
Math 5587 – Lecture 21

Jeff Calder

November 16, 2016

1 The eikonal equation

1.1 Automatic maze navigation

Consider the problem of automatic maze navigation. Our maze in a two dimensional maze
constructed on the plane R2. We have a starting point x0 ∈ R2, and a target set Γ ⊂ R2,
which should be thought of as the ‘end’ of the maze. Our maze is defined by a speed function
c(x) for x ∈ R2, which is the speed the robot can move at location x. Objects the robot
cannot move through, i.e., walls, are modeled by setting c(x) = 0 in these regions. This also
allows us to model the possibility that the robot may be able to move faster through some
regions of the maze than others.

A path is a continuous function

t 7→ x(t) = (x(t), y(t)),

where t ∈ [0, 1]. The parameter t is artificial time, and is merely used for parameterization. It
does not represent the time it takes for a robot to navigate the path x(t). To compute this,
notice that for small ∆t > 0, the distance moved along the path segment from t to t+ δt is

dist ≈ ‖x′(t)‖∆t,

where
x′(t) = (x′(t), y′(t)) and ‖x′(t)‖ =

√
x′(t)2 + y′(t)2.

Since the robot moves at speed c(x(t)), the time taken to traverse the segment of the path
from t to t+ ∆t is

dist
speed

≈ c(x(t))−1‖x′(t)‖∆t.

Hence, the time taken to navigate the entire path x(t) by the robot is

T (x(·)) :=

∫ 1

0
c(x(t))−1‖x′(t)‖ dt.

If the path passes through a region where c = 0, the time T is automatically ∞. In practice,
we might set c to be a very small, but nonzero number in such regions. See Figure 1 for an
illustration of what the maze might look like.

The goal of maze navigation is to find the shortest path from some starting point x0 ∈ R2

to the target set Γ. Hence, the maze navigation problem can be posed as

min
{
T (x(·)) | x(0) = x0 and x(1) ∈ Γ

}
. (1)

1

Start
End

Figure 1: Example of a maze. We set the speed c(x) = 0 in the gray region, and c(x) = 1 in
the white region constituting the maze.

1.2 The value function

Finding the optimal path, and navigating the maze, is a difficult problem to address directly.
Instead, we will pass through an auxiliary problem that is connected to partial differential
equations. Let us consider for each point x0 ∈ R2 the value function u(x0) defined by

u(x0) := min
{
T (x(·)) | x(0) = x0 and x(1) ∈ Γ

}
. (2)

Thus, u(x0) is the length of the shortest path from x0 to the target set Γ, that is, the length
of the shortest path that navigates the maze starting at x0.

Now, you might object to this reformulation. If it was so hard to find the optimal path in
the first place, then how do we have any hope of computing u(x0)? The point is that we now
consider u as a function of the starting position x0, and we shall see shortly that u satisfies a
partial differential equation. This allows us to compute u without any knowledge of optimal
paths. Actually, the optimal paths are encoded into u, and a simple dynamic programming
approach can extract the optimal path through the maze from the value function u.

Let us now derive a partial differential equation that u satisfies. First, we know that

u(x) = 0 for all x ∈ Γ, (3)

since if we start in the target set, we need not move anywhere! This will be the boundary
condition for our PDE. Let us also assume the speed function c is continuous, and the target
set Γ is closed.

Consider a point x0 ∈ R2 that is not in the target set, and let r > 0 such that the ball
B(x0, r) of radius r > 0 centered at x0 has no overlap with the target set. We define

A(x0,x1) := min
{
T (x(·)) | x(0) = x0 and x(1) = x1.

}
. (4)

Then we have the following dynamic programming principle, whose proof is almost immediate.

u(x0) = min
‖x1−x0‖=r

{
A(x0,x1) + u(x1)

}
. (5)

2

The dynamic programming principle says that instead of finding an optimal path from x0

to the target Γ, we can split the path up into one piece that goes from x0 to a point x1 on
the boundary of the ball B(x0, r), and a second piece that goes from x1 to the target. If we
minimize over the location of the point x1, and the two paths described above, we get the
same optimal path. A rigorous proof can be constructed along these lines.

