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1 INTRODUCTION

1 Introduction

Many problems in science and engineering involve the sorting, or ordering, of large amounts
of data. Being discrete in nature, these problems can be challenging in the context of big
data. We consider here continuum limits for a class of algorithms for sorting, or arranging, a
finite set X ⊂ Rd into layers by repeatedly peeling away extremal points. Different notions of
extremality lead to different notions of sorting.

For example, if we say that coordinatewise minimal points are extremal, then we get
nondominated sorting (Section 1.1), which is a fundamental algorithm in multi-objective op-
timization. If we choose vertices of the convex hull to be extremal, then we get convex hull
peeling (Section 1.2), which is used to define multi-variate order statistics, such as the median.
We can generalize the preceding two examples by repeatedly peeling away the so-called Pareto
envelope of the set of points—we discuss this in Section 1.3. Finally, if our data is endowed
with a graph structure, where pairs of points are connected by edges of varying weights, ex-
tremal points are often defined as points that have small degree. Peeling away points of small
degree is called graph peeling (Section 1.4), and is used to discover significant parts of a graph
in data science.

Since the size of typical datasets in data science problems is rapidly increasing, it is natural
to ask what happens in the limit as the number of samples tends to infinity. This is a problem
mathematicians can address, but we first need a model for our data. Probably the most
common model is a sequence of independent and identically distributed random variables. For
mathematical convenience, we will instead model our data as a spatial Poisson point process
on Rd with intensity function nf(x) where n ∈ N. We denote the Poisson point process by
Xnf . For the reader who is not familiar with Poisson point processes, we have summarized
some important properties in the appendix in Section A. All of the results in the minicourse
are equally true for a sequence of n independent and identically distributed random variables
with probability density function f .

For all of the algorithms mentioned above, we can consider the problem of sorting the
random Poisson cloud Xnf as n → ∞. For nondominated sorting and convex hull peeling,
we can prove that the sorting has a continuum limit that corresponds to solving a partial
differential equation (PDE) in the viscosity sense. Similar results are expected to be true for
peeling the Pareto envelope and graph peeling, and these are interesting problems for future
research. Continuum limits for these peeling algorithms give us a better understanding of
what the algorithms are doing, and sometimes can lead to fast approximate sorting algorithms
based on solving the PDE instead of sorting.

In Sections 1.1–1.4, we describe each of the sorting algorithms above in more detail, and
in Section 1.5 we give an overview of the content to be covered in the minicourse. The bulk
of the minicourse is the content of Sections 3, 4, and 5.

We gratefully acknowledge the support of the National Science Foundation under grants
NSF DMS-1500829, 1656030, which has supported much of the research described in this
minicourse.

1.1 Nondominated sorting

Nondominated sorting is an algorithm for sorting points in Euclidean space into layers by re-
peatedly removing the coordinatewise minimal points. The algorithm is fundamental in multi-
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Figure 1.1: Examples of Pareto fronts n random points on [0, 1]2.

objective optimization, where it is a key component of the so-called genetic and evolutionary
algorithms for continuous multi-objective optimization [24, 25, 32, 33, 62]. Multi-objective op-
timization is ubiquitous in science and engineering, arising in problems such as control theory
and path planning [46,50,52], gene selection and ranking [29–31,36–38,61], data clustering [35],
database systems [45,55] and image processing and computer vision [16,54].

Let Xnf be a Poisson point process with intensity nf . Define the partial order

(1.1) x 5 y ⇐⇒ xi ≤ yi for all i ∈ {1, . . . , d}.

A point x ∈ Xnf is minimal with respect to the coordinatewise partial order 5 if no other point
y ∈ Xnf is smaller (i.e., y 5 x). The subset of minimal points in Xnf are called nondominated,
or Pareto optimal, and constitute the first Pareto front, denoted F1. The second Pareto front,
F2 consists of the minimal points from Xnf \ F1, and in general

Fk = Minimal elements of Xnf \ (F1 ∪ · · · ∪ Fk−1).

The process of arranging Xnf into the Pareto fronts F1,F2,F3, . . . is called nondominated
sorting [25]. Figure 1.1 shows the Pareto fronts sorting random points.

Nondominated sorting is equivalent to the longest chain problem, which has a long history
in probability [9, 26, 34, 48, 66, 67]. Recall that a chain in a partially ordered set is a totally
ordered subset. In our setting, a chain in Xnf with respect to 5 is an up/right path through
Xnf , that is, a path that with each step always increases in every coordinate. Let `(S) denote
the length of a longest chain in the set S ⊂ Rd, and define

(1.2) Un(x) = `([0, x] ∩Xnf )

where [0, x] := [0, x1]× [0, x2]× · · · × [0, xd]. We claim that for every x ∈ Xnf

(1.3) Un(x) = k if and only if x ∈ Fk.

To see this, note first that any given Pareto front Fk can only contain at most one point from
any chain. Thus, if x ∈ Fk we must have Un(x) ≤ k. To show equality, we argue how to
construct a chain of length k. The point x ∈ Fk will be the last point on the chain. Now, we
know x ∈ Fk precisely because there exists a point on the previous front Fk−1 that is less than
x with respect to 5. This point will be the second to last point on the chain. See Figure 1.2
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Figure 1.2: Illustration of the equivalence between the longest chain problem and nondomi-
nated sorting.

for reference—the chain is the dotted line. This point is on Fk−1 because there exists a point
on Fk−2 less in all coordinates. This is the third to last point on the chain. Continuing by
induction we can construct a chain of length exactly k starting on F1 and ending at x ∈ Fk.
This establishes (1.3).

