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1. ABSTRACT
Automatic target recognition with synthetic aperture radar (SAR) data is a challenging problem due to
the complexity of the images and the difficulty in acquiring labels. Recent work1 used a convolutional
variational autoencoder to extract relevant features prior to constructing a similarity graph in a graph-based
active learning framework for SAR data. In this work we present two novel methods for classifying SAR data
that use convolutional neural network (CNN) feature extraction together with techniques from graph-based
semi-supervised learning in an end-to-end manner that can provide improved classification performance
in the small labeled dataset regimes that are common in SAR ATR. First, we introduce Laplace Output
Activation Neural Networks (LOAN Networks) as a way of directly optimizing feature embeddings for use
with graph-based semi-supervised learning techniques. Next, we introduce Pseudo Label Propagation Neural
Networks (PsLaPN Networks) as a inexpensive way to both boost the training signal as well as combat
overconfidence and poor model calibration in neural networks. We present a novel derivation of simple
formulas for the direct and efficient computation of derivatives of the outputs of graph-based algorithms like
label propagation2 for use in the training of our networks. We test the proposed end-to-end networks for
active learning on OpenSARShip, a SAR dataset, where both methods surpass the previous state-of-the-art.
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2. INTRODUCTION
Synthetic Aperture Radar (SAR) is a useful remote sensing technique for constructing two dimensional
images of three dimensional objects. Using the motion of the radar antenna over a target area, SAR can
provide finer spatial resolution than ordinary radar. In addition, its day-and-night, all-weather abilities make
it a promising and exciting technology. Automatic Target Recognition (ATR) seeks to classify objects in SAR
images. However, hand-labeling large SAR datasets by a human annotator is prohibitively time-consuming;
this makes SAR data a frequent area of research in machine learning.1, 3–8

Supervised machine learning methods typically require large amounts of high quality, labeled training
data. However, in many applications (including SAR ATR), labeling data can be expensive, time consuming,
or impractical, while the passive collection of unlabeled data is only becoming easier and more common.
This motivates the use of semi-supervised learning (SSL) techniques, which aim to mine data sets consisting
of both labeled and unlabeled instances for additional information to supplement the labels during training.
One popular collection of such techniques, which we will refer to as graph-based SSL, encode relational
information among instances in the form of similarity graphs in order to supplement labels.

Graph-based SSL2, 9, 10 is a class of methods for propagating labels from labeled points to unlabeled
points based on the topology of a similarity graph. By supplementing label information with relational in-
formation encoded in the similarity graph, graph-based semi-supervised learning can achieve high accuracy
with a fraction of the labels. Hence, constructing a high-quality similarity graph is paramount for effective
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graph learning. A good similarity graph will capture similarities that are important for classification, while
ignoring features that are not. In imaging, pixel values are sensitive to noise and other small corruptions.
Even in the absence of corruption, naive metrics (like Euclidean or those coming from the other p-norms) on
the image space don’t provide meaningful measures of similarity; the classification of an image is preserved
under transformations, such as translation and rotation, that can significantly alter the image pixel-wise
and hence lead to similar images which are very far from one another in a given metric. Thus, since we
cannot rely on constructing the similarity graph directly from pixel values, many standard preprocessing
techniques have been developed for use prior to constructing the similarity graph: Scale Invariant Feature
Transformation (SIFT),11 the scattering transform,12 pre-trained neural networks,13 or variational autoen-
coders (VAEs).7, 8, 14 Some research has focused on using VAEs to embed data prior to constructing similarity
graphs,10, 15 while others have utilized a convolutional neural network VAE1 (CNNVAE), producing state-
of-the-art results on MSTAR,16 another SAR dataset. However, these feature extraction techniques take
place entirely before the construction of the similarity graph. While, empirically, this leads to strong results
after applying graph learning, the separation of the feature extraction process and graph learning motivates
a framework in which the two processes are optimized in a more synergistic way.

