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Outline

0 Spectral clustering

e Semi-supervised learning
@ Laplacian regularization
@ Poisson learning

e Experiments in Python

o Pointwise consistency for graph Laplacians
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Outline

0 Spectral clustering
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Graph-based learning
Let (X, W) be a graph.

@ X C R? are the vertices.
@ W = (wWuy)a,yex are nonnegative edge weights.
@ wyy is large when z and y are similar, and small or w;, = 0 otherwise.

/A
1\\‘» ,/{Ak r

‘\

_— §' ‘\ ‘ \'Cr“‘\

4};\ \\/ % ‘w, 3 ,‘,.\ // 0
ﬂ\ 4‘\ moA“ g\ o !/\\\:“""1\‘,
{ //

‘ /4'74/‘, Wam " ‘l ’ \

| 1" X \‘/ ‘
| "q' ;. ® /’.'Il\
,‘\w /. /. "
A

(/'r* = \‘/

Calder (UMN) Graph-Based Learning

BYU Lecture 4/28



Some common graph-based learning tasks
@ Clustering (grouping similar datapoints)

@ Semi-supervised learning (propagating labels)
© Dimension reduction (spectral embeddings)
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MNIST (70,000 28 x 28 pixel images of digits 0-9)
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MNIST (70,000 28 x 28 pixel images of digits 0-9)

4
R784,

@ Each image is a datapoint
o € R28%28
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MNIST (70,000 28 x 28 pixel images of digits 0-9)

@ Each image is a datapoint

28 %2 4
r € R2®8X28 — R4,
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MNIST (70,000 28 x 28 pixel images of digits 0-9)

@ Each image is a datapoint

28 %2 4
r € R2®8X28 — R4,

%S Q5O

rTp—ad=2 oWl

@ Geometric weights:

r—Y
’wmy:'r](| c |)

@ k-nearest neighbor graph:
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Clustering MNIST

https://divamgupta.com
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https://divamgupta.com

Graph cuts

Question: How do we cluster graph data?
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Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

(Min-Cut) frpclgCCut(A) = Z Wy -
z,yeX
TEA,YyZA
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Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

(Min-Cut) frpclgCCut(A) = Z Wy -
z,yeX
TEA,YyZA

Tends to produce unbalanced classes (e.g., A = {z}).
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Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

: Cut(A4)
(Balanced-Cut) — min, G WVol(x\ 4)°

Vol(A) =) ) " wyy.

reEAyeX

where
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Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

: Cut(A4)
(Balanced-Cut) — min, G WVol(x\ 4)°

Vol(A) =) ) " wyy.

reEAyeX

where

Gives good clusterings but very computationally hard (NP-hard).
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Spectral clustering
For A C X set

0, otherwise.

u(z) = {1, ifze A
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Spectral clustering
For A C X set

0, otherwise.

u(z) = {1, ifze A

Then we have

1
T,yeEX T, yeEX
T€A,ygA

and

Vol(A) = Z Wy u(T).

z,yeX
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Spectral clustering
For A C X set

0, otherwise.

u(z) = {1, ifze A

Then we have

1
T,yeEX T, yeEX
T€A,ygA

and

Vol(A) = Z Wy u(T).

z,yeX

This allow us to write the balanced cut problem as

> wy(u(z) - u(y))?

, T, yeX
min ’
u:X—{0,1} Z u(a:)'wxy(l — ’u,(,y/))’wa;/y/
z,y,z’,y' €X
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Spectral clustering

Consider solving the similar, relaxed, problem

> wy(u(e) — u(y))?

. T, yexX
min

u: X —R 2
Zmexj(m)#o Z U(x)

reX
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Spectral clustering

Consider solving the similar, relaxed, problem

> wy(u(e) — u(y))?

. T, yeX
min

u: X —R 2

reX

The solution is the smallest non-trivial eigenvector (Fiedler vector) of the graph
Laplacian

Lu(z) = Y way(u(e) — u(y)).

yex
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Spectral clustering

Consider solving the similar, relaxed, problem

> wy(u(e) — u(y))?