The equivalence (1.3) says that the Pareto fronts F1,F2,F3, . . . are encoded into the level
sets (or jump sets) of the function Un. In other words, Un is a piecewise constant function
that counts the nondominated layers. It turns out that the longest chain interpretation of
nondominated sorting is very useful in the mathematical analysis of the algorithm. We also
mention there are also other interesting connections between nondominated sorting and com-
binatorics [28, 49], molecular biology [3, 56], graph theory [49], Young Tableaux [28, 68] and
even in physical layout problems in the design of integrated circuits [3].

Nondominated sorting has a continuum limit that corresponds to solving a Hamilton-Jacobi
equation [11,12]. One version of the theorem is as follows.

Theorem 1.1. Assume f ∈ C([0,∞)d). Then there exists a universal constant Cd > 0 such
that with probability one

(1.4) n−1/d Un −→ Cd u locally uniformly on [0,∞)d as n→∞,

where u ∈ C([0,∞)d) is the unique increasing1 viscosity solution of

(1.5)

{
ux1 · · ·uxd = f, in Rd+

u = 0, on ∂Rd+.

Theorem 1.1 states that the Pareto fronts F1,F2, . . . converge almost surely to the level
sets of the function u that satisfies the Hamilton-Jacobi equation (1.5) in the viscosity sense.
See Figure 1.3 for an illustration of this continuum limit.

The continuum limit (1.5) opens the door to fast approximate sorting algorithms based
on estimating the distribution f of the data and solving the PDE (1.5) numerically [13].

1Increasing means that u(x) ≤ u(y) whenever xi ≤ yi for all i.
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Figure 1.3: Example of the continuum limit of nondominated sorting (Theorem 1.1) for f(x) =
1 for x ∈ [0, 1]2 \ [0, 0.5]2, and f(x) = 0 otherwise.

The resulting algorithm is called PDE-based ranking, and can be orders of magnitude faster
than the discrete sorting problem, depending on the application. The PDE-based ranking
algorithm has recently been applied in machine learning to the problem of anomaly detection
and classification of streaming data [1] using the finite difference schemes for (1.5) developed
recently [10].

1.2 Convex hull peeling

The ordering of multivariate data is an important and challenging problem in statistics. One
dimensional data can be ordered linearly from least to greatest, and the study of the distribu-
tional properties of this ordering is the subject of order statistics. An important order statistic
is the median, or middle, of the dataset. In statistics, the median is generally preferred over
the mean due to its robustness with respect to noise. In dimensions d ≥ 2, there is no obvious
generalization of the one dimensional order statistics, and no obvious candidate for the median.
As such, many different types of orderings, and definitions of median, have been proposed for
multivariate data. One of the first surveys on the ordering of multivariate data was given by
Barnett [7], and more recent surveys are given by Small [60] and Liu [47].

In Barnett’s seminal paper [7], he introduced the idea of convex hull ordering. The idea
is to sort a finite set X ⊂ Rd into convex layers by repeatedly removing the vertices of the
convex hull. The process of sorting a set of points into convex layers is called convex hull
peeling, convex hull ordering, and sometimes onion-peeling [22]. The index of the convex layer
that a sample belongs to is called its convex hull peeling depth. This peeling procedure will
eventually exhaust the entire dataset, and the convex hull median is defined as the centroid of
the points on the final convex layer. Convex hull ordering is now extensively used in the field
of robust statistics [27,58], and is particularly useful in outlier detection [39].

Since affine transformations preserve the convexity of sets, the convex layers of a set of
points are invariant under affine transformations. Due to this important property, Suk and
Fusser [64] use convex hull peeling to match projectively deformed datasets. This is important,
for example, in computer vision, where a common task is the recognition of objects viewed
from different angles. There are also some interesting applications of convex hull peeling in
fingerprint identification [57], and algorithmic drawing [23].

Convex hull peeling has a continuum limit that corresponds to solving a second order
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Figure 1.4: Examples of convex layers for n random points on [0, 1]2.

degenerate elliptic PDE in the viscosity sense. We briefly summarize the result here, and it
will appear in a forthcoming paper [14]. Let V ⊂ Rd be convex, open, and bounded, and
let f ∈ C(V ) be bounded and positive on V . Let Vn : V → R be the convex depth function
obtained by applying convex hull peeling to the Poisson points Xnf . The function Vn satisfies
Vn(x) = k if and only if x is in the kth convex layer, and is thus a piecewise constant function
that encodes the convex layers into its level sets. We have the following continuum limit.

Theorem 1.2 (J. Calder & C.K. Smart, 2017). There exists a universal constant αd such that
with probability one

n−2/(d+1)Vn −→ αdv uniformly on V as n→∞,

where v ∈ C(V ) is the unique viscosity solution of

(1.6)

{
∇v · cof(−∇2v)∇v = f2, in V

v = 0, on ∂V.

The solution of the nonlinear PDE (1.6) has the property that its level sets evolve with
a normal velocity given by the (d + 1)th-root of Gaussian curvature multiplied f(x)2/(d+1).
When f ≡ 1 this PDE is known as affine invariant curvature motion [15], the affine flow [4],
and in two dimensions affine curve shortening [5, 53,59].

1.3 Pareto envelope peeling

Both non-dominated sorting and convex hull peeling can be unified under a more general
peeling framework. Let ‖ · ‖ be any norm on Rd and let X ⊂ Rd be a set of points. We say
x ∈ Rd is dominated by y ∈ Rd if

∀z ∈ X, ‖y − z‖ ≤ ‖x− z‖ and ∃z ∈ X, ‖y − z‖ < ‖y − x‖.