In this work we present three novel contributions. The first is a derivation of a formula for backpropagating
Laplace learning, presented in Section 4. The second is novel framework combining CNN feature extraction
with Laplace learning we call the Laplace Output Activation Neural Network (LOAN Network). The LOAN
Network improves on previous work by incorporating outputs from graph learning into the training process,
so that the CNN can more directly learn the best possible features for graph learning. By using Laplace
learning as our output activation and tracking the necessary gradients for backpropagation (see Section 4), we
can directly train the CNN to learn better features for graph learning than in previous works. Third, we use
autodifferentiable label propagation earlier in a CNN in order to generate pseudo-labels for semi-supervised
training in a way that is differentiable but does not make use of the potentially poorly calibrated predictions
of the network itself.17 We do this by introducing a lightweight framework called Pseudo Label Propagation
Neural Network (PsLaPN Network, pronounced “Slappin’ Network"). We validate our contributions by
demonstrating state-of-the-art image classification results on the OpenSARShip dataset.5

2.1 Related Work
2.1.1 Graph-Based Semi-Supervised Learning
Many graph-based SSL models have been proposed, which compute a graph function that yields inferences
of unlabeled nodes using labeled nodes and the graph topology. Laplace learning,9 also known as label
propagation, is a widely used method which computes a graph harmonic function to extend the given labels to
the remainder of the graph. For large datasets with very few labels, Laplace learning degenerates and suffers
from a “spiking” phenomenon10 around labeled points, resulting in poor performance. Several methods have
been proposed for these very low label rate regimes, including reweighted Laplace learning,18, 19 p-Laplace
methods (for p > 2),20 and Poisson learning.10 Recent works have also focused on graph total variation
problems which utilize the notion of a graph cut.21–23 This paper will focus integrating Laplace learning
with CNN feature extractions, and we leave other graph learning methodologies as interesting avenues for
future work.

2.1.2 Graph Learning and Neural Networks
The use of graph-based classifiers within neural networks has been investigated previously24 with a focus
on adversarial robustness and semi-supervised deep learning, particularly in low-label rate regimes. Their
proposed method is similar to our LOAN Network; they replace of the final softmax output activation
function in a deep neural network with a graph-based, data-dependent activation function. However, this
work only used the graph-based activation function to compute loss, and backpropagated only through linear
layers in the network. In contrast, we derive formulas that allow for direct and efficient computation of the
derivatives of a wide class of graph-based classification algorithms and use this to directly train our LOAN
Network.

The development of LOAN Network was motivated by prior research1 where the authors proposed an
active learning pipeline for SAR data that performed classification with the use of of similarity graphs built
on latent features learned from a variational autoencoder (VAE). This method for latent feature learning



has no explicit goal of learning features that are useful for graph learning, however, and so we were inspired
to develop LOAN as a way of learning visual features for similarity graph-based classification in an end-to-
end manner. Similarities can also be drawn between LOAN and previous work25 on constructing similarity
graphs with potentially more application-appropriate, non-Euclidean metrics. LOAN can be seen as a way
of learning effective similarity kernels from data rather than hand-crafting them.

The other architecture that we propose, PsLaPN Network, was inspired by the works of Iscen et al26

and Elezi et al.27 Their work extends prior work on pseudo-labelling,28 which refers to supplementing
labeled training data with unlabeled instances whose labels have been predicted by some (possibly different)
machine learning model. As in previous work, we use a graph-based classifier to generate pseudo-labels for
deep network training.26, 27, 29 Unlike these works, however, we keep soft pseudo-labels throughout, we train
our model end-to-end, and we generate fresh psuedo-labels each epoch in a mini-batched fashion.

The PsLaPN Network also shares similarities with regularization techniques such as label smoothing,30, 31

which aims to combat poor model calibration in deep neural networks by penalizing overconfident predictions.
This is done by averaging the usual one-hot target labels with a uniform distribution, and it has shown
evidence of aiding with generalization as well as mitigating the effects of noisy labels.31, 32 The use of
a uniform distribution for the smoothing might be suboptimal, however, as semantic similarity between
classes is itself nonuniform. Recent work has explored smoothing with different, potentially more meaningful
distributions,33 and the unsupervised loss term in PsLaPN Network can similarly be seen as label smoothing
using the predictions of graph-based classifiers.

