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1 Gibb’s Phenomenon

The Fourier series for the function

f(x) =

{
−1

2 , if − π < x < 0

+1
2 , if 0 < x < π

is

f(x) =

∞∑
n=1
n odd

2

πn
sin(nx).

The Fourier series partial sums

SN (x) =
N∑
n=1
n odd

2

πn
sin(nx), (1)

converge pointwise to f provided we set f(0) = 0. We will show that the convergence here is
not uniform, and furthermore, the partial sums SN consistently overshoot the unit 1 jump by
about 9% in the limit as N → ∞. See Figure 1 for an illustration of the overshoot, which is
called Gibb’s Phenomenon.

We will argue that

lim
N→∞

maxSN =
1

π

∫ π

0

sin(θ)

θ
dθ ≈ 0.59. (2)

by viewing the sum in (1) as a Riemann sum for an integral similar to the one above. For a
completely different proof, refer to Strauss 5.5.

To establish (2), we first consider the question of where the maximum of SN is attained.
If N is even, then SN−1 = SN , and we can replace N by the odd number N − 1. Therefore we
may assume N is odd. We note that the highest frequency sine wave in the partial sum SN
is sin(Nx), and this function has a maximum at Nx = π/2. Thus, it is reasonable to suspect
that the maximum of SN is attained at some point x∗N of the form x∗N = x/N . Let’s plug this
into SN and see what we get:

SN

( x
N

)
=

N∑
n=1
n odd

2

πn
sin
( n
N
x
)
.
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(b) N = 50
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(c) N = 100

Figure 1: Depiction of Gibb’s Phenomenon for a unit step function.

Let us rewrite this in a slightly different form:

SN

( x
N

)
=

1

π

N∑
n=1
n odd

( n
N

)−1
sin
( n
N
x
) 2

N
.

Let us set ∆θ = 2/N and θn = n/N . Then we have

SN

( x
N

)
=

1

π

N∑
n=1
n odd

sin(θnx)

θn
∆θ.

Since the sum is over all odd n, we have that ∆θ = 2/N = θn+2 − θn is the difference of
two subsequent values of θn. Furthermore, θ1 = 1/N and θN = 1. Therefore, this is exactly a
Riemann sum for the integral

1

π

∫ 1

0

sin(θx)

θ
dθ.

Therefore

lim
N→∞

SN

( x
N

)
=

1

π

∫ 1

0

sin(θx)

θ
dθ =

1

π

∫ x

0

sin θ

θ
dθ =:

1

π
Si(x).

The function Si(x) is called the Sine Integral. Like the error function, there is no closed
form expression for Si(x). The integrand of the Sine Integral is often called the cardinal sine
function or the sinc function and denoted

sinc θ :=
sin θ

θ
.

See Figure 2 for a plot of the sinc function.
We claim the maximum value of Si(x) occurs at x = π. To see this, we first note that

sinc θ has the same sign as sin θ for θ > 0. So for nπ < θ < (n + 1)π, sinc θ > 0 for n even,
and sinc θ < 0 for n odd. This tells us that Si(x) has local maximums at x = nπ for odd n.
Since θ 7→ 1/θ is decreasing, and | sin θ| is π-periodic, we have∫ (n+1)π

nπ
|sinc θ| dθ ≥

∫ (n+2)π

(n+1)π
|sinc θ| dθ
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Figure 2: Plot of the function sinc θ = sin θ
θ .

Therefore, for odd n ∈ N we have

Si((n+ 2)π) =

∫ (n+2)nπ

0
sinc θ dθ

= Si(nπ) +

∫ (n+1)π

nπ
sinc θ dθ +

∫ (n+2)π

(n+1)π
sinc θ dθ

= Si(nπ)−
∫ (n+1)π

nπ
|sinc θ| dθ +

∫ (n+2)π

(n+1)π
|sinc θ| dθ

≤ Si(nπ).

By induction, Si(nπ) ≤ Si(π) for all odd n ∈ N. This establishes the claim that the maximum
of Si occurs at x = π. As an exercise, you may also wish to verify that x = nπ with n odd is
a local maximum of Si by computing Si′(x) = 0 and checking the sign of Si′′(x).

Therefore, we have established that

lim
N→∞

SN

( π
N

)
=

1

π
Si(π) =

1

π

∫ π

0

sin θ

θ
dθ ≈ 0.58949,

where the value ≈ 0.58949 can be obtained by numerical integration. Since f(0+) = 0.5, the
overshoot is approximately 9% of the entire unit jump from f(0−) = −0.5 to f(0+) = 0.5.

To be entirely rigorous, we have actually only shown that

lim inf
N→∞

maxSN ≥
1

π
Si(π) ≈ 0.58949,

which shows that the overshoot is at least 9% in the limit as N →∞. To show that the limit
exists, so that

lim
N→∞

maxSN =
1

π
Si(π),
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takes a bit more work (but not too much). We can differentiate SN to find that

S′N (x) =

N∑
n=1
n odd

2

π
cos(nx) =

2

π

(N−1)/2∑
n=0

cos((2n+ 1)x),

assumingN is odd. Using Euler’s formula eiθ = cos θ+i sin θ we can derive a simpler expression
for this sum in a similar way to our derivation of Dirichlet’s kernel KN in class. We have

S′N (x) =
sin(x(N + 1))

π sinx
.

As an exercise, you should fill in the details above. From this we can show that SN attains its
maximum at x = π/(N + 1), and using the argument above yields

lim
N→∞

SN

(
π

N + 1

)
=

1

π
Si(π).
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