Basically, we are saying y dominates x if y is closer than x to every point in X with respect
to the norm ‖ · ‖. The set of nondominated points is called the Pareto envelope [17,65] of X,
which we denote by

(1.7) Hull(X) = Set of non-dominated points in Rd.

6
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(a) ‖ · ‖1 (b) ‖ · ‖2 (c) ‖ · ‖∞

Figure 1.5: Examples of Pareto envelopes for different norms.

The Pareto envelope is sometimes also called the set of efficient points, and arises in planar
location problems. It turns out that for any round norm2 the Pareto envelope of a set of points
coincides with its convex hull [65]. Figure 1.5 shows the Pareto envelope for a set of points in
the `1, `2 and `∞ norms.

We can peel a point cloud by repeatedly removing the boundary of the Pareto envelopes.
We call this Pareto envelope peeling and it can be defined by

K1(X) = Hull(X), Kn+1(X) = Hull(X ∩ Interior(Kn(X))).

If ‖ · ‖ is any round norm, then Pareto envelope peeling is equivalent to convex hull peeling. If
‖·‖ = ‖·‖1 is the `1 norm, then Pareto envelope peeling is (almost) equivalent to non-dominated
sorting. The difference is that Pareto envelope peeling allows the peeling to come from any of
2d different directions, while nondominated sorting only allows peeling from the lower left side
of the point cloud. If we sort a Poisson point process on Rd+ then Pareto envelope peeling and
nondominated sorting are equivalent since the structure of the point cloud prohibits peeling
from all but the lower left direction. Figure 1.6 shows an example of Pareto envelope peeling
of random points with respect to the `1 norm. Notice the flow transforms the square into the
`1 ball before vanishing.

Based on the continuum limit in Theorem 1.1, it is reasonable to conjecture that the
continuum limit of `1-peeling is basically the same PDE

u2x1u
2
x2 · · ·u

2
xd

= f2,

except now we do not require u to be increasing. It is an interesting question to determine the
continuum PDEs for other non-round norms. For example, what are the continuum PDEs for
block norms whose unit balls are convex polytopes?

1.4 Graph peeling

Our final example of a data peeling algorithm is graph peeling. Let (X,W ) be a weighted
graph. The set X ⊂ Rd are the vertices, and W = (wxy)x,y∈X are nonnegative edge weights.
A weight of wxy = 0 indicates that x and y are not connected. The weights usually represent a

2By round, we mean the unit ball is smooth and uniformly convex.
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Figure 1.6: Example of `1 peeling for random points.

similarity between data samples. When wxy ≈ 1, x and y are very similar, and when wxy ≈ 0,
x and y are very dissimilar. The weights can take discrete or continuous values. One common
way to select the weights for machine learning or data science applications is

wxy = Φ

(
|x− y|
h

)
where h > 0 is a length scale and Φ is a nonnegative decreasing function.

The degree of a vertex x ∈ X is defined as

deg(x) =
∑
y∈X

wxy.

The graph k-peeling algorithm arranges X into layers by repeatedly removing vertices with
deg(x) < k, and their connecting edges. When the edges are removed, the degrees of neigh-
boring vertices are reduced and additional vertices may then have degree less than k and be
removed in a later stage of the peeling. The peeling stops when all remaining vertices have
degree at least k, or when the entire graph has been peeled away. The remaining vertices,
if there are any, are called the k-core of the graph, and represent a significant component of
the graph. The peeling depth of a vertex x ∈ X is the smallest k such that x is removed by
k-peeling. For references on graph peeling we refer the reader to [2, 41, 42].

Figure 1.7 shows colormaps of graph peeling for three different realizations. We used
n = 104 random points on the box [0, 1]d, and set the weights to be wxy = 1 if |x − y| ≤ h
and wxy = 0 otherwise, where h = 1/4. We set k to be exactly half of the expected number
of points in the ball B(x, h), that is k = n(πh2/2). The colors from red to blue indicate
when the points were removed by the peeling algorithm (earlier vs later). The first and second
simulations peeled away the entire graph, while the third simulation (on the right) reached a
non-trivial k-core shown in blue. We note that each realization had distinct random features
from the others, indicating that the stochastic elements may not wash away in any continuum
limit. Figure 1.8 shows a single simulation of graph peeling.

It is interesting to ask what the continuum limit may be for graph peeling. In some
special cases one would expect to get (stochastic) mean curvature motion, since the algorithm
is similar to the diffusion generated curvature motion, also called threshold dynamics, of
Merriman, Bence and Osher [51]. However, depending on the value of k and the local density
of points, the macroscopic velocity of the peeling may often be dominated by first order terms
and one may get a Hamilton-Jacobi equation.
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Figure 1.7: Colormaps for three different realizations of graph peeling. The colors from red to
blue indicate the stage at which a point was peeled away.
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Figure 1.8: An illustration of graph peeling for a random graph.
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1.5 Overview of minicourse

In this minicourse, we plan to give an entirely self-contained proof of the continuum limit of
nondominated sorting stated in Theorem 1.1. The proof is based on [11] with some simpli-
fications noticed recently by the author. At a high level the proof is split into three parts.
First, in Section 3 we study a local problem of the longest chain among random points in the
box [0, 1]d. The results in Section 3 are classical in probability theory and originally appeared
in [8, 9, 34]. In Section 4 we introduce viscosity solutions and prove uniqueness of viscosity
solutions of (1.5). Finally, in Section 5 we give the main portion of the proof of Theorem 1.1.
The proof is based on establishing Hölder estimates on the sequence Un, which enables us to
prove uniform convergence of subsequences to Hölder continuous functions. The linchpin in
the proof is showing that these uniform limits are in fact viscosity solutions of (1.5), and then
uniqueness of viscosity solutions ensures that the limits of all subsequences are the same, and
so the entire sequence converges.