Finally, we note that, similarly to us, prior research investigated the use of label-propagation to improve
the predictions of a neural network in an end-to-end manner.34 They only perform an approximation to
label propagation, however, backpropagating through finitely many iterates of an iterative method for the
computation of the solution to label propagation. They also do not construct their graphs from data,
assuming instead that it is given to them as is typical of graph neural networks.

2.2 Previous Work on SAR
Owing to their broad success in many machine learning tasks, CNNs have been the focus of significant recent
work on SAR ATR. CNNs are neural networks with several convolutional layers, which extract features
from the data, followed by fully connected layers, which map the features to a predicted classification.
The convolutional layers are translation invariant and hence well-suited to image classification problems
such as ATR. The main challenge in applying deep learning to SAR is the limited amount of data. The
OpenSARShip dataset, for example, has under 2300 images total and about 1000 training images, but
deep learning approaches typically require much larger amounts of training data to avoid overfitting to the
training set. One way to avoid this issue is to reduce the model’s complexity. Because convolutional layers
have significantly fewer parameters relative to the fully connected layers, researchers have proposed many
alternatives to the fully connected layers to reduce the complexity of the overall architecture. Our approach
replaces the fully connected layers with graph learning in testing.

Previous work used Support Vector Machines (SVMs) in place of fully connected layers to improve gener-
alization and explainability.35 Another work proposed the All-Convolutional Networks (A-ConvNets),36, 37

which replaced the fully connected layers with more convolutional layers to reduce the number of parame-
ters and the risk of overfitting. Another approach used regularization to speed up convergence and prevent
overfitting.38 Other approaches have focused on feature extraction methods which are unsupervised or
minimally supervised. Some authors have proposed a semi-supervised CNN method that integrated linear
discriminant analysis into the training process.39 Convolutional variational autoencoders were recently em-
ployed to extract features from SAR images in a completely unsupervised manner.1 An autoencoder was
also utilized in the so-called Euclidean Distance Restricted Autoencoder.7 This method added a Euclidean
distance-based penalty term to the reconstruction error to encourage training data from the same class to
have similar feature representations. Sparse autoencoders have also been used as a preprocessing step before
a single-layer CNN extracted features.8 Additional research has focused transfer learning, which utilized
pre-trained models to lessen the amount of training data needed.40, 41 Some recently proposed works have
incorporated hand-crafted features as part of a deep learning framework,3, 42 leading to improved accuracy
on some benchmark SAR classification tasks.



2.3 Organization of Paper
We provide mathematical background on graph-based semi-supervised learning in Section 3. We introduce
and derive our method for backpropagating through Laplace learning in Section 4. We present our novel
network architectures and demonstrate state-of-the-art results on OpenSARShip in Section 5. We conclude
and offer future directions of work in Section 6.

3. TECHNICAL BACKGROUND
3.1 Graph-Based Semi-Supervised Learning
We consider transductive, semi-supervised classification problems. We restrict attention here to binary clas-
sification for simplicity (one can use a one-vs-all scheme for a straightforward extension to multi-class clas-
sification).

We suppose that we are given a data set X := {x1, x2, ..., xn} ⊂ Rd consisting of points embedded in
Euclidean space, with each data point belonging to exactly one of two possible classes. For 1 ≤ i ≤ n, we let
yi ∈ {0, 1} denote the class to which the instance xi belongs and we refer to these as the class labels for the
data set. We suppose that we are able to observe the entire data set X but that we are only able to observe
a subset of the labels y1, . . . , yk for some 1 ≤ k < n. The goal of transductive semi-supervised learning is to
use these observations to predict the remaining class labels yk+1, . . . , yn.

Laplace Learning9 is a classical graph-based method for solving such a semi-supervised learning problem.
Denote by L := {x1, x2, ..., xk} the labeled subset and by U := {xk+1, x2, ..., xn} the unlabeled subset. We
begin by constructing an affinity matrix W ∈ Rn×n, which will be a nonnegative, symmetric matrix whose
entry Wij records the affinity (or similarity) between the instances xi and xj . We remark that, given its
nonnegativity and symmetry, such an affinity matrix can be interpreted as the adjacency matrix of a weighted,
undirected graph whose nodes are in correspondence with the elements of the point cloud X . A popular way
to construct affinity matrices, which we will employ, is by using a Gaussian kernel

(3.1) Wij = exp
(

− ∥xi − xj∥2
2

σ

)
for some bandwidth hyperparameter σ > 0. We then form the degree matrix D ∈ Rn×n, a diagonal matrix
with diagonal entries given by Dii =

∑n
j=1 Wij , and use this to form the the (unnormalized) Laplacian

matrix L = D − W.

