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Graph-based learning
Let (X , W) be a graph.

X µ Rd are the vertices.
W = (wxy)x ,yœX are nonnegative edge weights.
wxy is large when x and y are similar, and small or wxy = 0 otherwise.
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Some common graph-based learning tasks
1 Clustering (grouping similar datapoints)
2 Semi-supervised learning (propagating labels)
3 Dimension reduction (spectral embeddings)

Calder (UMN) Graph-Based Learning BYU Lecture 5 / 28



MNIST (70,000 28 ◊ 28 pixel images of digits 0-9)

Each image is a datapoint

x œ R28◊28 = R784.

Geometric weights:

wxy = ÷

3
|x ≠ y |

Á

4

k -nearest neighbor graph:

wxy = ÷

3
|x ≠ y |
Ák (x )

4
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Clustering MNIST

https://divamgupta.com
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Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

(Min-Cut) min
AµX

Cut(A) :=
ÿ

x ,yœX
xœA,y ”œA

wxy .

Tends to produce unbalanced classes (e.g., A = {x}).
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Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

(Balanced-Cut) min
AµX

Cut(A)
Vol(A)Vol(X \ A)

,

where
Vol(A) =

ÿ

xœA

ÿ

yœX

wxy .

Gives good clusterings but very computationally hard (NP-hard).

Calder (UMN) Graph-Based Learning BYU Lecture 9 / 28



Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

(Balanced-Cut) min
AµX

Cut(A)
Vol(A)Vol(X \ A)

,

where
Vol(A) =

ÿ

xœA

ÿ

yœX

wxy .

Gives good clusterings but very computationally hard (NP-hard).

Calder (UMN) Graph-Based Learning BYU Lecture 9 / 28



Spectral clustering
For A µ X set

u(x ) =

;
1, if x œ A

0, otherwise.

Then we have

Cut(A) =
ÿ

x ,yœX
xœA,y ”œA

wxy =
1
2

ÿ

x ,yœX

wxy(u(x ) ≠ u(y))2

and
Vol(A) =

ÿ

x ,yœX

wxyu(x ).

This allow us to write the balanced cut problem as

min
u:X æ{0,1}

ÿ

x ,yœX

wxy(u(x ) ≠ u(y))2

ÿ

x ,y,x Õ,yÕœX

u(x )wxy(1 ≠ u(y Õ))wx ÕyÕ

.
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Spectral clustering

Consider solving the similar, relaxed, problem

min
u:X æRq
xœX

u(x) ”=0

ÿ

x ,yœX

wxy(u(x ) ≠ u(y))2

ÿ

xœX

u(x )2
.

The solution is the smallest non-trivial eigenvector (Fiedler vector) of the graph
Laplacian

Lu(x ) =
ÿ

yœX

wxy(u(x ) ≠ u(y)).

Binary spectral clustering:
1 Compute Fiedler vector u : X æ R.
2 Set A = {x œ X : u(x ) > 0}.
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Spectral clustering

Spectral clustering: To cluster into k groups:

1 Compute first k eigenvectors of the graph Laplacian L:

u1, . . . , uk : X æ R.

2 Define the spectral embedding  : X æ Rk by

 (x ) = (u1(x ), u2(x ), . . . , uk (x )).

3 Cluster the point cloud Y =  (X ) with your favorite clustering algorithm (often
k -means).

Calder (UMN) Graph-Based Learning BYU Lecture 12 / 28



Spectral clustering

Spectral clustering: To cluster into k groups:

1 Compute first k eigenvectors of the graph Laplacian L:

u1, . . . , uk : X æ R.

2 Define the spectral embedding  : X æ Rk by

 (x ) = (u1(x ), u2(x ), . . . , uk (x )).

3 Cluster the point cloud Y =  (X ) with your favorite clustering algorithm (often
k -means).

Calder (UMN) Graph-Based Learning BYU Lecture 12 / 28



Spectral clustering

Spectral clustering: To cluster into k groups:

1 Compute first k eigenvectors of the graph Laplacian L:

u1, . . . , uk : X æ R.

2 Define the spectral embedding  : X æ Rk by

 (x ) = (u1(x ), u2(x ), . . . , uk (x )).

3 Cluster the point cloud Y =  (X ) with your favorite clustering algorithm (often
k -means).

Calder (UMN) Graph-Based Learning BYU Lecture 12 / 28



Spectral methods in data science

Spectral methods are widely used for dimension reduction and clustering in data science
and machine learning.

Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]

Laplacian eigenmaps [Belkin and Niyogi (2003)]

Di↵usion maps [Coifman and Lafon (2006)]
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Outline

1 Spectral clustering

2 Semi-supervised learning
Laplacian regularization
Poisson learning

3 Experiments in Python

4 Pointwise consistency for graph Laplacians
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Graph-based semi-supervised learning

Given:

Graph (X , W)

Labeled nodes � µ X and labels g : � æ Rk ,

The i
th class has label vector g(x ) = ei = (0, , . . . , 0, 1, 0, . . . , 0).

Task: Extend the labels to the rest of the graph X \ �.

Semi-supervised: Goal is to use both the labeled and unlabeled data to get good
performance with far fewer labels than required by fully-supervised learning.

Applications of semi-supervised learning

1 Speech recognition

2 Classification (images, video, website, etc.)

3 Inferring protein structure from sequencing

Calder (UMN) Graph-Based Learning BYU Lecture 15 / 28



Graph-based semi-supervised learning

Given:

Graph (X , W)

Labeled nodes � µ X and labels g : � æ Rk ,

The i
th class has label vector g(x ) = ei = (0, , . . . , 0, 1, 0, . . . , 0).

Task: Extend the labels to the rest of the graph X \ �.

Semi-supervised: Goal is to use both the labeled and unlabeled data to get good
performance with far fewer labels than required by fully-supervised learning.

Applications of semi-supervised learning

1 Speech recognition

2 Classification (images, video, website, etc.)

3 Inferring protein structure from sequencing

Calder (UMN) Graph-Based Learning BYU Lecture 15 / 28



Graph-based semi-supervised learning

Given:

Graph (X , W)

Labeled nodes � µ X and labels g : � æ Rk ,

The i
th class has label vector g(x ) = ei = (0, , . . . , 0, 1, 0, . . . , 0).

Task: Extend the labels to the rest of the graph X \ �.

Semi-supervised: Goal is to use both the labeled and unlabeled data to get good
performance with far fewer labels than required by fully-supervised learning.

Applications of semi-supervised learning

1 Speech recognition

2 Classification (images, video, website, etc.)

3 Inferring protein structure from sequencing

Calder (UMN) Graph-Based Learning BYU Lecture 15 / 28



Graph-based semi-supervised learning

Given:

Graph (X , W)

Labeled nodes � µ X and labels g : � æ Rk ,

The i
th class has label vector g(x ) = ei = (0, , . . . , 0, 1, 0, . . . , 0).

Task: Extend the labels to the rest of the graph X \ �.

Semi-supervised: Goal is to use both the labeled and unlabeled data to get good
performance with far fewer labels than required by fully-supervised learning.

Applications of semi-supervised learning

1 Speech recognition

2 Classification (images, video, website, etc.)

3 Inferring protein structure from sequencing

Calder (UMN) Graph-Based Learning BYU Lecture 15 / 28



Why semi-supervised?
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Why semi-supervised?
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Laplacian regularization
Laplacian regularized semi-supervised learning solves the Laplace equation

;
Lu = 0 in X \ �,

u = g on �,

where u : X æ Rk , and L is the graph Laplacian

Lu(x ) =
ÿ

yœX

wxy(u(x ) ≠ u(y)).

The label decision for vertex x œ X is determined by the largest component of u(x )

¸(x ) = argmax
jœ{1,...,k}

{uj (x )}.

References:

Original work [Zhu et al., 2003]

Learning [Zhou et al., 2005, Ando and Zhang, 2007]

Manifold ranking [He et al., 2006, Zhou et al., 2011, Xu et al., 2011]
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Ill-posed with small amount of labeled data
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Graph is n = 105 i.i.d. random variables uniformly drawn from [0, 1]2.

wxy = 1 if |x ≠ y | < 0.01 and wxy = 0 otherwise.

Two labels: g(x ) = 0 at the Red point and g(x ) = 1 at the Green point.

[Nadler et al., 2009]
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Recent work

The low-label rate problem was originally identified in [Nadler 2009].

A lot of recent work has attempted to address this issue with new graph-based
classification algorithms at low label rates.