Let us pause to give a few words of advice to the graduate student beginning their career in
mathematics. There are at a broad level two important components of mathematical research.
The first is to master the technical tools of a specific field so that you are ready to apply
them to new research problems. The second, and arguably more important, is the “how” of
mathematical research; that is, how does one discover good research problems and come up
with new theorems to prove. This second part of mathematical research is deeply involved with
arguing nonrigorously at an advanced level. To give an idea of how nonrigorous arguments
are essential in research, we give in Section 2 two nonrigorous derivations of the PDE (1.5)
in Theorem 1.1. The reader will quickly notice the gaps in our logic, but this is besides the
point. The nonrigorous argument tells you what might (or should) be true, and produces a
problem for us to study rigorously. It may sometimes, but not always, also suggest an avenue
for a rigorous proof.

2 Two nonrigorous heuristics

We give in this section two nonrigorous arguments deriving the PDE (1.5) as the continuum
limit of nondominated sorting. While the arguments are not rigorous, they give the essence
of the result and provide a guideline for the construction of a rigorous proof.

2.1 PDE argument

We first give an argument using what we call PDE techniques, to distinguish them from the
variational techniques used in the second heuristic argument in Section 2.2. We suppose we
do not even know the growth rate of n1/d. Thus, we will assume that for some α ∈ (0, 1]

n−αUn −→ u as n→∞

uniformly on Rd, where u ∈ C1(Rd). Implicit in this assumption is that the number of Pareto
fronts among n random variables grows on the order of nα, and we will use this throughout
the argument. The end goal is to identify a PDE that u satisfies and the growth rate α.

Let us fix a point x ∈ Rd and zoom in to the level set {u = u(x)} near x, which looks
locally like a plane. Since u is the limit of n−αUn, u must be increasing in each coordinate
and so we also assume uxi > 0 for all i. Fix a vector v ∈ Rn with ∇u(x) · v > 0 and consider

10



2.1 PDE argument 2 TWO NONRIGOROUS HEURISTICS

Figure 2.1: Illustration of some quantities from the nonrigorous derivation of (1.5).

the set A of points y ∈ Rd such that u(y) > u(x) and yi ≤ xi + vi for all i (see Figure 2.1).
The argument reduces to counting how many Pareto fronts pass through A. We note that in
dimensions d ≥ 3 the set A is a simplex with orthogonal corner at x+ v. Let `1, . . . , `d denote
the side lengths of A, which satisfy

(v − `iei) · ∇u(x) ≈ 0,

for |v| small. Therefore

`i ≈
∇u(x) · v
uxi(x)

,

and up to a constant, the measure of A is

|A| ≈ C (∇u(x) · v)d

ux1(x) · · ·uxd(x)
.

When |v| is small, the number of points N(A) falling in A is (in expectation)

N(A) ≈ n
∫
A
f dx ≈ n|A|f(x) ≈ C

(
f(x)n

ux1(x) · · ·uxd(x)

)
(∇u(x) · v)d.

Now, we claim we can count the number of Pareto fronts passing through A by considering
only the Poisson points falling in A. The reason for this is that the level set {u = u(x)} should
be approximately close to a Pareto front, and so we can discard all points y with u(y) < u(x).
Then any point y with u(y) > u(x) and yi > xi + vi for some i cannot affect the partial
ordering of points within A, so any such points can also be discarded. Furthermore, when |v|
is small, the N(A) points in A are roughly uniformly distributed (if f is smooth, so roughly
constant on A), and we can scale A into a simplex with unit side lengths without changing
the ordering of points in A by dilating along each coordinate axis. This all suggests that the
number of Pareto fronts passing through A should be asymptotic to

CN(A)α ≈ C
(

f(x)n

ux1(x) · · ·uxd(x)

)α
(∇u(x) · v)dα.

11



2.2 Variational argument 2 TWO NONRIGOROUS HEURISTICS

The rest of the argument is calculus:

∇u(x) · v ≈ u(x+ v)− u(x)

≈ n−α(Un(x+ v)− Un(x))

= n−α(# of Pareto fronts passing through A)

≈ Cn−α
(

f(x)n

ux1(x) · · ·uxd(x)

)α
(∇u(x) · v)dα

= C

(
f(x)

ux1(x) · · ·uxd(x)

)α
(∇u(x) · v)dα.(2.1)

Since v ∈ Rd is arbitrary, we must have dα = 1, or α = 1/d. This tells us the growth rate
should be n1/d. We can now cancel ∇u · v from both sides above to find that u must satisfy

ux1 · · ·uxd = Cf.

Many of the steps in the argument above were purposefully not rigorous. It is important,
however, to have an intuition about which steps are easy to make rigorous, and which are
more limiting. The assumption that u−αUn converges uniformly to a function u is not terribly
limiting, since we may replace it with convergence of a subsequence provided we establish
some kind of compactness of the sequence n−αUn. Since the limit u must be increasing (i.e.,
uxi ≥ 0), the assumption that uxi > 0 is also not limiting, since we can play a trick by bending
the function u upwards so that it has strictly positive derivatives (see Section 5). The other
steps, like the approximations of the area |A| and the number of points N(A) are all exact as
|v| → 0, and we can easily control the error, so these are not limiting.