Since c is continuous, we can choose r > 0 smaller, if necessary, so that the approximation

c(x1) ≈ c(x0) for all x1 ∈ B(x0, r)

is as good as we like. Now, when r is small, the optimal path in the definition of A(x0,x1)
should be a roughly a straight line of length r from x0 to x1. The time taken to traverse this
straight line is then approximately c(x0)

−1r. Therefore, when r > 0 is small and ‖x0−x1‖ = r

A(x0,x1) ≈ c(x0)
−1r.

Making this approximation in the dynamic programming principle yields

u(x0) ≈ min
‖x1−x0‖=r

{
c(x0)

−1r + u(x1)
}
.

Let us rearrange this a bit

min
‖x1−x0‖=r

{
c(x0)

−1r + u(x1)− u(x0)
}
≈ 0.

Now, recall we have the Taylor series approximation

u(x1)− u(x0) = ∇u(x0) · (x1 − x0) +O(r2).

Inserting the Taylor series yields

min
‖x1−x0‖=r

{
c(x0)

−1r +∇u(x0) · (x1 − x0)
}
≈ 0.

We now divide both sides by r and make the change of variables

v =
x1 − x0

r
.

Then the dynamic programming principle becomes

min
‖v‖=1

{
c(x0)

−1 +∇u(x0) · v
}
≈ 0.

The optimal choice of v is v = − ∇u(x0)
‖∇u(x0)‖ , which yields

c(x0)
−1 − ‖∇u(x0)‖ ≈ 0.

Sending r → 0, these approximations become exact, and we find that

c(x)‖∇u(x)‖ = 1, if x ∈ R2 \ Γ

u(x) = 0, if x ∈ Γ.

}
(6)

3

This nonlinear partial differential equation is called the eikonal equation. The eikonal equation
also shows up in wave propagation, geometric optics, computer vision, computational fluid
dynamics, and many other areas. The point of this reformulation is that instead of trying to
find an optimal path, we can solve the eikonal equation (6), which turns out to be much easier
in practice.
Remark 1. The eikonal equation (6) does not in general have a continuously differentiable
solution. For example, let c ≡ 1, and let Γ = {x ∈ R2 | ‖x‖ = 1} be the unit sphere. Suppose
a continuously differentiable solution of (6) exists inside the ball B = {x ∈ R2 | ‖x‖ < 1}.
If u(x) > 0 for some x ∈ B, then u attains its maximum at some interior point x0 ∈ B,
and ∇u(x0) = 0. This is at odds with the eikonal equation (6). Hence u(x) ≤ 0 for all
x ∈ B. Likewise, we can show that u cannot have a negative minimum in B, so u(x) ≥ 0
in B, and we get u ≡ 0 in B. However, such a function u clearly cannot solve the eikonal
equation! Hence, we need to interpret the eikonal equation (6) in some weaker sense if we
wish to obtain existence of a solution. The appropriate weak notion of solution is provided by
the theory of viscosity solutions, which allows merely continuous functions to solve nonlinear
partial differential equations [1, 2]. We will ignore these issues in the rest of the lecture.

1.3 Navigating the maze

Once we solve the eikonal equation (6) for the value function u, the optimal path to navigate
the maze starting at x0 is the solution x(t) of the ordinary differential equation

x′(t) = −∇u(x(t)) with x(0) = x0.

Indeed, we first note that the value of u is decreasing along x(t), since

d

dt
u(x(t)) = ∇u(x(t)) · x′(t) = −‖∇u(x(t))‖2 = −c(x(t))−2 < 0.