. T,ycX
min

u: X —R 2

reX

The solution is the smallest non-trivial eigenvector (Fiedler vector) of the graph
Laplacian

Lu(z) = Y way(u(e) — u(y)).

yex

Binary spectral clustering:
© Compute Fiedler vector u : X — R.
Q Set A={z € X : u(z) > 0}.
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Spectral clustering

Spectral clustering: To cluster into k£ groups:

@ Compute first k eigenvectors of the graph Laplacian L:

Ur, ..., u; : X = R.
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Spectral clustering

Spectral clustering: To cluster into k£ groups:

@ Compute first k eigenvectors of the graph Laplacian L:

Ur, ..., u; : X = R.

@ Define the spectral embedding ¥ : X — RF by

V(z) = (ui(x), u2(z), ..., ux(z)).
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Spectral clustering

Spectral clustering: To cluster into k£ groups:

@ Compute first k eigenvectors of the graph Laplacian L:

Ur, ..., u; : X = R.

@ Define the spectral embedding ¥ : X — R b
y

V(z) = (ui(x), u2(z), ..., ux(z)).

© Cluster the point cloud Y = W(X) with your favorite clustering algorithm (often
k-means).
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Spectral methods in data science

Spectral methods are widely used for dimension reduction and clustering in data science
and machine learning.

@ Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]
@ Laplacian eigenmaps [Belkin and Niyogi (2003)]

@ Diffusion maps [Coifman and Lafon (2006)]
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Outline

e Semi-supervised learning
@ Laplacian regularization
@ Poisson learning
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Graph-based semi-supervised learning

Given:
@ Graph (X, W)
@ Labeled nodes ' C X and labels g : I — R¥,
@ The i'" class has label vector g(z) = e; = (0,,...,0,1,0,...,0).
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Graph-based semi-supervised learning

Given:
@ Graph (X, W)
@ Labeled nodes ' C X and labels g : I — R¥,
@ The i'" class has label vector g(z) = e; = (0,,...,0,1,0,...,0).

Task: Extend the labels to the rest of the graph X'\ T.
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Graph-based semi-supervised learning

Given:
@ Graph (X, W)
@ Labeled nodes ' C X and labels g : I — R¥,
@ The i'" class has label vector g(z) = e; = (0,,...,0,1,0,...,0).

Task: Extend the labels to the rest of the graph X'\ T.

Semi-supervised: Goal is to use both the labeled and unlabeled data to get good
performance with far fewer labels than required by fully-supervised learning.
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Graph-based semi-supervised learning

Given:
@ Graph (X, W)
@ Labeled nodes ' C X and labels g : I — R¥,
@ The i'" class has label vector g(z) = e; = (0,,...,0,1,0,...,0).

Task: Extend the labels to the rest of the graph X'\ T.

Semi-supervised: Goal is to use both the labeled and unlabeled data to get good
performance with far fewer labels than required by fully-supervised learning.

Applications of semi-supervised learning

@ Speech recognition
@ Classification (images, video, website, etc.)

© Inferring protein structure from sequencing

BYU Lecture 15 /28
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Why semi-supervised?
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Why semi-supervised?
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Why semi-supervised?
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Why semi-supervised?
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Why semi-supervised?
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Why semi-supervised?
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Laplacian regularization

Laplacian regularized semi-supervised learning solves the Laplace equation

{Lu:O in XY\ T,

u=g9 onl,

where u : X — R*, and £ is the graph Laplacian

Lu(z) =Y wy(u(z) — u(y)).

yeXx
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Laplacian regularization

Laplacian regularized semi-supervised learning solves the Laplace equation

{Eu—O in X\ T,

u=g9 onl,

where u : X — R*, and £ is the graph Laplacian

Lu() =Y way(u(z) - u(y)).