The key gap in the argument is actually the assumption that the limit u is C1, since this
does not hold in general. The best we can hope for is Lipschitz continuity of u, and this allows
the level sets {u = u(x)} to have corners. A key part of our argument was that the shape
of A is the same everywhere, so this is a serious problem. Overcoming this problem requires
the viscosity solution framework that is introduced in Section 4. The idea, roughly, is that we
perform the argument above on smooth test functions instead of on u directly. This is subtle
and requires some work to make rigorous. We note the argument given above is the basis for
the rigorous proof of Theorem 1.1 given in Sections 3, 4 and 5 of these notes, and in [11].

2.2 Variational argument

We give in this section another nonrigorous heuristic for deriving the PDE (1.5) in Theorem
1.1. Let x ∈ Rd+ and let x(t) = (x1(t), . . . , xd(t)) be an increasing (i.e., x′i(t) > 0 for all i)
curve with x(0) = 0 and x(1) = x. We aim to count the length of a longest chain near the
curve x(t).

We again presume we do not know the order of growth n1/d. Suppose all we know is that
for n independent and uniformly distributed random variables in a box, the length of a longest
chain is approximately cdnα for some α ∈ (0, 1]. Choose a time step ∆t = 1/K, set tj = j∆t
and define the rectangles

Rj = {x ∈ [0,∞)d : xi(tj−1) ≤ xi < xi(tj) for all i}.

See Figure 2.2 for a depiction of the curve x(t) and the rectangles.
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Figure 2.2: Depiction of some quantities from the variational derivation of the PDE (1.5).

If ∆t is small, then the Poisson points within each rectangleRj are approximately uniformly
distributed. Let Nj denote the number of Poisson points in |Rj |. Then there should be a
chain within each Rj of length approximately cdNα

j . We can concatenate the chains from all
rectangles to find that

Un(x) ≥ cd
K∑
j=1

Nα
j .

Now, Nj ≈ f(x(tj))|Rj |n, and the measure of the rectangle Rj can be approximated by

|Rj | = x′1(tj) · · ·x′d(tj)∆td.

Thus we have

(2.2) Un(x) ≥ cd
K∑
j=1

f(x(tj))
α(x′1(tj) · · ·x′d(tj))α∆tαd.

If α = 1/d, then this is exactly a Riemann sum for the integral

(2.3) J(x) := cd

∫ 1

0
f(x(t))1/d(x′1(t) · · ·x′d(t))1/d dt.

If α < 1/d, then the right hand side of (2.2) goes to ∞ as ∆t → 0, while if α > 1/d, then
the right hand side vanishes as ∆t→ 0. This suggests that α = 1/d (at least this is the only
interesting value).

This also suggests that in the limit as n→∞, finding the length of the longest chain should
be equivalent to maximizing J(x) over all monotone curves x. More precisely, we expect that
as n→∞, n−1/dUn → u where

(2.4) u(x) = sup
{
J(x) : x(0) = 0, x(1) = x, and x′i(t) > 0 for all i

}
.

13
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We note this variational problem originally appeared in [26] for the two-dimensional longest
chain problem.

We claim that u defined by (2.4) solves the Hamilton-Jacobi equation (1.5). To see this,
note by Hölder’s inequality that∫ 1

0
(x′1(t) · · ·x′d(t))1/d dt ≤

(
d∏
i=1

∫ 1

0
x′i(t) dt

)1/d

=
d∏
i=1

(xi(1)− xi(0))1/d,

with equality if x(t) is a straight line. Therefore, at least locally, straight lines maximize J(x).
Therefore, for r > 0 small we have the dynamic programming principle

u(x) ≈ sup

{
u(y) + cdf(x)1/d :

d∏
i=1

(xi − yi)1/d = r and yi ≤ xi for all i

}
.

Expanding u in a Taylor expansion we have

inf

{
∇u(x) · (x− y) :

d∏
i=1

(xi − yi)1/d = r and yi ≤ xi for all i

}
≈ cdf(x)1/d.

Dividing by r > 0 and setting a = (x− y)/r yields

(2.5) inf
{
∇u(x) · a : a1 · · · ad = 1 and ai > 0 for all i

}
≈ cdf(x)1/d.

By the Lagrange multiplier method, the optimal a satisfies

aiuxi = λ for all i,

where λ > 0 is the Lagrange multiplier. Therefore λd = ux1 · · ·uxd and

ai =
(ux1 · · ·uxd)1/d

uxi
.

Plugging this back into (2.5) yields

d(ux1 · · ·uxd)
1/d = cdf(x)1/d,

which is the Hamilton-Jacobi equation (1.5), up to a constant. We note that the connection
between the variational problem (2.4) and the Hamilton-Jacobi equation (1.5) is a special case
of optimal control theory [6]

It is possible to construct a rigorous proof of Theorem 1.1 using the ideas above, and this
was in fact the original proof that appeared in [12]. The majority of the proof centers around
the variational problem (2.4), and the PDE (1.5) makes a surprise appearance at the end.

3 The local problem

We first study the local problem of the longest chain in a box. Let Xn be a Poisson point
process with intensity n on Rd and let

(3.1) Ln = `(Xn ∩ [0, 1]d).

Establishing a law of large numbers for Ln is a classical application of subadditive ergodic
theory. The original ideas were developed by Hammersley [34]. In this section we prove the
following Theorem.
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3.1 Convergence in mean 3 THE LOCAL PROBLEM

Theorem 3.1 (Hammersley, 1972). There exists a constant cd > 0 such that with probability
one

(3.2) lim
n→∞

Ln

n1/d
= cd.

Before giving the proof of Theorem 3.1, we note a useful corollary.

Corollary 1. For any rectangle R ⊂ Rd we have

(3.3) lim
n→∞

`(Xn ∩R)

n1/d
= cd|R|1/d almost surely,

where |R| denotes the Lebesgue measure of R.

