. [Hint: Use
the code TrafficFlow.m. In the code, un is unj+1 and up is unj−1 (notation is ‘next’
and ‘previous’ grid points). For example, the scheme un+1

j = unj+1u
n
j−1 is coded as

u = un.*up. The boundary conditions are encoded into un and up and correspond
to a constant stream of traffic coming in from the left, and a simulated traffic jam
coming and going on the right.]

(b) You should find in (a) that the scheme is always unstable, for any choice of ∆t. To
fix this, let us expand the x derivative in the PDE to get

ut + (1− u)ux − uux = 0.

The second two terms are similar to what we see in a transport equation, with
speeds c1 = 1 − u and c2 = −u. Since 0 ≤ u ≤ 1, c1 ≥ 0 and c2 ≤ 0. Hence,
an upwind scheme will use backward differences for the ux in the middle term
(1 − u)ux, and forward differences for the ux in the final term −uux. Write this
scheme down, using forward differences for ut. Inspecting your scheme, what do
you think the CFL condition is?

(c) Implement your upwind scheme from part (a) in Matlab. Print out some plots of
the solution at various times. You should see a traffic jam shock wave propagating
backwards through the traffic.

3