Laplace Learning makes predictions for the labels yk+1, . . . , yn by first obtaining the solution z ∈ Rn to
the problem

(3.2)

{
(Lz)i = 0, if xi ∈ U

zi = yi, if xi ∈ L.

We remark that the solution to (3.2) has a natural interpretation as the solution to a discrete Dirichlet
problem on the graph determined by W, with the labeled instances xi ∈ L serving as boundary points. We
then define

(3.3) ŷi = argmin
y∈{0,1}

|y − zi|

for xi ∈ U (breaking ties arbitrarily) and use these for our label predictions.

4. BACKPROPAGATING THROUGH LAPLACE LEARNING
Consider, once again, binary classification with Laplace Learning with notation as above. The affinity matrix
W can be partitioned as

W =
[

Wll Wlu

Wul Wuu

]
,



i.e., with the first k rows and columns corresponding to the labeled instances and the last n − k rows and
columns corresponding to the unlabeled instances. Denote by

L =
[

Lll Llu

Lul Luu

]
the unnormalized Laplacian obtained from W, partitioned in the same way as W. Denote by

y ∈ {0, 1}k

the binary vector encoding class membership among the labeled instances. Then the solution to the Laplace
Learning problem can be expressed as

(4.1) z =
[

y
−L−1

uu Luly

]
.

Consider now the use of Laplace Learning within a neural network or some other gradient-based learning
context. Note that only the component

zu = −L−1
uu Luly

is fed into the loss J , and hence the gradient of the loss with respect to z satisfies

∇zJ =
[

0
∇zuJ

]
.(4.2)

Assuming that this gradient ∇zu
J has been obtained, we are interested in computing the gradient ∇W J of

the loss with respect to the entries of the affinity matrix W. The main conceptual contribution of this work
is a particularly simple formula for the exact computation of this gradient. We state this result in Lemma
4.1 and prove it in the remainder of this section.

Lemma 4.1 (Formula for ∇W J ).

(4.3) ∂J
∂Wij

= (zj − zi)vi

To prove this, we start by viewing zu as the solution to the linear system

(4.4) Luuzu = −Luly.

Noting that the entries of the matrices Luu and Lul are smooth functions (in fact, they are linear) of the
entries of W and that the vector y is constant with respect to the entries of W, we can differentiate both
sides of Equation (4.4) to obtain

(4.5) ∂Luu

∂Wij
zu + Luu

∂zu

∂Wij
= − ∂Lul

∂Wij
y

and hence

∂zu

∂Wij
= −L−1

uu

(
∂Lul

∂Wij
y + ∂Luu

∂Wij
zu

)
(4.6)

= −L−1
uu

∂Lu

∂Wij
z,(4.7)

where

(4.8) Lu =
[
Luu Lul

]
denotes the last n − k rows of L.



While Equation (4.7) gives an exact formula for the derivatives of zu with respect to the entries of W,
computing them directly in this way would, a priori, require us to solve n2 linear systems. We can cut this
down to (n − k)2 solves by noting that the entries of both Luu and Lul are constant with respect to Wij

whenever i ≤ k, but this might still be expensive. Taking our cue from the recent trend of implicit layers in
deep learning, which include examples like deep equilibrium models43 and Neural ODEs44 as special cases,
we find that if we are only interested in the gradient ∇W J then we can actually replace these (n−k)2 solves
with a single solve. Using the chain rule, we obtain

∂J
∂Wij

= ∂J
∂zu

∂zu

∂Wij
(4.9)

= (∇zu
J )T ∂zu

∂Wij
(4.10)

= (∇zu
J )T

(
− L−1

uu

∂Lu

∂Wij
z
)

(4.11)

= −(L−1
uu · ∇zu

J )T ∂Lu

∂Wij
z,(4.12)

with a single linear solve in the final line (4.12) that is independent of the indices (i, j).
We can simplify this formula even further by noting that

(4.13) ∂Lu

∂Wij
= Eii − Eij

whenever i > k, where Est ∈ R(n−k)×n denotes the matrix with its (s, t)-entry equal to unity and all others
zero. Thus,

(4.14) ∂J
∂Wij

=

{
0, if i ≤ k

(zj − zi)(L−1
uu · ∇zu

J )i, if i > k.