Proof. By scaling the rectangle R into the unit rectangle, we find that `(Xn∩R) has the same
distribution as Ln|R|. Theorem 3.1 gives

lim
n→∞

`(Xn ∩R)

n1/d|R|1/d
= cd.

The proof of Theorem 3.1 is split into two parts.

3.1 Convergence in mean

We first prove convergence of the mean value E[Ln]. A key tool in the proof is the following
sub- (or rather super-) additivity lemma.

Lemma 3.1. Suppose f : [0,∞)→ [0,∞) satisfies

(3.4) f(s) + f(t) ≤ f(s+ t) for all s, t ∈ [0,∞).

Then there exists c ∈ [0,∞] such that f(t) ≤ ct for all t > 0 and

(3.5) lim
t→∞

f(t)

t
= c.

Proof. Let c = lim supt→∞
f(t)
t and assume first that c <∞. We first prove that

(3.6) f(t) ≤ ct for all t > 0.

To see this, let ε > 0 and choose s > 0 such that f(τ)
τ ≤ c + ε for all τ ≥ s. By iterating the

superadditivity property (3.4) we have

(3.7) mf(t) ≤ f(mt) for all t ∈ R, m ∈ N.

Therefore
f(t)

t
≤ f(mt)

mt
≤ c+ ε,

for a sufficiently large choice of m ∈ N. This establishes the claim.
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We now prove the limit (3.5) holds. Let ε > 0 and choose s > 0 such that f(s)
s ≥ c−ε. Let

t > s and choose m ∈ N such that t = ms+ τ , where 0 ≤ τ ≤ s. By (3.4) and (3.7) we have

f(t) ≥ f(ms) + f(τ) ≥ mf(s).

Therefore
f(t)

t
≥ ms

t

f(s)

s
≥ ms

t
(c− ε).

Sending t→∞ we have ms/t→ 1 and we obtain

lim inf
t→∞

f(t)

t
≥ c− ε.

This completes the proof for c <∞. The proof for c =∞ is similar.

Remark 3.1. When using Lemma 3.1, one must show that the constant c is not trivial, that
is, one needs to establish that c > 0 and c < ∞. Since the lemma shows that f(t) ≤ ct for
all t > 0, we know that c > 0 whenever f is not identically zero. This is presumably easy to
check. Showing that c < ∞ is usually the more challenging direction, and is often proved by
establishing that f(t) ≤ Ct for some larger constant C > c.

Since the growth rate of n1/d is not linear in n, we cannot expect Lt to be superadditive.
Hence, the key to using Lemma 3.1 is to restate the problem in terms of a new parameter
t = n1/d (or n = td). In particular, we claim that f(t) := E[Ltd ] is superadditive. To see this,
let s, t > 0 and set n = (s+ t)d and λ = s/(s+ t). Since we can concatenate maximal chains
in [0, λ)d ∩Xn and [λ, 1]d ∩Xn to obtain a chain in [0, 1]d ∩Xn we have

(3.8) `([0, λ)d ∩Xn) + `([λ, 1]d ∩Xn) ≤ `([0, 1]d ∩Xn) = Ln.

See Figure 3.1 for an illustration. The inequality can be strict if the longest chain in [0, 1]d∩Xn

contains points not in either sub-rectangle—this is illustrated by the dotted line in the figure.
The number of Poisson points in [0, λ)d is a Poisson random variable with mean λdn = sd.
Therefore A has the same distribution as Lsd . Similarly, B has the same distribution as Ltd
and taking expectations in (3.8) yields

f(s) + f(t) ≤ f(s+ t).

By Lemma 3.1 there exists cd > 0 (possibly cd = ∞) such that limt→∞
f(t)
t = cd. Since

t = n1/d this gives

(3.9) lim
n→∞

E[Ln]

n1/d
= cd.

We can also use Lemma 3.1 to show that E[Ln] ≤ cdn1/d for all n.
The last step is to prove that cd < ∞. For this, we condition on the number of points N

in the Poisson point process Xn ∩ [0, 1]d. Recall N is a Poisson random variable with mean n.
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Figure 3.1: Illustration of the superadditivity property (3.8) for the longest chain problem.

For ε > 0 small we have

E[Ln] ≤ E(Ln |N ≤ (1 + ε)n)P(N ≤ (1 + ε)n) +
∑

k>(1+ε)n

k P(N = k)

≤
∑

j≤(1+ε)n

P(Ln ≥ j |N ≤ (1 + ε)n) +

( ∞∑
k=1

k2 P(N = k)

)1/2
 ∑
k>(1+ε)n

P(N = k)

1/2

≤ k + 2nP(Ln ≥ k |N ≤ (1 + ε)n) + Var(N)1/2 P(N > (1 + ε)n)

≤ k + 2nP(Ln ≥ k |N ≤ (1 + ε)n) + n1/2e−nε
2/2,

for any k ≥ 1, where we used standard Poisson tail bounds in the last line. Now, any subset
of Xn of size k is a chain with probability 1/k!d−1. Conditioned on N ≤ (1 + ε)n there are at
most

(
m
k

)
subsets of size k, where m is the least integer greater than (1 + ε)n. By Stirling’s

approximation k! ≥ (k/e)k and the union bound we have

P(Ln ≥ k |N ≤ (1 + ε)n) ≤
(
m

k

)
1

k!d−1
≤ mk

k!d
≤
(
med

kd

)k
.

Choosing kd = m(1 + ε)ed we have

E[Ln] ≤ e(1 + ε)1/dm1/d + 2n(1 + ε)−k + n1/2e−nε
2/2.

