
Math 5587 – Lecture 5

Jeff Calder

September 20, 2016

1 Energy methods for the heat equation

Consider a thin insulted rod of length l > 0 and thermal conductivity k > 0. Assume the ends
of the rod are insulated. Then the temperature (or heat density) along the rod u(x, t) satisfies
the heat equation with Neumann boundary conditions{

ut − kuxx = 0, for 0 < x < l

ux(0, t) = ux(l, t) = 0, for t ≥ 0.
(1)

As we did for the wave equation, we can use energy methods to prove uniqueness and stability
of the heat equation. The obvious quantity to consider is the total heat

H(t) =

∫ l

0
u(x, t) dx.

We have

dH

dt
=

∫ l

0
ut(x, t) dx = k

∫ l

0
uxx(x, t) dx = k(ux(l, t)− ux(0, t)) = 0.

due to the Neumann boundary conditions. Therefore, as expected the total heat is conserved.
Notice this would not be the case with Dirichlet conditions u(0, t) = u(l, t) = 0, since in this
case heat can escape or enter the rod through the ends.

Although it’s a nice observation that heat is conserved, it unfortunately does not help us
prove stability or uniqueness. We need to consider a different type of energy for this. To this
end consider

I(t) =
1

2

∫ l

0
u(x, t)2 dx.

The quantity I(t) does not represent a physical quantity in the context of heat diffusion, but
is useful nonetheless for studying the heat equation. Notice that

dI

dt
=

∫ l

0
uut dx = k

∫ l

0
uuxx dx = kuux

∣∣∣l
0
− k

∫ l

0
u2
x dx ≤ 0,

since ux(0, t) = ux(l, t) = 0 and u2
x ≥ 0. Therefore, I may not be conserved, but we do know

that I is a decreasing function of t. The reader should notice that the same result holds with
Dirichlet conditions u(0, t) = u(l, t) = 0.
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Since I is decreasing, we have I(t) ≤ I(0) for t ≥ 0 and therefore∫ l

0
u(x, t)2 dx ≤

∫ l

0
u(x, 0)2 dx for t ≥ 0. (2)

The identity above proves stability and uniqueness for the heat equation. Indeed, suppose we
have two solution u1(x, t) and u2(x, t) of the heat equation (1). Then w(x, t) := u1(x, t) −
u2(x, t) is a solution of the same heat equation. Suppose we have the initial conditions

u1(x, 0) = f1(x) and u2(x, 0) = f2(x).

Applying the energy estimate (2) to w we have∫ l

0
(u1(x, t)− u2(x, t))2 dx ≤

∫ l

0
(f1(x)− f2(x))2 dx for t ≥ 0. (3)

Hence, if f1 = f2 then u1 = u2, which proves uniqueness. Furthermore, if f1 and f2 are close in
the square integrable sense as above, then u1 and u2 are similarly close in the square integrable
sense for all time. This means that small perturbations of the initial conditions yield similarly
small perturbations in the solutions, and so the heat equation is stable.

Here, we are measuring the closeness of two functions with the squared L2 norm

‖u1 − u2‖2L2(0,l) :=

∫ l

0
(u1 − u2)2 dx.

Next we will show how to use the maximum principle to obtain stronger stability results for
the heat equation.

2 The maximum principle

Let u(x, t) be a solution of the heat equation

ut − kuxx = 0.

Suppose that u has a maximum at a point (x0, t0). Then uxx(x0, t0) ≤ 0, since the function
g(x) = u(x, t0) has a maximum at x0 and so g′′(x0) = uxx(x0, t0) ≤ 0. Therefore

ut(x0, t0) = kuxx(x0, t0) ≤ 0.

This shows that the heat equation decreases maxima of u, and a corresponding argument shows
that the heat equation increases minima. This is of course just another way of observing that
heat flows from hot regions to cold regions, and not the other way around. Thus hot regions
(maxima of u) get progressively colder (u decreases), while cold regions (minima of u) get
warmer (u increases).