Writing

(4.15) v =
[

0
L−1

uu · ∇zuJ

]
,

we finally obtain

(4.16) ∂J
∂Wij

= (zj − zi)vi

for all 1 ≤ i, j ≤ n, as desired.

5. EXPERIMENTAL RESULTS
5.1 Dataset
We present state-of-the-art results on the publicly available OpenSARShip dataset5 using our novel end-to-
end framework. OpenSARShip is a popular dataset for analysis,3, 4, 6, 42, 45, 46 and hence is a good choice
to measure the capability of our methodology. The dataset consists of three classes of ships (Bulk Carrier,
Container Ship, and Tanker) imaged using SAR (see Table 1), and has an imbalance in its testing set, posing
a challenge to many ML methods. The images are 128 × 128 pixels.

OpenSARShip Dataset
Category #Train #Test #Total
Bulk Carrier 338 328 666
Container Ship 338 808 1146
Tanker 338 146 484

Table 1: Number of ships in each category of the OpenSARShip dataset.



Figure 1: Example OpenSARShip images in grayscale. The top, middle, and bottom rows are Bulk Carriers, Container
Ships, and Tankers, respectively.

5.2 LOAN Network Architecture
The CNN phase of our architecture is simple and standard, identical to the network presented in Miller et
al.1 It consists of two convolutional layers followed by two fully connected layers. The convolutional layers
have 32 and 64 channels, respectively, with a 2 × 2 max pool after the first layer and 4 × 4 max pool after
the second. To help avoid overfitting, there is a dropout47 with p = 0.25 before the first fully connected
layer, followed by a batch normalization,48 and then a dropout with p = 0.5 in between the fully connected
layers. ReLU activations are used throughout the network.

Each training minibatch consists of 26 “held in” labeled points per class, while the remaining training
points are “held out.” Once we embed the datapoints into the feature space using the CNN and run Laplace
learning, we use the predictions based on the held in points to compute the classification loss on the held
out points. In a given epoch, each minibatch uses a non-overlapping set of held in labeled points, meaning
that on OpenSARShip, there are 13 batches per epoch. We also embed the unlabeled test points in order
to produce a more robust graph. Note that the labels of the test points are never used in training; they are
only included to ensure a more accurate approximation of the manifold structure on which graph learning
operates. After the features are extracted from the CNN, we construct a fully connected graph in training,
and a sparse graph using an approximate k-Nearest Neighbors search† with k = 20 in testing. Using a fully
connected graph in training maintains differentiability that would be lost in the sparse case. We use angular
similarity as our metric, which tends to be a beneficial choice compared to Euclidean similarity in high
dimensions. From there, we construct the weight matrix as in Equation (3.1). Additionally, during testing
we use self-tuning bandwidths σi = dk(xi)2, where dk(xi) is the distance from xi to its kth nearest neighbor.
Since the k-nearest neighbor relation is not symmetric, we also symmetrize the weight matrix during testing
by replacing W with W +W T

2 .
After the feature extraction and graph construction process, Laplace learning runs on the resulting graph.

Laplace learning assigns a probability of each node belonging to each class. Among the labeled points that
†We use the python package Annoy https://github.com/spotify/annoy.

https://github.com/spotify/annoy.


Figure 2: Diagram of the LOAN Network Architecture.

were held out, we use their known labels along with these probabilities to compute a loss. We use the
standard negative log likelihood loss function. We can then use this to backpropagate (using the innovations
discussed in Section 4) to update the CNN. We trained for 100 epochs, as in the work of Zhang et al,3 which
we present comparisons to shortly. We use a learning rate of 1 and the Adadelta optimizer.49 We train on
the full CNN, and perform tests by running Laplace learning on convolutional features, a beneficial strategy
to boost performance used in a seminal work on contrastive learning.50

The CNN phase of LOAN was implemented using PyTorch, and the graph learning algorithms were
implemented using the Graph Learning package‡. See Figure 2 for a visual overview of LOAN’s architecture.