Sending n→∞ we find that

lim sup
n→∞

E[Ln]

n1/d
≤ (1 + ε)1/de
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for every ε > 0. Therefore cd is finite, and in fact cd ≤ e. With more work [9] it is possible to
show that

d2

d!1/dΓ(1d)
≤ cd < e

for all d, and that c2 = 2 [48, 67]. Another application of Stirling’s approximation shows that
cd → e as d→∞.

3.2 Almost sure convergence

We can immediately upgrade (3.9) to almost sure convergence by invoking Kingman’s subad-
ditive ergodic theory [43]. However, we take another path here, in order to introduce other
important tools from probability.

A well-traveled path from convergence in mean to almost sure convergence is controlling
the fluctuations between Ln and E[Ln]. If we can show that for any ε > 0

∞∑
n=1

P
(
|Ln − E[Ln]| > εn1/d

)
<∞,

then Theorem 3.1 follows from (3.9) and the Borel-Cantelli Lemma. Sharp estimates on the
probability P (|Y − E[Y ]| > ε) are referred to as concentration of measure.

A useful tool for proving concentration of measure is Azuma’s inequality, also known as
the method of bounded differences [63], which is a generalization of the Chernoff-Hoeffding
bounds [18, 40]. To describe the setup, let X1, . . . , Xn be a sequence of independent random
variables and set

(3.10) Yn = f(X1, . . . , Xn),

where f satisfies the bounded differences condition

(3.11) |f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x̃i, . . . , xn)| ≤ r,

for some r > 0 and all i = 1, . . . , n. The bounded differences condition says that f does not
depend too much on any one of its entries.

Example 1 (Coin toss). Suppose that X1, . . . , Xn are the results of a sequence of n coin
tosses, so each Xi takes values 1 (heads) and 0 (tails) with equal probability. Suppose Yn =
X1+ · · ·+Xn is the number of heads. Then f(x1, . . . , xn) = x1+ · · ·+xn satisfies the bounded
differences condition with r = 1.

The bounded differences condition gives us tight concentration of Yn about its mean.

Theorem 3.2 (Azuma’s inequality). For any λ > 0 we have

(3.12) P(|Yn − E[Yn]| > λ) ≤ 2 exp

(
−λ2

2nr2

)
.

Remark 3.2. If we choose λ = t
√
nr2 in Azuma’s inequality we get

P(|Yn − E[Yn]| > tr
√
n) ≤ 2 exp

(
−t2/2

)
.

Hence, Azuma’s inequality says that the fluctuations between Yn and its mean E[Yn] are with
high probability smaller than O(r

√
n). This only gives useful information when E[Yn]�

√
n.
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Proof. Let Fi = σ(X1, . . . , Xi) be the σ-algebra generated by X1, . . . , Xi and define the dif-
ferences

Zi := E[Yn | Fi]− E[Yn | Fi−1],
where F0 = {∅,Ω} is the trivial sigma algebra. The idea is that we are incrementally adding
information about each Xi and observing how much the conditional expectation can change
by. Since E[Yn | Fn] = Yn and E[Yn | F0] = E[Yn] we have a telescoping sum

(3.13) Yn − E[Yn] =

n∑
i=1

Zi.

By the law of conditional expectation

(3.14) E[Zi | Fi−1] = E[E[Yn | Fi]− E[Yn | Fi−1] |Fi−1] = E[Yn | Fi−1]− E[Yn | Fi−1] = 0.

It follows that

(3.15) E[Zi1Zi2 · · ·Zik ] = 0

for any 1 ≤ i1 < i2 < · · · < ik ≤ n. Indeed, we simply condition on Fik−1 and apply (3.14) to
find

E[Zi1Zi2 · · ·Zik ] = E[E[Zi1Zi2 · · ·Zik | Fik−1]] = E[Zi1Zi2 · · ·Zik−1
E[Zik | Fik−1]] = 0.

By Markov’s inequality

(3.16) P(Yn − E[Yn] > λ) = P
(
e
∑n
i=1 Zit > eλt

)
≤ e−λtE

[
e
∑n
i=1 Zit

]
= e−λtE

[
n∏
i=1

eZit

]
,

for any t > 0. We now use the swapping trick and the bounded differences condition to bound
the Zi. Let X̃i be an independent copy of Xi. Then

|Zi| = |E[f(X1, . . . , Xi, . . . , Xn) | Fi]− E[f(X1, . . . , Xi, . . . , Xn) | Fi−1]|

= |E[f(X1, . . . , Xi, . . . , Xn) | Fi]− E[f(X1, . . . , X̃i, . . . , Xn) | Fi]|

≤ E[|f(X1, . . . , Xi, . . . , Xn)− f(X1, . . . , X̃i, . . . , Xn)| | Fi] ≤ r.

It follows from convexity of the exponential function eax that

eax ≤ (x+ 1)

(
ea − e−a

2

)
+ e−a = x sinh a+ cosh a,

for any a > 0 and x ∈ [−1, 1]. Using x = Zi/r and a = tr we have

eZit ≤ Zi
r

sinh(tr) + cosh(tr).

It follows from (3.16) and the multiplicative property (3.15) that

P(Yn − E[Yn] > λ) ≤ e−λtE

[
n∏
i=1

(
Zi
r

sinh(tr) + cosh(tr)

)]
= e−λt coshn(tr) ≤ e−λt+nt2r2/2,

where we used the inequality coshx ≤ ex2/2 above. Optimizing over t yields t = λ/(nr2) and

P(Yn − E[Yn] > λ) ≤ exp

(
−λ2

2nr2

)
.
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The addition or removal of a single point Xi changes the length of a longest chain by at
most 1. Hence, the longest chain among a sequence of i.i.d. random variables satisfies the
bounded differences condition (3.11) with r = 1. However, by Remark 3.2 a direct application
of Azuma’s inequality is only useful when E[Ln] �

√
n, and we know from Section 3.1 that

E[Ln] ∼ cdn
1/d ≤ cd

√
n for all d ≥ 2. Thus, a naive direct application of Azuma’s inequality

is not useful here.
Nevertheless, the ideas behind Azuma’s inequality can be cleverly applied to obtain the

following result [8].

