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ABSTRACT
Automatic target recognition with synthetic aperture radar (SAR) data is a challenging image classification
problem due to the difficulty in acquiring the large labeled training sets required for conventional deep learning
methods. Recent work1 addressed this problem by utilizing powerful tools in graph-based semi-supervised
learning and active learning, and achieved state of the art results on the Moving and Stationary Target Acquisition
and Recognition (MSTAR) dataset with less labeled data compared to existing techniques. A key part of the
previous work was the use of unsupervised deep learning, in particular, a convolutional variational autoencoder,
to embed the MSTAR images into a meaningful feature space prior to constructing the similarity graph. In
this paper, we develop a contrastive SimCLR framework for feature extraction from MSTAR images by using
data augmentations specific to SAR imagery. We show that our contrastive embedding results in improved
performance over the variational autoencoder similarity graph method in automatic target recognition on the
MSTAR dataset. We also perform a comparative study of the quality of the autoencoder and contrastive
embeddings by training support vector machines (SVM) at various label rates, applying spectral clustering,
and evaluating graph-cut energies, all of which show that the contrastive learning embedding is superior to the
autoencoder embedding.
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1. INTRODUCTION
Synthetic Aperture Radar (SAR) imaging is a remote sensing technique for collecting high resolution reconstruc-
tions from resolution-limited apertures mounted to moving objects, such as planes and satellites. For traditional,
stationary radar sensors to yield high resolution images, a large aperture is required, which is infeasible for many
applications. By using sensors mounted to objects moving along straight trajectories, SAR imaging provides
high resolution scans from smaller apertures while being relatively easy to collect. SAR imaging finds wide usage
in the detection and identification of specific targets, particularly for military applications. However, humans
find difficulty in interpreting and labeling SAR data, which is required for acquiring large databases to train
classification models on. This incentivizes the use of machine learning methods that are robust in low label rate
environments.

Many state of the art (SOTA) methods for image classification rely on supervised learning, which typically
requires a significant amount of labeled data to train neural networks that generalize well. This makes super-
vised learning less suited to use in classification of SAR data, where very few labels are available. To train a
model that generalizes well with very little labeled data, we turn to semi-supervised and unsupervised learning
methods. Semi-supervised learning (SSL) techniques use a combination of some labeled data with large amounts
of unlabeled data, while unsupervised techniques use only unlabeled data. The effectiveness of these methods is
derived from their ability to leverage the the structure and geometry of the unlabeled data.

∗ Source code: https://github.com/jasbrown96/Contrastive-Active-Learning
Further author information: (Send correspondence to J.B.)
J.B.: E-mail: jasbrown@g.ucla.edu

https://github.com/jasbrown96/Contrastive-Active-Learning


A more recent learning regime is active learning, which iteratively queries a human oracle for additional
labeled information to improve performance. Like semi-supervised learning, active learning uses very few labels
and leverages information from unlabeled data. Unlike semi-supervised learning, it identifies where new labels
would be most beneficial in improving accuracy, and uses a human-in-the-loop procedure to iteratively expand
the set of labeled data. First the model trains on a partially labeled dataset, then an acquisition function
determines which unlabeled point(s) would be most beneficial to get labels for, after which the human adds the
labels to the labeled set before starting the process over again. The process iterates until performance reaches a
desired level or the energy to continue the process is excessive.

Recently work (e.g.1–4) shows the efficacy of graph-based methods in semi-supervised learning (SSL) and
active learning. Treating each sample in the dataset as a node on the graph, the graph edges reflect the similarity
between pairs of samples as measured by a similarity function. This imbues the dataset with a structure agnostic
towards many of the high dimensional artefacts and noise that otherwise inhibit accurate predictions. After
constructing a graph on a partially labeled dataset, the labels can be propagated throughout the graph using
various semi-supervised methods. Largely rooted in partial differential equations (PDEs), these include the
seminal Laplace learning,5 also called label propagation, the graph MBO method,6 p-Laplace learning,4 and
graph-based Poisson learning.2,7 In such graph frameworks, it becomes quite simple to use acquisition functions
to measure the desirability of unlabeled points. Notable acquisition functions include the uncertainty measure,8
variance optimality,9 sigma optimality,10 and model change,11 which employ various heuristics to determine the
predicted desirability of unlabeled data. In practice, it is costly to apply these acquisition functions to every
single unlabeled sample, so often a candidate set is chosen over which the search is conducted—this is known
as pool-based sampling. A greedy sampling algorithm is typically used to iteratively select the single unlabeled
sample with the highest acquisition function value from the candidate set. These samples are sent to the oracle
for labelling for subsequent use in the semi-supervised learning algorithm.