Higher-order regularization: [Zhou and Belkin, 2011], [Dunlop et al., 2019]

p-Laplace regularization: [Alaoui et al., 2016], [Calder 2018,2019], [Slepcev &
Thorpe 2019]

Re-weighted Laplacians: [Shi et al., 2017], [Calder & Slepcev, 2019]

Centered kernel method: [Mai & Couillet, 2018]

Poisson Learning: [Calder, Cook, Thorpe, Slepcev, ICML 2020]
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Poisson learning

At low label rates one should replace Laplace learning

;
Lu = 0, in X ,

u = g , on �,

with Poisson learning

Lu(x ) =
ÿ

yœ�

(g(y) ≠ g)”xy ,

subject to
q

xœX d(x )u(x ) = 0, where g = 1
|�|

q
yœ�

g(y).

In both cases, the label decision is the same:

¸(x ) = argmax
jœ{1,...,k}

{uj (x )}.

J. Calder, B. Cook, M. Thorpe, and D. Slepčev. Poisson Learning: Graph based
semi-supervised learning at very low label rates. International Conference on Machine
Learning (ICML), PMLR 119:1306–1316, 2020.
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GraphLearning Python Package (Click Here)

https://github.com/jwcalder/GraphLearning
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Pointwise consistency on random geometric graphs

Let X1,X2, . . . ,Xn be a sequence of i.i.d random variables on ⌦ µ Rd with density
fl œ C

2(⌦), where ⌦ is open and bounded with a smooth boundary, and fl Ø flmin > 0.

The random geometric graph Laplacian applied to u : ⌦ æ R is

Lu(x ) =

nÿ

i=1

÷

3
|Xi ≠ x |

Á

4
(u(Xi) ≠ u(x )),

where Á > 0 is the connectivity length scale (bandwidth) and ÷ : R æ R is smooth,
nonnegative and has compact support in [0, 1].

Today we’ll prove that when u is C 3 we have

2
‡÷nÁd+2

Lu(x ) = fl≠1div
!
fl2Òu

"
+O

!
n

≠1/2Á≠1≠d/2
"

¸ ˚˙ ˝
Variance

+O(Á)¸˚˙˝
Bias

.

with high probability, provided B(x , Á) µ ⌦.
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Discrete to continuum convergence
Manifold assumption: Let x1, . . . , xn be a sequence of i.i.d. random variables with
density fl supported on a d-dimensional compact, closed, and connected Riemannian
manifold M embedded in RD , where d π D . Fix a finite set of points � µ M and set

Xn := {x1, . . . , xn}¸ ˚˙ ˝
Unlabeled

fi �¸˚˙˝
Labeled

.

Conjecture

Let n æ Œ and Á = Án æ 0 so that limnæŒ
nÁd+2

n
log n = Œ. Let un be the solution of the

Poisson learning problem

3
2

‡÷nÁd+2
n

4
Lun(x ) =

ÿ

yœ�

(g(y) ≠ g)(n”xy) for x œ Xn .

Then with probability one un æ u locally uniformly on M \ � as n æ Œ, where
u œ C

Œ(M \ �) is the solution of the Poisson equation

≠ divM
!
fl2ÒMu

"
=

ÿ

yœ�

(g(y) ≠ g)”y on M.
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Concentration of measure

Theorem (Bernstein’s inequality)

Let Y1, . . . ,Yn be i.i.d. with mean µ = E[Yi ] and variance ‡2 = E[(Yi ≠ E[Yi ])2], and
assume |Yi | Æ M almost surely for all i . Then for any t > 0

(1) P

A-----
1
n

nÿ

i=1

Yi ≠ µ

----- > t

B
Æ 2 exp

3
≠ nt

2

2‡2 + 4Mt/3

4
.

Let ” > 0 and choose t > 0 so that ” = 2 exp
1

≠ nt2

2‡2+4Mt/3

2
. Then we get

-----
1
n

nÿ

i=1

Yi ≠ µ

----- Æ

Ú
2‡2| log ”

2 |
n

+
4M | log ”

2 |
3n

with probability at least 1 ≠ ”. Provided M Æ C
Ô
n‡ we can write

1
n

nÿ

i=1

Yi = µ +O

AÚ
‡2

n

B
w.h.p.
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1

≠ nt2

2‡2+4Mt/3

2
. Then we get

-----
1
n

nÿ

i=1

Yi ≠ µ

----- Æ

Ú
2‡2| log ”

2 |
n

+
4M | log ”

2 |
3n

with probability at least 1 ≠ ”. Provided M Æ C
Ô
n‡ we can write

1
n

nÿ

i=1

Yi = µ +O

AÚ
‡2

n

B
w.h.p.
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Proof of Pointwise consistency
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