
PDEs and Graph Based Learning
Summer School on Random Structures in Optimizations and Related Applications

Lecture 1: k-means and spectral clustering

Instructor: Jeff Calder (jcalder@umn.edu)

Web: http://www-users.math.umn.edu/~jwcalder

Lecture Notes: http://www-users.math.umn.edu/~jwcalder/5467S21

http://www-users.math.umn.edu/~wkchen/summerschool.html
(null)://(null)jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder
http://www-users.math.umn.edu/~jwcalder/5467S21

Clustering

k-means clustering
Let x1, x2, . . . , xm be datapoints in Rn

. The k-means algorithm is guided by the

task of minimizing the energy over the choice of cluster centers ci

E(c1, c2, . . . , ck) =
mX

i=1

min
1jk

kxi � cjk2.

Minimizing E is an NP-hard problem.

k-means clustering
k-means algorithm: We start with some randomized initial values for the means

c01, c
0
2, . . . , c

0
k, and iterate the steps below until convergence.

1. Update the clusters

(1) ⌦t
j =

⇢
xi : kxi � ctjk2 = min

1`k
kxi � ct`k2

�
.

2. Update the cluster centers (means)

(2) ct+1
j =

1

#⌦t
j

X

x2⌦t
j

x.

The algorithm converges when ct+1
j = ctj for all j.

Code Demo

k-means clustering result

Poor clustering by k-means
Clustering depends on the random initialization.

k-means clustering in Python (.ipynb)

https://colab.research.google.com/drive/1kj73dUxSOl-Buv9isirTt72jUVyRqH_Z?usp=sharing

Lemma on centroids
Lemma 1. Let y1, y2, . . . , ym be points in Rn, and define the function f : Rn ! R
by

f(x) =
mX

i=1

kyi � xk2.

Then the unique minimizer of f is the centroid

c =
1

m

mX

i=1

yi.

In particular, f(c) < f(x) if x 6= c.

Convergence of k-means
Recall the k-means enegy

(3) E(c1, c2, . . . , ck) =
mX

i=1

min
1jk

kxi � cjk2.

Theorem 2. The k-means algorithm descends on the energy (3), that is

(4) E(ct+1
1 , ct+1

2 , . . . , ct+1
k)  E(ct1, c

t
2, . . . , c

t
k).

Furthermore, we have equality in (4) if and only if ct+1
j = ctj for j = 1, . . . , k, and

hence the k-means algorithm converges in a finite number of iterations.

Note:

• k-means does not in general find a global minimum of E.

• It is useful because it is fast, guaranteed to converge, and often finds good

clustering.

k-means on two-moons

• Sometimes a single point is not a good representative of a cluster, in Euclidean

distance.

• Instead, we can try to cluster points so that nearby points are assigned to the

same cluster, without specifying cluster centers.

Weight matrix
Let x1, x2, . . . , xm be points in Rn

. To encode which points are nearby, we construct

a weight matrix W , which is an m⇥m symmetric matrix where W (i, j) represents

the similarity between datapoints xi and xj . A common choice for the weight matrix

is Gaussian weights

(5) W (i, j) = exp

✓
�kxi � xjk2

2�2

◆
,

where the � is a free parameter that controls the scale at which points are connected.

Graph cuts for binary clustering
A graph-cut approach to clustering minimizes the graph cut energy

(6) E(z) =
1

2

mX

i=1

mX

j=1

W (i, j)|z(i)� z(j)|2

over label vectors z 2 {0, 1}m.

Notes:

• The value z(i) 2 {0, 1} indicates which cluster xi belongs to.

• The graph-cut energy is the sum of the edge weights W (i, j) that must be cut
to separate the dataset into two clusters.

Balanced graph cuts for binary clustering
Minimizing the graph cut energy

E(z) =
1

2

mX

i=1

mX

j=1

W (i, j)|z(i)� z(j)|2

can lead to very unbalanced clusters (e.g., one cluster can have just a single point).

A more useful approach is to minimize a balanced graph cut energy

(7) Ebalanced(z) =
1
2

Pm
i=1

Pm
j=1 W (i, j)|z(i)� z(j)|2

Pn
i=1 z(i)

Pn
j=1(1� z(j))

.

The denominator is the product of the number of points in each cluster, which is

maximized when the clusters are balanced.

Balanced graph-cut problems are NP hard.

Relaxing the graph cut problem
To relax the graph-cut problem, we consider minimizing the graph cut energy

E(z) =
1

2

mX

i=1

mX

j=1

W (i, j)|z(i)� z(j)|2

over all real-vectors z 2 Rm
. We still have a balancing issue (here z = 0 is a

minimizer), so we impose the balancing constraints

1T z =
mX

i=1

zi = 0 and kzk2 =
mX

i=1

z(i)2 = 1.