In order for these graph-based methods to work well, there must be a powerful and accurate method for
capturing the inherent structure of the data to create the similarity graph. If the graph is not well constructed,
then the edges between samples will poorly capture the intrinsic relationship between the samples and hamper
the flow of labels via the SSL methods. The process of determining the important characteristics of images
is known as feature extraction. Many popular feature extraction methodologies have been advanced over the
years, including principle component analysis, non-negative matrix factorization, and variational auto-encoders.
Recent work by T. Chen et al. at Google suggest a new method for feature extraction known as SimCLR.12

This is an unsupervised learning framework for training neural networks that employs contrastive learning for
feature extraction. At a high level, SimCLR trains a neural network on the task of distinguishing images
that are the identical, up to a transformation from a predetermined set or group. The key to a successful
application of SimCLR is in the choice of the transformations (e.g., data augmentations) that one wants the
model to be “invariant” to, which should resemble what one expects to see within the dataset. More specifically,
the framework applies two random (distinct) augmentations to each image in a batch to create a positive pair
of images. Negative pairs refer to augmented images produced from other images in the batch (possibly the
same class). A neural network for embeddings is then trained by putting the image pairs through the network
and maximizing the similarity between positive pairs while minimizing the similarity between negative pairs.
SimCLR has demonstrated SOTA performance on ImageNet and numerous other datasets, notably yielding
highly separable embeddings.12

In this paper, we build on previous work1 in SAR classification in several directions. Firstly, we develop a
SimCLR framework for MSTAR images by introducing novel data augmentations specific to SAR images. This
results in markedly improved feature extraction and graph structures. We show that the contrastive SimCLR
feature embeddings are of far higher quality (i.e., more distinct and separable classes) when compared with those
obtained from variational autoencoders1 and raw images. We evaluate the quality of the embeddings with SVM,
spectral clustering, and graph cut energies. Secondly, we show the power of our SimCLR embeddings when
paired with active learning frameworks, showing significantly faster learning and drastically improved accuracy
at low label rates compared to Miller et al.1

The rest of the paper is organized as follows. Section 1.1 details the previous and related works for low label
rate SAR classification. Section 2 showcases the methods used in this paper, primarily focusing on the efforts



of Miller et al.1 and Chen et al.12 More specifically, we discuss the methods used by Chen et al. in 2.1 and
we discuss the methods used by Miller et al. for graph construction in 2.2.1, graph learning in 2.2.2, and active
learning in 2.2.3. Section 3 details the specific measures taken to adapt the previously mentioned methods to the
MSTAR dataset as well as a discussion about the neural network that was used for SimCLR. Section 4 contains
the results from the experiments performed on MSTAR before the conclusion in section 5.

1.1 Previous and Related Work
Work on Automatic Target Recognition for SAR data focuses heavily on the Moving and Stationary Target
Acquisition and Recognition (MSTAR) dataset, discussed in section 3.1. Most of the work directly applied to
MSTAR can be separated into pre-deep learning approaches, such as support vector machines, and more modern
deep learning approaches, such as convolutional neural networks. Pre-deep learning methods are varied in their
approaches. Researchers have used feature extraction combined with scattering models13,14 as one approach.
Many approaches utilize SVMs for their classification; such as in a straightforward manner in,15 paired with
Adaboost,16 or in parallel with a hand-tuned covariance embedding scheme.17

Convolutional Neural Networks (CNNs) are at the heart of some of the most successful state of the art
machine learning methods, particularly for for image classification. CNNs utilize stacked convolutions, activation
functions, and fully connected linear layers to learn features. The main issue with applying CNNs to MSTAR
is that they often need large amounts of training data to successfully make accurate predictions. The MSTAR
dataset is relatively small with less than 4000 chips. Furthermore, methods that successfully use very few
labels are extremely desirable and CNNs typically require many labels in their training set. This problem has
lead to various modifications that allow CNNs to function well despite the challenges. Some techniques for
utilizing CNNs target the overfitting problem, while still keeping the general structure. One approach uses
additional regularization during the training process, such as the max-norm regularization.18 Another approach,
the All-Convolutional Networks, replaced fully connected layers with additional convolutional layers.19,20 Other
researchers have simply tried to minimize the number of parameters in the CNN.21 Other types of approaches
include additional unsupervised methods, such as variational autoencoders, which typically do not require labels
to learn features. The Euclidean Distance Restricted Autoencoder22 method uses an autoencoder designed to
embed images from the same class nearby to extract features before classifying the data with an SVM.