yeXx

The label decision for vertex x € X" is determined by the largest component of u(x)

¢(z) = argmax {u;(z)}.
jefl,....k}

References:
@ Original work [Zhu et al., 2003]
@ Learning [Zhou et al., 2005, Ando and Zhang, 2007]
@ Manifold ranking [He et al., 2006, Zhou et al., 2011, Xu et al., 2011]
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lll-posed with small amount of labeled data

0.9

0.8

0.7

0.6

0.4 0.5

0.3

0.2

0.1

@ Graph is n = 10° i.i.d. random variables uniformly drawn from [0, 1]°.

0 otherwise.

1if |z — y| < 0.01 and way
@ Two labels: g(xz) = 0 at the Red point and g(z) = 1 at the Green point.

[Nadler et al., 2009]
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Recent work

The low-label rate problem was originally identified in [Nadler 2009].

A lot of recent work has attempted to address this issue with new graph-based
classification algorithms at low label rates.

@ Higher-order regularization: [Zhou and Belkin, 2011], [Dunlop et al., 2019]

@ p-Laplace regularization: [Alaoui et al., 2016], [Calder 2018,2019], [Slepcev &
Thorpe 2019]

@ Re-weighted Laplacians: [Shi et al., 2017], [Calder & Slepcev, 2019]
@ Centered kernel method: [Mai & Couillet, 2018]

@ Poisson Learning: [Calder, Cook, Thorpe, Slepcev, ICML 2020]
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Poisson learning
At low label rates one should replace Laplace learning

{,cu =0, inA,

u=gy¢g, onl,

with Poisson learning

Lu(z) = (9(y) = 9)dsy

yel

subject to -, d(z)u(z) =0, where g = 1 > - a(y).
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Poisson learning
At low label rates one should replace Laplace learning

{,cu =0, inA,

u=gy¢g, onl,

with Poisson learning

Lu(z) = (9(y) = 9)dsy

yel
subject to -, d(z)u(z) =0, where g = 1 > - a(y).

In both cases, the label decision is the same:

l(z) = argmax {u;(z)}.
jE{1,....k}

J. Calder, B. Cook, M. Thorpe, and D. Slepéev. Poisson Learning: Graph based
semi-supervised learning at very low label rates. International Conference on Machine
Learning (ICML), PMLR 119:1306-1316, 2020.
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Outline

e Experiments in Python
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GraphLearning Python Package (Click Here)

Graph-based Clustering and Semi-Supervised Learning

i LY . e ‘e
’:3.’?-\-;:\,: ‘ . .". e

This python package is devoted to efficient implementations of modern graph-based learning algorithms for both semi-
supervised learning and clustering. The package implements many popular datasets (currently MNIST,
FashionMNIST, cifar-10, and WEBKB) in a way that makes it simple for users to test out new algorithms and rapidly
compare against existing methods.

This package reproduces experiments from the paper

Calder, Cook, Thorpe, Slepcev. Poisson Learning: Graph Based Semi-Supervised Learning at Very Low Label Rates.,
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:1306-1316, 2020.

Installation

Install with

pip install graphlearning

https://github.com/jwcalder/GraphLearning
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https://colab.research.google.com/drive/1MwIVUrqRwvQ0Ku2w6aCTKm5iRxp-xP8s?usp=sharing
https://github.com/jwcalder/GraphLearning

Outline

o Pointwise consistency for graph Laplacians
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Pointwise consistency on random geometric graphs

Let X1, Xa,..., X, be a sequence of i.i.d random variables on Q C R? with density
p € C?(Q), where Q is open and bounded with a smooth boundary, and p > poin > 0.

The random geometric graph Laplacian applied to v : Q2 — R is

Lu@) = 7 ('X" - ””') (u(X:) — u(z))

9
1=1

where € > 0 is the connectivity length scale (bandwidth) and 1 : R — R is smooth,
nonnegative and has compact support in [0, 1].
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Pointwise consistency on random geometric graphs

Let X1, Xa,..., X, be a sequence of i.i.d random variables on Q C R? with density
p € C?(Q), where Q is open and bounded with a smooth boundary, and p > poin > 0.