5.3 LOAN Results and Comparison to Prior Work
LOAN is a simple, lightweight, and computationally inexpensive learning framework compared to much of
the prior art in SAR ATR, which can perform on par or exceeding the state-of-the-art depending on the
use of class priors - a priori knowledge of the fraction of the data belonging to each class. Many graph
learning methods, including Laplace learning, can be modified to automatically balance the label predictions
based on prior knowledge of class sizes. Depending on the context, it may be reasonable to assume a priori
knowledge of (possibly imbalanced) class sizes, so we present results with and without class priors in this
section. Following previous work on graph learning,10 we enforce the class priors by a weighting the label
decision after solving the Laplace learning equation. To be more precise, the output of Laplace learning is
a n × k matrix Z whose (i, j) entry zij can be interpreted as the probability that the ith datapoint belongs
to class j. The weighted label decision over k classes is given by

ℓi = argmax
1≤j≤k

{sjzij},

where the positive weights s1, s2, . . . , sk are selected with an iterative gradient descent-type approach to
ensure the class priors hold (i.e., the correct number of data points are predicted in each class). There is one
weight sj for each class, and in the weighted label decision above we can see that increasing (resp. decreasing)
sj effectively increases (resp. decreases) the number of nodes predicted in class j. We refer the reader to
Calder et al.10, 15 for more details on the class priors algorithm, and additional applications.

Since the test set of OpenSARShip is imbalanced, including class priors naturally improves the perfor-
mance of LOAN. In addition to its high classification accuracy, LOAN enjoys significantly faster run times
than previous work; the previous state of the art in OpenSARShip classification3 reported 25.75 seconds per
epoch on average, whereas LOAN only takes 4.55 seconds per epoch on average. These experiments were

‡See https://github.com/jwcalder/GraphLearning.

https://github.com/jwcalder/GraphLearning.


Figure 3: Illustration of the PsLaPN Network Architecture

run on a computer with AMD Ryzen Threadripper 3960X processors and an 11GB GeForce RTX 2080Ti
with 4352 CUDA Cores. In particular, this GPU is very similar to the one used in the previous work.3

Zhang et al.3 assessed many popular deep learning architectures, along with their own novel approach, on
classifying OpenSARShip. Their framework achieved an accuracy of 78.15%±0.57%. The mean and standard
deviation comes from 10 “optimal” trials, which followed the procedure of Wang et al.45 This accuracy
outperformed all previous works. For a fair comparison, we followed the same 10-trial procedure with the
same train and test split in order to compare directly to Zhang et al.3 and the approaches tested therein.
LOAN with class priors can achieve 80.26%±0.54% accuracy (see Table 2), an over 2% absolute improvement
over the previous state-of-the-art. LOAN without class priors achieves an accuracy of 77.26 ± 0.97.

OpenSARShip Classification Results (10 Trials)
Method Accuracy (%)
State of the Art3 78.15 ± 0.57
LOAN Network 77.26 ± 0.97
LOAN Network (Best Trial) 78.24
LOAN Network, CP 80.26 ± 0.54
LOAN Network, CP (Best Trial) 81.36

Table 2: Classification results on OpenSARShip, using 10 trials to calculate mean and standard deviation. Experi-
ments run with class priors are indicated by CP.

5.4 PsLapN Network Architecture
While the PsLaPN network can be built on top of any architecture for supervised feature extraction, in this
work we exclusively consider a CNN backbone consisting of two convolutional layers with max-pooling and
two fully-connected layers, with ReLU activations between hidden layers and a softmax output activation.
We also make use of batch normalization48 and dropout47 between layers, imitating the specifications of the
network used in prior art.1 In particular, we do not perform any hyperparameter tuning here.