One particularly interesting approach to working with limited datasets is to generate additional synthetic data
by attempting to replicate SAR images using computer software. In the SAMPLE dataset, researchers present
a dataset of real and synthetic data based on the popular MSTAR dataset. The MSTAR dataset consists of 10
distinct classes of vehicles with the images being taken via an aerial radar. By using Computer Aided Design
(CAD) models for the vehicles, researchers have reproduced synthetic SAR images of these same vehicles under
the same conditions, leading to the SAMPLE dataset.23 This posed an interesting problem in determining how
synthetic data, which is implicitly labeled by construction, could be used to make predictions about unlabeled
real world data. Unfortunately, it became apparent that the synthetic data was quite distinct from the real world
data, leading to extra difficulties.23 Some efforts, however, include training fully supervised convolutional neural
networks on just the synthetic data and then using that to label the unlabeled data.24,25 Other efforts include
using GANs (generative adversarial neural networks) to augment the synthetic data to make it more similar to
real world data, hopefully boosting its usefulness towards classifying real world data.26

2. METHODS
In this section, we discuss the mathematical formulation and neural network architectures used to develop the
low-label rate classification algorithm.

2.1 Feature Extraction - Variational AutoEncoder
For feature extraction of images, there are several prevalent techniques used in industry, such as principal com-
ponent analysis, non-negative matrix factorization, and variational autoencoders. Variational autoencoders27,28

(VAE) have proven to be a successful methods for feature extraction of SAR data and were used in previous
work.1,20,22 VAEs are a generative class of neural networks that learn the important features of images via
encoding the images to a low dimensional space before reconstructing the images in the high dimensional space.



They have three main components to their architecture: the encoder, the bottleneck, and the decoder. The
encoder portion of the neural network primarily consists of 2D convolutions that compress the images to a low
dimensional space. The bottleneck follows the encoder portion of the neural network and includes the repa-
rameterization step, which consists of a multi-layer perceptron tasked with learning the mean and standard
deviation from the image. Beyond the bottleneck step, a decoder network which primarily consists of transpose
convolution layers will attempt to rebuild the original image based on the mean and standard deviation passed
from the bottleneck layer. When properly trained, the decoder portion of the network can generate new images
from samples of the latent space due to the enforced regularization in the training process. For the purposes of
feature extraction, we instead focus on using the encoder network to retrieve the latent representations of images
in our dataset.

2.2 Feature Extraction - Contrastive Learning
An alternate neural network approach to VAE feature extraction is a recently revitalized learning framework
known as contrastive learning. The impetus of contrastive learning is that an encoder CNN trains by minimiz-
ing the distance of like-images and maximizing the separation of “unlike”-images in the encoding space (or a
projection of it). The images that are designated as similar samples are called positive pairs whereas the im-
ages that are designated as dissimilar are denoted negatives. The name comes from comparing and contrasting
images.29 Recently, Chen et al.12 published a seminal paper on self-supervised contrastive learning for visual
representations in which they introduce a novel framework known as SimCLR . Since SimCLR is self-supervised,
the method implicitly determines which samples are positive pairs to act as the labels that guide the feature
learning. Given a batch of n images, a series of augmentations are performed such that each image will have
2 different resulting images after the augmentations, resulting in 2n augmented images from the batch. For an
image xi, the augmentations will produce two augmented images that we will call xi1 and xi2 respectively. The
underlying heuristic for SimCLR is that since these two augmented samples, xi1 and xi2 , were both derived from
the same image, xi, then they should be considered positive pairs and all the other 2(n− 1) augmented images
in the batch should be considered negatives.

To quantify the similarity between the features extracted from two images, u and v, Chen12 uses the cosine
similarity function as

sim(u, v) = uT v/||u||||v||.

For a given positive pair, xi1 , xi2 , the loss from sample xi1 is defined to be

li1 = − log
exp(sim(xi1 , xi2)/τ)∑N

k=1

∑2
j=1 1[k ̸=i]exp(sim(xi1 , xkj )/τ)

where τ is a temperature parameter that must be fine tuned and controls the relaxation for the similarity function.
The loss, summed over an entire batch, is called NT-Xent, which stands for normalized temperature-scaled cross
entropy loss. In summary, the loss for a batch of n samples is

L =
1

2n

n∑
i=1

[li1 + li2 ].