Thus, provided there exists a path navigating the maze, so that c 6= 0 along the path, the
path x(t) will eventually hit the target set Γ where u = 0. So there exists T > 0 such that
u(x(T)) = 0. We now compute

u(x0) = −(u(x(T))− u(x(0))) = −
∫ T

0

d

ds
u(x(s)) ds

= −
∫ T

0
∇u(x(s)) · x′(s) ds

=

∫ T

0
‖∇u(x(s))‖2 ds

=

∫ T

0
c(x(s))−1‖∇u(x(s))‖ ds = T (x(·)),

where we used the fact that u satisfies the eikonal equation in the last line. Notice also that x
is parameterized on the interval [0, T], instead of [0, 1] as we did earlier. However, the integral
is independent of parameterization, and hence equal to T (x(·)) for any parameterization.

Since we have found a path x(t) such that u(x0) = T (x(·)), this path must be optimal.
This approach is called dynamic programming. In the next section, we describe how to compute
solutions of the eikonal equation numerically.

4

1.4 An upwind scheme for the eikonal equation

1.4.1 One dimensional example

A simple one dimensional version of the eikonal equation is

|u′(x)| = 1 for 0 < x < 1 and u(−1) = 0 = u(1). (7)

This corresponds to speed c ≡ 1. The solution should be

u(x) = 1− |x|.

When x > 0, the shortest path to the boundary Γ = {−1,+1} goes to the right point +1, and
the distance is 1 − x. When x < 0, the shortest path to the boundary goes to the left point
−1 and the distance is 1 + x = 1− |x|. Notice, as pointed out in Remark 1 that this solution
u is not differentiable at x = 0. Hence it satisfies the PDE (an ODE here) at every point
except x = 0. If we allow non-differentiable functions to be solutions of the PDE provided
they satisfy the PDE at all points of differentiability, we loose uniqueness of solutions. In this
case, there are infinitely many solutions constructed with a geometric folding argument that
I gave in class. The solution u(x) = 1 − |x| is the unique viscosity solution, as described in
Remark 1.

The same issues show up in finite difference schemes for the eikonal equation (7). Let us
discretize the interval −1 ≤ x ≤ 1 into a grid with resolution ∆x, and let uj be the numerical
approximation of u(j∆x). Let us suppose that J = 1/∆x is an integer. Consider a scheme
based on forward differences

|uj+1 − uj | = ∆x for j = −J, . . . , 0, . . . , J − 1

with u−J = 0 and uJ = 0. A moments thought shows that there are
(
2J
J

)
solutions of the

scheme, so no unique solution. The picture (which I drew in class), is similar to the folding
example illustrating non-uniqueness in the eikonal equation. As an exercise, the reader should
verify that the same problems appear for backward and centered differences.

To fix this, we need to think about the flow of information in the problem. When x > 0,
the shortest path goes to the right point +1 so information is flowing in from the right and
we should use forward differences. Likewise, when x < 0 the shortest path goes to the left
point −1, and we should use backward differences to capture this. This all sounds nice, but it
relies on already knowing before hand what the solution looks like! Is there some other way
to determine when to use forward and backward differences?

It turns out there is. Notice that when x > 0, the neighboring grid point with smallest
value of u(x) is to the right, whereas for x < 0 the smallest is to the left. Note also that
the optimal path must pass through the neighboring grid point with smallest value. Hence
information flows from small values of u to large values of u. So the idea is that we should pick
the neighboring grid point that has the smallest value of u(x), and use the one-sided difference
corresponding to that direction. Another important property of the solution u is that it has
no local minimums, so every grid point has a neighbor with smaller value. With this in mind,
consider the scheme

uj −min{uj−1, uj+1} = ∆x for j = −J + 1, . . . , J − 1.

5

We don’t include absolute values since we require that uj is larger than at least one of its
neighbors, so it is larger than the minimum of both neighbors. We can also write the scheme
as

uj = min{uj−1, uj+1}+ ∆x,

which is reminiscent of the dynamic programming principle (5). This scheme has a unique
solution which is exactly equal to the exact solution uj = 1− |j∆x| = u(j∆x).