Although this is a simple observation, it is an extremely powerful tool for analyzing PDE.
To formulate the maximum principle properly we need to introduce some notation. We define
the rectangle

UT = (a, b)× (0, T ] = {(x, t) : a < x < b and 0 < t ≤ T}.
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Figure 1: An illustration of UT and its parabolic boundary (i.e., the sides and base) Γ. The
set UT is the shaded region, while Γ is the bold portion of the boundary of UT . The closure
UT consists of UT and all four of its sides.

We denote by UT the closure of the rectangle, given by

UT = [a, b]× [0, T ] = {(x, t) : a ≤ x ≤ b and 0 ≤ t ≤ T}.

Let Γ ⊂ UT denote the sides and base of the rectangle, i.e.,

Γ = {(x, t) ∈ UT : x = a, x = b, or t = 0}.

The set Γ is called the parabolic boundary of UT . See Figure 1 for a depicition of UT and Γ.

Theorem 1 (Weak maximum principle). Suppose that u(x, t) satisfies

ut − kuxx ≤ 0 in UT . (4)

Then
max
UT

u = max
Γ

u. (5)

A function u satisfying (4) is called a subsolution of the heat equation. Similarly, a function
v(x, t) satisfying

vt − kvxx ≥ 0

is called a supersolution. The weak maximum principle states that the maximum value of any
subsolution of the heat equation on UT is attained on the parabolic boundary Γ, that is, on
the sides or base of the rectangle. The strong maximum principle (which we shall not prove
here), states further that whenever the maximum is also attained inside UT , the function u
must be constant.

Before giving the proof of Theorem 1, we have a short lemma.

Lemma 1 (Necessary conditions for interior maxima). If u attains its maximum over UT at
a point (x0, t0) ∈ UT then

ut(x0, t0) ≥ 0 and uxx(x0, t0) ≤ 0. (6)

In particular
ut(x0, t0)− kuxx(x0, t0) ≥ 0. (7)

3



Proof. Let h > 0. Since (x0, t0) ∈ UT we have t0 > 0. Therefore (x0, t0 − h) ∈ UT for small
h > 0. It follows that u(x0, t0) ≥ u(x0, t0 − h) and thus

ut(x0, t0) = lim
h→0+

u(x0, t0)− u(x0, t0 − h)

h
≥ 0.

This establishes the first part of (6).
For the second part, let g(x) = u(x, t0). Since (x0, t0) ∈ UT , a < x0 < b. Therefore g has

a maximum at x0 and
uxx(x0, t0) = g′′(x0) ≤ 0.

We now have the proof of Theorem 1

Proof of Theorem 1. Suppose for a moment that

ut − kuxx < 0 in UT . (8)

Since this is incompatible with (7), u cannot have a maximum in UT . Since u is continuous
on the closed and bounded set UT , u must attain its maximum at a point (x0, t0) ∈ Γ, and so

max
UT

u = max
Γ

u.

Now, u only satisfies (4), so the above argument does not directly apply. The trick here is
to modify u slightly so that (8) is satisfied. That is, we need to turn a subsolution of the heat
equation into a strict subsolution. With this in mind, let ε > 0 and define

v(x, t) := u(x, t)− εt.

Then
vt = ut − ε and vxx = uxx.

Therefore
vt − kvxx = ut − kuxx − ε ≤ −ε < 0.

Hence v is a strict subsolution, that is, v satisfies (8). By the argument above

max
UT

v = max
Γ

v ≤ max
Γ

u.

The last step follows from the fact that v ≤ u. Since 0 ≤ t ≤ T , we have

u = v + εt ≤ v + εT.

Therefore
max
UT

u ≤ max
UT

v + εT ≤ max
Γ

u + εT.

Since ε > 0 was an arbitrary real number, we can send ε→ 0+ to find that

max
UT

u ≤ max
Γ

u.