Now we discuss the network architecture in order to properly utilize the framework. Given a batch of n
images, denoted x1, ..., xn, each image will be augmented twice through some sequence of augmentations to
create a new batch of size 2n consisting of images x11 , x12 , ..., xn1 , xn2 . Each one of these images in the new
batch will be passed through the first phase of the neural network which is called the encoder. The encoder will
primarily consist of convolutional layers tasked with feature extraction and will transform a sample xij into a
feature embedding denoted as hij . Afterwards, a projection head, which is typically a multi layer perceptron
with one or two hidden layers will be used. The projection head transforms a feature embedding hij to a new
space where the outputs are denoted as zij . Afterwards, the NT-Xent loss function is evaluated on the projected
features zij and the encoder and projection head networks are simultaneously updated towards minimizing the
loss. An outline of the SimCLR framework is shown in Figure 1. After having trained the neural network on a



Figure 1. In the SimCLR framework, a sample image xi is augmented twice creating xi1 and xi2 . These augmentated
images are pushed through an encoder network and a projection head resulting in zi1 and zi2 . An objective of SimCLR
is to maximize the similarity between positive pairs such as these.

given dataset, the projection head is discarded as the purpose of the SimCLR framework is to simply train the
encoder to produce stronger embeddings. The projection head is primarily used to strengthen the learning rate
and improves the robustness of the encoder network.12

2.2.1 Graph Embedding
Given a feature extraction process, we can view images as vectors embedded in Rd, a much lower dimensional
space, than the raw data. Quantitative comparisons can be performed on and between the image feature vectors
to construct a similarity graph for the dataset. Like SimCLR, we use the cosine similarity metric to construct
a k nearest neighbors graph from the embedded images. A fast nearest neighbors approximation algorithm is
performed to boost computation. Once the k nearest neighbors for each sample are selected, the edge weights in
the resulting graph must be determined and we choose a self-tuning similarity graph with edge weights given by

wij = exp(−4||xi − xj ||2/dk(xi)
2),

where xi, xj represent the normalized features for the ith and jth images respectively, and dk(xi) represents the
distance between xi and its kth nearest neighbor.1

2.2.2 Graph Based Semi Supervised Learning
Let {x1, ..., xn} := X ⊂ Rd represent the feature vectors of the images in d dimension and let L ⊂ {1, 2, ..., n}
represent the set of indices for feature vectors that have an associated, known label. We define U = {1, 2, ..., n}−L
to represent the set of indices of unlabeled images. For a dataset with K classes, we let yj ∈ {1, 2, ...,K} represent
the label for image j so that the labels correspond to their one-hot encoding as eyj

∈ RK . Let G(X ,W) be a
graph where X represents the vertices and W represent the edge weights between the images. Given this graph
framework, semi-supervised learning techniques have seen great success. In Zhu, Ghahramani, and Lafferty’s
work,5 the Laplace learning on graphs is introduced and developed, which is the primary semi-supervised learning
technique used throughout this paper. Given a set of labeled data L and a weighted adjacency matrix W
corresponding to the graph, Laplace learning solves for the label function f : X → RK such that

f(xi)
T =

1

di

n∑
j=1

Wijf(xj)
T for i /∈ L

f (xi) = eyi
for i ∈ L

 , (1)

where di =
∑

j ̸=i Wij . In principle, this solution generates a graph harmonic function which propagates the
labels across the dataset. The solution to this energy equation can be written in terms of the graph Laplacian,



L = D − W where D represents the degree matrix for the graph. Without loss of generality, re-ordering the
nodes so that the labeled nodes are written first, the solution can be written as

F ∗ :=


f∗ (x1)

T

f∗ (x2)
T

...
f∗ (xn)

T

 =

(
Y

−LU,ULU,LY

)
,

where LU,U and LU,L represents the lower-right and lower-left blocks of L respectively and Y ∈ {0, 1}|L×K| is
the matrix whose rows are eyj for the corresponding labeled nodes.1

2.2.3 Active Learning
To most efficiently leverage the limited amount of labeled data, we employ active learning. Active learning uses
acquisition functions on the predictions from the trained model to determine which unlabeled sample, i ∈ U
should be labeled by a human expert, often called an oracle. We can now update the labeled set to include
the newly queried sample, Lnew = Lold ∪ {i}, and then proceed to retrain or fine-tune the prediction model on
the new labeled set. This process of querying a single label at a time is known as sequential active learning, as
opposed to batch active learning which queries numerous labels at each iteration. The appeal of such a process
is that, ideally, minimal effort is expended on labelling samples that do little to benefit the prediction model.
Typically, active learning is preferred when either individual samples require significant time and energy to label
or there are far too many samples to effectively label. SAR data falls under the first category, as the noisy images
are nearly incomprehensible to an untrained human. For active learning to proceed, we need both a prediction
model and an acquisition function. For the prediction model, we will be using the graph-based Laplace learning
method discussed in section 2.2.2. We will discuss several acquisition functions in the following section, but the
uncertainty acquisition function will be the most significant.