The random geometric graph Laplacian applied to v : Q2 — R is

Lu@) = 7 ('X" - ””') (u(X:) — u(z))

9
1=1

where € > 0 is the connectivity length scale (bandwidth) and 1 : R — R is smooth,
nonnegative and has compact support in [0, 1].

Today we'll prove that when v is C° we have

2 1. (.2 ~1/2_—1-d/2
mﬁu(m) = p div (p Vu) +p (n j )/—I— O(e).
Variance Bias
with high probability, provided B(z,e) C Q.
=y




Discrete to continuum convergence

Manifold assumption: Let z1,...,xz, be a sequence of i.i.d. random variables with
density p supported on a d-dimensional compact, closed, and connected Riemannian
manifold M embedded in R”, where d < D. Fix a finite set of points [ C M and set

X, = s, TptU T
\{xl Vx}/ T

Unlabeled Labeled

Calder (UMN) Graph-Based Learning
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Discrete to continuum convergence

Manifold assumption: Let z1,...,xz, be a sequence of i.i.d. random variables with
density p supported on a d-dimensional compact, closed, and connected Riemannian
manifold M embedded in R”, where d < D. Fix a finite set of points [ C M and set

X, = R AU R
\{:(;1 V:c}; T

Unlabeled Labeled

Conjecture

d+2
Let n — o0 and € = ,, — 0 so that lim,,_ oo nlign = o0. Let u,, be the solution of the

Poisson learning problem

( 2d—|—2) Lun(z) = Z(Q(y) —9)(ndzy) forx € X,.

OrNE
Ot yer

Then with probability one u,, — u locally uniformly on M\ T as n — oo, where
u € C°(M\T) is the solution of the Poisson equation

— dlvM p VMu Z(g(y) —79)6y on M.

yerl
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Concentration of measure

Theorem (Bernstein's inequality)

Let Yi,...,Y, beiid. with mean ;i = E[Y;] and variance o = E[(Y; — E[Y3])?], and

assume |Y;| < M almost surely for all i. Then for any t > 0

(1) P(%ZH—M

< nt?
>t s2eR o s s )
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Concentration of measure

Theorem (Bernstein's inequality)

Let Yi,...,Y, beiid. with mean ;i = E[Y;] and variance o = E[(Y; — E[Y3])?], and
assume |Y;| < M almost surely for all i. Then for any t > 0

1 — nt?
1 P(|=> Yi—u|>t] <2exp( - .
(1) <n ~ e )— eXp( 202+4Mt/3)

Let 6 > 0 and choose t > 0 so that § = 2exp (—%). Then we get

) 1)
. \/202||0g§| | AM|log 3|

n 3n

%ZY}'—M
i=1

with probability at least 1 — 4.
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Concentration of measure

Theorem (Bernstein's inequality)
Let Y1, — Y, be iid with mean = E[Y;] and varian E[(Y: — E[Y3])?], and
assunfe | Yi| < M Jalmost surely for all i. Then for any t >0

1 — nt?
1 P(|=> Yi—u|>t] <2exp( - .
(1) <n ~ e )— eXp( 202+4Mt/3)

Let 0 > 0 and choose ¢t > 0 so that 6 = 2exp (—%). Then we get

) 9]
. \/202||0g§| | AM|log 3|

n 3n

%ZY}'—M
i=1

with probability at least 1 — §. Provided M < C'y/no we can write

1 — o2
- Y, = O — .h.p.
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Proof of Pointwise consistency

| < C‘L: | ( ()("f)
IVi| & M s
0}1\/%0&) A~ f/vt(/vz/)/u%)/u(i))
Bx,<) e) dx
Jd+T
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