We of course have maxUT
u ≥ maxΓ u, since Γ ⊂ UT . This completes the proof.
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Notice the main idea in the proof is to show that the subsolution property (4) is incom-
patible with the necessary conditions for an interior maxima (7). Any argument making use
of the necessary conditions for a maximum is called a maximum principle argument. The
maximum principle is a very widely applicable tool in the theory PDE, and applies to very
general classes of nonlinear PDE as well. However, since necessary conditions for a maxima
only give information about 1st and 2nd derivatives, maximum principle techniques are not
useful for higher order equations.

We also have a corresponding minimum principle.

Corollary 1 (Minimum principle). Suppose that u(x, t) satisfies

ut − kuxx ≥ 0 in UT . (9)

Then
min
UT

u = min
Γ

u. (10)

Proof. We simply apply Theorem 1 to v = −u.

2.1 Stability and uniqueness via the maximum principle

The maximum principle can be used to prove stability and uniqueness. Consider the heat
equation with homogeneous Dirichlet boundary conditions:{

ut − kuxx = 0 in UT

u(0, t) = u(l, t) = 0 for t ≥ 0.
(11)

Here, we set a = 0 and b = l in the definitions of UT and Γ. Let u1 and u2 be two solutions
of (11) with initial conditions

u1(x, 0) = f1(x) and u2(x, 0) = f2(x).

Let
C = max

0≤x≤l
|f1(x)− f2(x)|.

Then w(x, t) := u1(x, t) − u2(x, t) is a solution of the heat equation with Dirichlet boundary
conditions and initial condition

w(x, 0) = f1(x)− f2(x).

Notice that w(x, 0) ≤ C. By the maximum principle (Theorem 1), w attains its maximum
over the rectangle on the parabolic boundary Γ. On the sides of Γ, w(0, t) = w(l, t) = 0. On
the base, w(x, 0) ≤ C. Therefore

max
UT

(u1 − u2) = max
UT

w ≤ C = max
0≤x≤l

|f1(x)− f2(x)|.

We can reverse the roles of u1 and u2 to find that

max
UT

(u2 − u1) ≤ max
0≤x≤l

|f1(x)− f2(x)|.
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It follows that
max
UT

|u1 − u2| ≤ max
0≤x≤l

|f1(x)− f2(x)|. (12)

As before, this type of estimate gives us uniqueness and stability. Indeed, if f1 = f2, then the
right hand side is zero, and hence u1 = u2 on UT . If f1 and f2 are close in a uniform sense (that
is, the maximum absolute value of their difference is small), then the same is true for u1 and
u2. Hence, small perturbations in the initial data yield correspondingly small perturbations
in the solutions.

Here, we are measuring the distance between functions in the so-called L∞ norm

‖f1 − f2‖L∞(0,l) := max
0≤x≤l

|f1(x)− f2(x)|.

The L∞ norm is much stronger than the L2 norm. By this, we mean that functions that are
close in the L∞ sense are also close in the L2 sense. This is expressed by the inequality

‖f1 − f2‖2L2(0,l) =

∫ l

0
(f1(x)− f2(x))2 dx ≤ l‖f1 − f2‖2L∞(0,l).

The opposite is not true. That is, there exist functions that are close in the L2 sense, but are
very far apart in the L∞ norm. For example, consider f1(x) = 0 and

f2(x) =

{
n, if 0 ≤ x ≤ 1

n3

0, otherwise.

Then

‖f1 − f2‖2L2(0,l) =

∫ 1
n3

0
n2 dx =

1

n
,

and
‖f1 − f2‖L∞(0,l) = n.

When n is large, f1 and f2 are very close in the L2 norm, yet very far apart in the L∞

norm. This is not a paradox–it is simply due to the fact that the norms are capturing different
discrepancies between the two functions. The L2 norm measures the average squared distance,
while the L∞ norm measures the maximum absolute distance.

There are other various Lp norms that are often used in PDE and analysis for measuring
the distance between functions. We have

‖f1 − f2‖pLp(0,l) :=

∫ l

0
|f1(x)− f2(x)|p dx,

for p ≥ 1. The L∞ norm is the limit as p → ∞ of the Lp norms, hence the initially peculiar
name.
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