We consider prediction models taking in unlabeled nodes and outputting a vector of length K such that
the ith component corresponds to the likelihood that the given sample belongs to the ith class. In practice,
the predictions are thresholded so that the model can directly output class predictions, but by using the soft
prediction vector, we can establish a notion of confidence and uncertainty in how the model predicts certain
classes. An underlying heuristic for much of active learning is that the query target should be a sample that
the model is very uncertain about, since it likely contains information that is novel to the model. This leads to
the uncertainty acquisition function. Given a model prediction v∗(xi) ∈ RK for the sample i ∈ U , we define the
margin to be the difference between the first and second highest predictions:

Margin(x) := max
k

u(x)k − max
l ̸=argmaxku(xi)

u(x)l,

where y∗(i) is the largest prediction value in u∗(i). The uncertainty acquisition function queries the sample
that lies closest to the decision boundary, which represents the border between expected classes in the data.
Heuristically, the uncertainty acquisition function will be able to target regions of the dataset that are low
confidence and allows for refinement.8 Another popular acquisition function is variance optimality (VOPT).
VOPT is agnostic of the observed and predicted labels and essentially attempts to query the labels such that the
unlabeled data suffers the least amount of variance in terms of its distribution.30 The last acquisition function
to be mentioned is Model Change.11 Model Change is a look-forward acquisition function that uses Gaussian
distributions to approximate the significance of an unlabeled point by estimating the amount of change it would
cause in the model.11 There has been work done to combine the ideas of model change with variance optimality
resulting in MCVOPT as another, derivative acquisition function.1

3. METHODS & DATASET
In this section we describe the Moving and Stationary Target Acquisition and Recognition, or MSTAR, dataset,
and the modifications of the SimCLR framework.



3.1 MSTAR Dataset
The MSTAR dataset31 was published in 1998 by Sandia National Laboratory with funding from the Defense
Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory. The MSTAR dataset
consists of 6,874 SAR chip images, collected by a Sandia X-band radar operating at 9.60GHz with a bandwidth of
0.591GHz. Designed for automatic target recognition, the dataset features 10 distinct vehicle classes (Armored
Personnel Carrier: BMP-2, BRDM-2, BTR-60, and BTR-70; Tank: T-62, T-72; Weapon System: 2S1; Air
Defense Unit: ZSU-234; Truck: ZIL-131; Bulldozer: D7). It is standard to split the MSTAR dataset by the
angle of capture where an angle of 15◦ corresponds to the training data and and angle of 17◦ corresponds to
the testing data.31 Although active learning does not require the entire training set of data, we still restrict the
queried labels to be from the training set so that comparisons to other techniques and methods in the literature
remain cohesive.

We preprocess the data in the same process described in Miller et al.1 That is, firstly, the magnitude and
phase images are center-cropped to 88x88 pixels. To reduce presumed noise, pixel values are clipped to the
range of [0,1], which is an acceptable range for interpreting images. Furthermore, the images are forced into a
3-channel format where the first channel is the magnitude of the image and the second and third channels are
the real and complex phases of the image respectively. Letting M be the magnitude of the image and P be the
phase of the image, the 3 channel format is given as(

M,
1

2
(M cos(P ) + 1),

1

2
(M sin(P ) + 1)

)
.

3.2 Selected Augmentations for SimCLR
SimCLR12 frameworks are only as good as the augmentations employed in them: too harsh an augmentation
(e.g. total image corruption) and the network is forced to learn from noise and undesirable artefacts of the
transformation (or learn nothing at all); too few augmentations, and the network doesn’t generalize well. Care
must be taken to ensure that the augmentations used for a given dataset/task are meaningful and mimic unseen
data. SimCLR frameworks for image classification (e.g. ImageNet, Cifar10) typically use color jitter, random
cropping, random horizontal or vertical filps, and random blur. Below we consider the peculiarities of SAR
images and the MSTAR dataset, assess which augmentations are suitable and unsuitable, and propose new
custom augmentations which we ultimately use for training an encoder.

Firstly, since MSTAR images are taken from airplanes, the scanned vehicles cast a shadow where no radar
signals were received. This shadow is always behind the vehicles, and we would naturally want our encoder
model to learn this important feature, pertinent to MSTAR. Therefore, we opt not to use augmentations for
the dataset that would rotate or flip the images vertically, as this would destroy the shadow effect always being



behind the target. Another concern is that SimCLR12 image classification neural networks typically attribute
great success to using a color jitter augmentation (as with ImageNet and Cifar10), which randomly shift the
entire color distributions in an image. However, SAR images are not RGB images and instead have magnitude
and phase information, so we elected to not make use of the color jitter augmentation.The last consideration is
that, unlike ImageNet images, the MSTAR chips have the vehicle centered in the middle of the chip for each
image. To be consistent with the dataset, we opted not to use random cropping, as most meaningful features
are in the center of the image. This inspired a random center crop augmentation where an integer 40 ≤ k ≤ 88
is randomly selected, and the image is then cropped around the center to produce a k × k image that would
be resized to 32 × 32. Overall this builds scale and zoom invariance. The downsizing of the image to 32 × 32
mitigates memory usage issues and the dimension being a power of 2 allows for several max-pooling CNN layers,
granting the encoder greater capacity for abstractification and less susceptibility to pixel-wise minutia. The
other two standard data augmentations that were applied to the MSTAR images were a random horizontal flip,
which flips the image horizontally 50% of the time and a random Gaussian blur transformation that used a
7× 7 kernel and a random sigma value randomly selected between 0.1 and 2.0 for each augmentation.