The network is trained in mini-batches, with each mini-batch containing both labeled and unlabeled
data. Each forward pass returns both the convolutional features as well as the final network predictions.
Label propagation is run on the convolutional features using the given labels in order to generate pseudo
labels for the unlabeled data. The loss is formed by adding two cross-entropy terms, one consisting of the
network prediction distributions for the labeled data together with the one-hot label distributions and the



OpenSARShip Classification Results (10 Trials)
Method Accuracy (%)
HOG-ShipCLSNet3 (Cropping) 78.15 ± 0.57
HOG-ShipCLSNet3 (No Augs.) 76.16 ± 0.74
PsLAPN Network 78.74 ± 0.67
PsLAPN Network (Best Trial) 79.49
Backbone Network 74.53 ± 1.03

Table 3: Classification results on OpenSARShip, using 10 trials to calculate mean and standard deviation. "Backbone
Network" refers to trials run using the basic CNN without use of pseudo labels. Results from Zhang et al.3 included
for comparison.

Figure 4: Comparison of PsLaPN Net to Hog-Ship on OpenSarShip.

other consisting of the network prediction distributions for the unlabeled data together with the prediction
distributions obtained from label propagation. As with LOAN, we construct a dense affinity matrix with
entries as in Equation (3.1), using a bandwidth parameter of σ = 1

2 , for use in generating pseudo-labels for
training. An illustration of this is given in Figure 3.

5.5 PsLaPN Results and Comparison to Prior Art
As above, we compare the performance of PsLaPN Network on OpenSARShip to the previous state of the
art.3 As with LOAN, we follow the 10-trial procedure of Zhang et al3 with the same train and test split.
For these experiments, we train PsLaPN Network with a learning rate of 2 and the Adadelta optimizer.
Mini-batches consist of 78 labeled instances (26 from each of the three classes) and 100 unlabeled instances.
As with LOAN, we train PsLaPN Network for 100 epochs for each trial. Our results with PsLaPN Network
and a comparison to those of Zhang et al3 are presented in Table 3. For further comparison, we also report
the performance of the CNN backbone of PsLaPN Network when trained with no use of psuedo-labels. To
provide a comprehensive view of the training behavior of PsLaPN Network and its insensitivity to choice of
training duration, we ran each of our 10-trials for 500 epochs, reporting test results every 50 epochs. Figure
4 shows these results, still providing a comparison between our results and the results reported in Zhang et
al.3

Note that, in contrast to LOAN Network, the tests for PsLaPN are run by feeding the test data through
the entire network and using the softmax predictions. In particular, we only perform label propagation
during training, and hence do not use class priors while testing. Finally, we remark that PsLaPN Network is
extremely lightweight, requiring only 1.4 seconds per epoch when trained on Google Colaboratory compared
to 25.75 seconds per epoch in Zhang et al.3

6. CONCLUSION AND FUTURE WORK
In this paper we presented two novel architectures, the LOAN Network and the PsLaPN Network, both of
which integrate graph learning into the training of a CNN and improve upon previous state-of-the-art SAR



image classification results. To train these networks efficiently, we derived equations for backpropagation of
the loss gradients through Laplace learning.

There are many exciting future directions for this work. Our CNN was a very simple architecture: two
convolutional layers and two fully connected layers. While more computationally expensive, a deeper model
may improve results further. In this paper, we only considered the use of Laplace learning, but other graph
learning techniques exist, such as Poisson learning,10 which may perform better than Laplace learning at
very low label rates. LOAN used a negative log likelihood loss function, which is standard in CNNs for
classification problems, but a loss which enforces a smoothness constraint on the labels across the graph may
be more desireable as we further explore the interplay of the CNN and graph learning. The unsupervised loss
for PsLaPN network is asymmetric in the prediction distributions generated by label propagation and by the
network, but this does not seem well-justified. It might be useful to consider a “symmetric cross-entropy”
loss51 and/or other methods for training neural networks on noisy labels for the unsupervised loss. It would
also be worthwhile to explore ways to take into account the confidence or uncertainty of the pseudo labels
that are generated.

Active learning has been shown to greatly improve results of graph-based SSL methods, especially at
lower label rates,1 and would likely be a positive addition to our methods. Since both of our methods involve
training a classifier from scratch, we would need to address the “cold start” problem that we would likely
encounter. For this it might be worthwhile to investigate fully unsupervised feature extraction procedures
like contrastive learning50 for use in the querying process.
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