1.4.2 The two dimensional eikonal equation: Fast marching

Motivated by the one dimensional example, let us consider the full two dimensional eikonal
equation (6). To put it in a nicer form, let us square both sides:

c(x)2(ux(x)2 + uy(x)2) = 1.

We can rearrange this as
uxux + uyuy = c−2.

Notice the left hand side is the directional derivative of u in the direction ∇u. Hence, the
characteristics flow in the direction ∇u of steepest ascent, and the value function u grows
most rapidly in the direction the characteristics flow. Hence, an upwind scheme looks in the
opposite direction −∇u, and will therefore use grid points in the x and y directions where u
has the smallest values.

Let us suppose we are on the domain [−1, 1]2, and choose a grid resolution ∆x = ∆y = h so
that J = 1/h is an integer. Let uij be the numerical approximation of u(ih, jh) on the grid of
spacing h, and let cij = c(ih, jh). Then our upwind scheme for the eikonal equation should use
forward differences in i when ui+1,j ≤ ui−1,j , and backward differences when ui+1,j ≥ ui−1,j
(when they are equal, both choices are equivalent). A similar statement is true for j. Hence
our scheme is

max{uij − aij , 0}2 + max{uij − bij , 0}2 = c−2ij h
2 (8)

where
aij = min{ui−1,j , ui+1,j} and bij = min{ui,j−1, ui,j+1}.

We take the maximum with 0 in the scheme to ensure that uij is larger than at least one of its
neighbors, and the scheme only depends on neighbors with smaller values of u. The boundary
conditions are uij = 0 for (ih, jh) ∈ Γ.

The scheme (8) can be solved efficiently (in O(n log n) time, where n = h−2 is the number
of grid points) using the fast marching method [3]. The idea is as follows. We have three sets
of grid points: (1) active points, (2) visited points, and (3) unvisited points. Initially, the grid
points in Γ where uij = 0 are placed in the visited points set, and are never visited again.
The neighbors of these points are placed in the active points set. All other points are labeled
unvisited. The initialization is completed by computing uij via the scheme (8) at each active
point. This gives an initial guess of uij , which we will denote as Tij . The algorithm then
repeats the following steps:

• Find the grid point (i∗, j∗) in the active set for which Ti∗j∗ is smallest.

• Finalize this grid point by setting ui∗j∗ = Ti∗j∗ and moving (i∗, j∗) to the visited set.

6

• Add all neighbors of (i∗, j∗) to the active set, if they do not belong to the visited set.

• Update the values of Tij for all active neighbors of (i∗, j∗).

The fast marching method visits the grid points in the correct order, from smallest to
largest value of the solution u. Since the scheme (8) depends only on neighbors with values of
u smaller than uij , the finalized values of uij in each step do not need to be updated in any
future steps of the algorithm.

Each step of the algorithm finalizes the value uij at a single grid point, so the algorithm
takes at most n steps to complete, where n is the number of grid points. We have to keep a
sorted list of the values of Tij at all active points, and we must be able to efficiently update
this list upon the insertion of a new active point, or the removal of the smallest active point in
Step 1. This can be done with a heap data structure, which stores the values Tij in a binary
tree with the smallest value on the top for quick removal. If the tree stores m values, then
there are O(log(m)) levels in the tree, and insertion and deletion operations have complexity
O(log(m)). Since m ≤ n, we get the overall complexity of O(n log n) for the fast marching
algorithm. We should mention that fast marching was inspired by Dijkstra’s algorithm for
finding the shortest path through a graph.

References

[1] M. G. Crandall, L. C. Evans, and P.-L. Lions. Some properties of viscosity solu-
tions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society,
282(2):487–502, 1984.

[2] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations. Trans-
actions of the American Mathematical Society, 277(1):1–42, 1983.

[3] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Pro-
ceedings of the National Academy of Sciences, 93(4):1591–1595, 1996.

7

	The eikonal equation
	Automatic maze navigation
	The value function
	Navigating the maze
	An upwind scheme for the eikonal equation
	One dimensional example
	The two dimensional eikonal equation: Fast marching