3.3 Network Architecture for SimCLR
The seminal SimCLR paper12 demonstrated that a standard ResNet32 architecture is well-suited for the encoder
network and recommends that a 2-layer perceptron is used for the projection head. However, Chen’s later work33

recommends using a slightly deeper projection head. To this end, we employ a 3-layer perceptron instead of a
2-layer perceptron. SimCLR12 uses a deep ResNet50 for training on Imagenet data. In order to have large batch
sizes under memory constraints and prevent overfitting, we opt to use the lighter ResNet18 model on MSTAR
as well as the aforementioned downsampling to 32× 32 resolution.

3.4 SimCLR and VAE Training Specifications
All code was implemented in Python. The source code to replicate our experiments and evaluation may be
found on our GitHub repository†. The models were implemented using the PyTorch package, the graph learning
and active learning methods were implemented from the GraphLearning Python package,34 and the SimCLR
Pytorch implementation was based on code from SupContrast (Supervised Contrastive) GitHub‡.35 The SimCLR
ResNet18 was trained for 500 epochs and 1000 epochs with a learning rate of 0.05, batch size of 512, and a SimCLR
temperature of 0.5. Training was done using two Nvidia RTX GeForce 2080 GPU’s working in parallel. The
VAE encoder used the pretrained weights from Miller et al,1 which is available on their Github§, the specifics of
which can be seen in their paper.

4. RESULTS
The primary motivation of using contrastive learning was to build upon the previous work of Miller et al.,1 which
used VAEs in the feature extraction process on MSTAR. The hypothesis is that using SimCLR as a stronger
feature extraction process would lead to a more well-separated graph structure for improved label propagation.
To this end, we compare directly with the results of Miller et al.1’s VAE, and also examine the use of raw
images as a baseline. In 4.1, we compare the quality of the embeddings and resulting graphs from our SimCLR
implementation on MSTAR, Miller et al.1’s VAE, and the raw images under a series of tests. In 4.2, we further
examine the use of the VAE and SimCLR embeddings with active learning on MSTAR.

4.1 Embedding and Graph Quality Results
We assess embedding quality of our SimCLR ResNet18, Miller et al.1’s VAE, and the raw flattened SAR images
by various different means: t-SNE and UMAP visualizations of the SimCLR and VAE embeddngs, accuracy of
support-vector machine (SVM) classifiers over different training/testing splits, graph cut energies, and spectral
clustering accuracy.

†https://github.com/jasbrown96/Contrastive-Active-Learning
‡https://github.com/HobbitLong/SupContrast
§https://github.com/jwcalder/MSTAR-Active-Learning
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https://github.com/jwcalder/MSTAR-Active-Learning


(a) UMAP Visualization of Raw SAR Images (b) t-SNE Visualization of Raw SAR Images

(c) UMAP Visualization of VAE Embedding (d) t-SNE Visualization of VAE Embedding

(e) UMAP Visualization of SimCLR Embedding (f) t-SNE Visualization of SimCLR Embedding
Figure 2. t-SNE and UMAP visualizations. Top row: unprocessed SAR images. Middle row: VAE embedding. Bottom
row: SimCLR embedding, trained for 500 epochs. Colors correspond to samples of the same class. The SAR image
embeddings exhibit some structure, but this is largely obscured; the classes are largely intermixed and non-connected.
The VAE embeddings exhibit greater class cohesion with more connected strands, but intermixing is still evident. With
SimCLR, individual classes are far more connected and better separated from others.

First, we compare UMAP36 and t-SNE37 visualizations of the SimCLR trained for 500 epochs, VAE, and
raw image embeddings, shown in Figure 2. Notably, the classes appear well separated in the t-SNE embedding
with very little mixture between labels, but most of the labeled clusters appear disjoint from their respective
class. In contrast, the SimCLR t-SNE and UMAP visualizations in Figures 2(e) and 2(f) demonstrate much more
cohesion within the labeled clusters. There is very little mixing and the labeled clusters are very well connected
with their respective classes; intuitively the SimCLR embeddings should be much better for graph construction.



Embedding Graph Cut Energy (GCE) Spectral Clustering Accuracy (%)
SimCLR 340.301 52.66

VAE 410.941 25.70
Images 1005.815 21.99

Table 1. Graph cut energy (GCE) and spectral clustering accuracy (SCA, given as a percentage) for SimCLR and VAE
embeddings as well as raw flattened images, using KNN graph with k = 20.