Definition 3. The binary spectral clustering problem is

Minimize E(z) over z 2 Rm, subject to 1T z = 0 and kzk2 = 1.

The resulting clusters are C1 = {xi : z(i) > 0} and C2 = {xi : z(i)  0}.

The graph Laplacian and Fiedler vector
Let W be a symmetric m⇥m matrix with nonnegative entries.

Definition 4. The graph Laplacian matrix L is the m⇥m matrix

(8) L = D �W

where D is the diagonal matrix with diagonal entries

D(i, i) =
mX

j=1

W (i, j).

Lemma 5. Then the graph cut energy can be expressed as

E(z) =
1

2

mX

i=1

mX

j=1

W (i, j)|z(i)� z(j)|2 = zTLz,

where L is the graph Laplacian.

Properties of the graph Laplacian
Lemma 6. Let L = D � W be the graph Laplacian corresponding to a symmetric
matrix W with nonnegative entries. The following properties hold.

(i) L is symmetric.

(ii) L is positive semi-definite (i.e., zTLz � 0 for all z 2 Rm).

(iii) All eigenvalues of L are nonnegative, and the constant vector z = 1 is an
eigenvector of L with eigenvalue � = 0.

Fiedler vector
Let v1, v2, . . . , vm be the eigenvectors of the graph Laplacian, with corresponding

eigenvalues

0 = �1  �2  · · ·  �m.

Definition 7. The second eigenvector v2 of the graph Laplacian L is called the

Fiedler vector.

Theorem 8. The Fiedler vector z = v2 solves the binary spectral clustering problem

Minimize E(z) over z 2 Rm, subject to 1T z = 0 and kzk2 = 1.

Example

(a) Fiedler vector (b) Spectral Clustering

Figure 1: (a) The Fiedler vector and (b) spectral clustering on the 2-moons dataset.

Spectral embeddings
Let v1, v2, v3, . . . be the normalized eigenvectors of L, in order of increasing eigen-

values 0 = �1  �2  · · · . The spectral embedding corresponding to L is the map

� : Im ! Rk
(recall Im = {1, 2, . . . ,m} are the indices of our datapoints) given by

(9) �(i) = (v1(i), v2(i), . . . , vk(i)).

Since the first eigenvector v1 is the trivial constant eigenvector, it is also common

to omit this to obtain the embedding

�(i) = (v2(i), v3(i), . . . , vk+1(i)).

There are other normalizations of the graph Laplacian that are commonly used,

such as the symmetric normalization L = D�1/2(D � W)D�1/2
, and the spectral

embedding for a normalized Laplacian is defined analagously.

Spectral embeddings
The intuition behind the spectral embedding is encapsulated in the following simple

result.

Proposition 9. If A ⇢ Im is a disconected component of the graph, which means
that W (i, j) = 0 for all i 2 A and j 2 Im \ A, then the indicator function of A,
denoted uA, satisfies

LuA = (D �W)uA = 0.

Spectral embedding of MNIST

(a) Unnormalized (b) Normalized

Figure 2: Example of spectral embeddings in the plane k = 2 of the 0, 1, and 2

digits of the MNIST dataset using the unnormalized L = D � W and symmetric

normalized L = D�1/2(D �W)D�1/2
graph Laplacians.

Spectral clustering with more than 2 classes
Suppose we want to cluster the graph into k clusters. Spectral clustering proceeds

as follows:

1. Perform a spectral embedding of the graph into Rk
(or sometimes Rd

where

d ⇡ k).

2. Run your favorite clustering algorithm in the embedding space Rd
, such as

k-means.

k-nearest neighbor graph
The Gaussian weights

W (i, j) = exp

✓
�kxi � xjk2

2�2

◆
,

are not always useful in practice, since the matrix W is dense (all entries are non-

zero), and the connectivity length � is the same across the whole graph.

It is more common to use a k-nearest neighbor graph. Let dk,i denote the Euclidean

distance between xi and its kth nearest Euclidean neighboring point from x1, . . . , xm.

A k-nearest neighbor graph uses the weights

W (i, j) =

(
1, if kxi � xjk  max{dk,i, dk,j}
0, otherwise.

The weights need not be binary, and can depend on kxi�xjk, similar to the Gaussian

weights. The k-nearest neighbor graph weight matrix W is very sparse (most entries

are zero), so it can be stored and computed with efficiently.

Exercises
The following proofs were omitted and are left to review as an exercise.

1. Proof of Theorem 2 (Convergence of k-means, Theorem 4.2 in lecture notes)

2. Proof of Lemma 6 (Properties of the graph Laplacian, Lemma 4.8 in lecture

notes)

3. Proof of Proposition 9 (Spectral embeddings, Proposition 8.4 in lecture notes)

Spectral clustering in Python (.ipynb)

https://colab.research.google.com/drive/1Ht6JY3cSF4M3K82O2xBbh9CIrTISJ0r2?usp=sharing