We now consider the graph cut energy and spectral clustering accuracy. We take the weight matrix W ∈ Rn×n

over n samples to be the K-nearest neighbor (KNN) graph on the respective embeddings (or raw flattened images)
with K = 20:

Wij = 1ij exp

(
−4∥xi − xj∥

dK(xi)

)
1ij is the binary adjacency matrix for K nearest neighbors, and dK(xi) is the distance to the K-th neighbor of
xi. The graph cut energy GCE measures the weight of all graph edges that would need to be cut in order to
split the graph into connected components corresponding to each class. This gives a measure of how well the
graph-construction, which is based on the embedding quality, reflects the class membership. The GCE can be
computed as

GCE(W,U) ≡ tr(UTL[W ]U)

where L[W ] = Diag(W1n)−W is the graph Laplacian (1n the all ones vector) and U ∈ Rn×k are the 1-hot label
vectors for the k classes.

Spectral clustering is a tractable relaxation of minimizing the graph cut energy to split the graph into
connected components, still seeking to preserve local connectivity of the graph. It has gained wide usage for
unsupervised classification problems in which K-means clustering is insufficient.38 Numerous methods of nor-
malization exist; we opt to use Ng-Jordan-Weiss normalization.38,39 Let D = Diag(W1n). The algorithm uses
the symmetrized Laplacian

Lsym = D−1/2LD−1/2.

Letting U = (u1, ..., uk) denote the matrix of eigenvectors corresponding to the first k smallest eigenvalues
of Lsym (k = 10 for 10 classes), the algorithm normalizes U by row norms for Ũ [i, :] = U [i, :]/∥U [i, :]∥, and
performs K-Means clustering each Ũ [i, :] to determine the cluster of the corresponding point xi.38 By registering
the identified clusters to the ground truth classes by maximal likelihood, we assess the accuracy of spectral
clustering.

The spectral clustering accuracies and graph cut energies are shown in Table 1, comparing a single represen-
tative SimCLR model trained for 500 epochs to the VAE model and the raw images. The SimCLR embeddings
clearly outperform VAE and the raw images by a sizeable margin (twice as good as VAE in spectral clustering).

Finally, we compare the accuracy of linear SVM. The SVM fitting was done over numerous train/test split
ratios, from using 10 labeled points to 3600 for fitting. More split ratios were examined in the lower end of the
spectrum, as this is the region of greater interest for low label rates. For each split ratio, 50 random partitions
were used to fit an SVM classifier, whereafter the testing accuracies were averaged for the final result. Note that
the same partition was consistently applied to the SimCLR embeddings, VAE embeddings, and raw images in each
instance. Figure 3 shows the average testing accuracies vs the number of points used to fit the SVM classifiers.
SimCLR embeddings trained for 500 epochs and 1000 epochs were compared with the VAE embedding and raw
images. The SimCLR curves represent the average SVM performance across 21 distinctly trained models (the
50 partitions applied to each, averaged for each model, then averaged overall). Clearly the SimCLR embeddings
outperform the VAE embeddings and raw images, particularly at low-label rates. Interestingly, the raw images
outperform the VAE embedding until 620 labeled points. The 1000 epoch SimCLR models slightly outperform
the 500 epochs SimCLR models, more notably at low label rates, but the perfomance is quite similar overall.



Figure 3. Different training/testing splits for fitting SVM classifiers on SimCLR, VAE, and Image embeddings, av-
eraged over 50 random partitions for each split, partitions randomly generated (susceptible to large class imbal-
ance/underepresentation at low label rates). The SimCLR curves represent the average performance over 21 distinctly
trained models, 500 ep and 1000 ep trained for 500 and 1000 epochs respectively. The 1000 epoch SimCLR slightly
outperforms the 500 epoch SimCLR, with both drastically outperforming VAE and the images. Interestingly the SAR
images briefly outperform the VAE until 620 labeled points.

Note the partitions here are completely random and agnostic to class representation - the extremely low label
rate splits may not even see a representative of each class, and class imbalances may persist at higher levels,
which may hamper the performance of SVM classifiers. Toward this end, we also examine SVM with equal class
representation in fitting at different label rates. Here an equal number of random representatives were selected
uniformly from each class. As before, 50 partitions were done for each split level. The results of this can be seen
in Figure 4, which compares the VAE embedding, raw images, and average performance of 21 distinct SimCLR
models trained for 500 epochs and 1000 epochs. Here again, the SimCLR embeddings clearly outperform the
VAE and raw images. The 500 epoch and 1000 epoch SimCLR models still perform similarly overall, again
with the 1000 epoch model fairing slightly better at low label rates, and the raw images outperform the VAE
embedding until 320 labeled points. Overall, the high accuracies at extremely low label rates suggest the classes
in the SimCLR embedding are highly linearly separable and well partitioned - far fewer samples are needed for
fitting to achieve good classification accuracy compared to the VAE and raw images.

4.2 Active Learning Results
The t-SNE and UMAP visualizations of the embeddings, shown in Figure 2, along with our other experiments
for embedding and graph comparison suggest that graph-based learning methods will be far more effective with
the SimCLR embeddings over the VAE embeddings. To see if this is indeed the case, we conduct graph-based
active learning with VAE and SimCLR embeddings with various acquisition functions. The results with the
SimCLR embeddings are shown in Figure 5 and the results with the VAE embeddings are shown in 6. The
active learning results displayed for the SimCLR models are averaged over 21 separately trained models, with
500 and 1000 epochs respectively, to mitigate the effects of noise and properly represent the method. In this
section, we compare the averaged active learning results from the model trained to 1000 epochs against the VAE
embeddings. Active learning with the VAE embedding yields considerably strong results with the uncertainty
acquisition function achieving 94.1% accuracy at approximately 300 labels, representing approximately 5% of
the MSTAR dataset. In stark contrast, the SimCLR embedding reaches the same accuracy around 60 labels
(about 1% of the dataset) - a drastic improvement at even lower label rates. Remarkably, at the very beginning
of the learning rate process, the SimCLR accuracy is over 50% and near optimal accuracy is achieved with every
acquisition function after reaching 300 labels. The uncertainty acquisition function performs the best and reaches
99.2% accuracy.



Figure 4. Equal class SVM fitting (same number of points used for each class in fitting) across different training/testing
splits on SimCLR, VAE, and Image embeddings, averaged over 50 random partitions for each split. The SimCLR curves
represent the average performance over 21 distinctly trained models, 500 ep and 1000 ep trained for 500 and 1000 epochs
respectively. The 1000 epoch SimCLR slightly outperforms the 500 epoch SimCLR, with both drastically outperforming
VAE and the images. Interestingly the SAR images briefly outperform the VAE until 320 labeled images.

(a) Accuracy of Active Learning with SimCLR Embed-
dings Trained to 500 Epochs

(b) Accuracy of Active Learning with SimCLR Embed-
dings Trained to 1000 Epochs

Figure 5. The plots above represent the accuracy of active learning with Laplace semi-supervised learning on SimCLR
embeddings, with the models being trained to 500 Epochs in 5(a) and 1000 epochs in 5(b). The results displayed are
averaged across 21 distinctly trained models with active learning applied to each model individually. Using 300 labels,
the 500 epoch embeddings achieved an average accuracy of 98.3% and the 1000 epoch embeddings achieved an average
accuracy of 99.2%.

Figure 7 compares the best performing acquisition function, uncertainty acquisition, using both embeddings.
As mentioned previously, the SimCLR embeddings demonstrably outperform the prior embeddings in every way.
In the initial setting, with only one label per each of the ten classes, the SimCLR embedding can achieve nearly
50% accuracy whereas the VAE embedding achieves 12% accuracy. With only 60 labels, the SimCLR accuracy
has surpassed 90% and with over 200 labels, the accuracy is nearly optimal at around 98%. Comparatively, the
VAE embedding keeps learning up to around 300 labels and achieves approximately 94% accuracy.

5. CONCLUSION
As demonstrated in the results section 4, the power of contrastive learning for feature extraction serves to
be a useful tool in the space of SAR data, yielding more linear separability of classes and better partitioned



Figure 6. This plot represents the accuracy of active learning with Laplace semi-supervised learning on the VAE embed-
dings with the pretrained weights from Miller et al.1 With 300 labels, the highest accuracy achieved is 94.2%.

Figure 7. This plot offers a direct comparison between the graph based active learning performance with the SimCLR
embeddings against the VAE embeddings. The SimCLR embeddings are trained to 1000 epochs and averaged over 21
distinctly trained models, with the vertical bands corresponding to 1 standard deviation in accuracy.

embeddings, with greater local homogeny and path connectedness. Combined with graph-based active learning,
very few labels are necessary to achieve remarkable accuracy using the SimCLR embeddings - SOTA classification
accuracies happen with far less labeled data required, compared to the VAE embeddings. One particular interest
for future work is that the SimCLR framework is amenable to fine-tuning the encoder network over labeled
data33 in such a way that additional labeled data could lead to stronger embeddings, as well as strong machine
learning models. This inspires interesting problems involving updating the encoder network inside the active
learning loop, either via an encoder update step or even a novel acquisition function.
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