Theorem 3.3 (Bollobás and Brightwell, 1992). For each d ≥ 2 there exists Kd > 0 such that

(3.17) P

(
|Ln − E[Ln]| > λKdn

1/2d log n

log logn

)
≤ 4λ2 exp(−λ2)

for all λ with 2 < λ < n1/2d/ log logn.

Let us sketch the proof of Theorem 3.3, which is based on Azuma’s inequality. The idea
is to sub-divide the points in the Poisson point process Xn in such a way that Ln does not
depend too much on how the random process behaves within any of the pieces. A natural way
to do this is to break up the points in Xn into “slices” that should all be roughly orthogonal
to the longest chain. Thus, each slice will contribute only a few points to the longest chain.

More specifically, let m be the smallest integer larger than n1/d and define the slices

(3.18) Sj =

{
x ∈ [0, 1]d : j − 1 ≤ m

d

d∑
i=1

xi < j

}
.

Let Zj = Sj ∩ Xn be the Poisson points falling in each slice, and note the Zj are mutually
independent. The idea is to apply Azuma’s inequality to the representation

Ln = f(Z1, . . . , Zm).

However, the function f does not have bounded differences (i.e., (3.11) does not hold), since
any individual slice could contain an arbitrarily large number of points and make a huge
contribution to Ln. While this is possible, it is very unlikely, and the bulk of the argument
amounts to controlling this very unlikely event.

To handle this, we define another version of Ln that does satisfy the bounded differences
condition. For a fixed k ∈ N, let L′n be the length of a longest chain in Xn that contains at
most k points from each slice Zj . The bounded differences condition amounts to swapping out
the points in a chosen slice Zj and counting how much L′n can change by. Thus, L′n satisfies
the bounded differences condition with r = k. Azuma’s inequality gives

(3.19) P(|L′n − E[L′n]| > λ) ≤ 2 exp

(
−λ2

2mk2

)
.

The idea is to choose k as small as possible to get the best estimate, while ensuring Ln−L′n is
small. To illustrate the idea behind the proof, we set k = n1/8d and λ = n3/4d in (3.19) to get

(3.20) P(|L′n − E[L′n]| > n3/4d) ≤ 2 exp
(
−Cn1/4d

)
.
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To show that Ln − L′n is small, we divide the cube [0, 1]d into (approximately) n identical
subcubes of measure 1/n and let Nj denote the number of Poisson points in the jth subcube.
We claim there exists c > 0 such that if Nj ≤ ck for all j then L′n = Ln. Briefly, any chain in
a slice Sj can only pass through a constant M = M(d) number of subcubes, so each slice can
contribute at most cMk points to the longest chain. If we choose c = 1/M , then each slice
contributes at most k points to the longest chain and hence Ln = L′n.

Each random variable Nj is an independent Poisson random variable with mean 1. By tail
bounds on Poisson random variables

(3.21) P(Nj ≥ k) ≤ exp(−k) = exp
(
−n1/8d

)
,

for n large enough so that k ≥ e2. By the union bound we have

P(Ln − L′n ≥ 1) ≤ n exp
(
−n1/8d

)
.

By arguments similar to those at the end of Section 3.1

E[Ln − L′n] ≤ 1 + Cn2 exp
(
−n1/8d

)
= 1 + C exp

(
−n1/8d + 2 log n

)
.

Thus, for n large enough we have E[Ln − L′n] ≤ 2. Combining this with (3.20) yields

(3.22) P(|Ln − E[Ln]| > 2n3/4d) ≤ n exp
(
−n1/8d

)
for sufficiently large n. Almost sure convergence follows now from the Borel-Cantelli Lemma,
as described at the start of the section.

We note that our concentration of measure result (3.22) is not as tight as Theorem 3.3.
The reason is that our choice of k = n1/8d, while simplifying the proof, is far too large. The
proof of Theorem 3.3 in [8] uses k = C log n/ log logn and slightly more subtle arguments for
bounding Ln − L′n. We leave the details to the reader.

4 Viscosity solutions

Hamilton-Jacobi equations like (1.5) do not in general admit classical C1 solutions that satisfy
the PDE everywhere, due to the possibility of crossing characteristics. On the other hand,
there are in general infinitely many Lipschitz continuous functions that satisfy the PDE almost
everywhere. The notion of viscosity solution, developed in [20,21], selects the physically correct
Lipschitz almost everywhere solution for a very wide range of applications. Viscosity solutions
enjoy very strong stability and uniqueness properties that make them extremely useful tools
for a wide range of problems, especially when passing to a limit in a sequence of PDEs (or
approximations thereof).

4.1 Definitions

We now give the definition of viscosity solution.

Definition 1 (Viscosity solutions). Let U ⊂ Rn be open and u ∈ C(U).
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4.1 Definitions 4 VISCOSITY SOLUTIONS

(i) We say u is a viscosity subsolution of H(x, u,∇u) = 0 in U (written H(x, u,∇u) ≤ 0 in
U) if for every x ∈ U and ϕ ∈ C∞(U) such that u− ϕ has a local maximum at x

H(x, u(x),∇ϕ(x)) ≤ 0.

(ii) We say u is a viscosity supersolution of H(x, u,∇u) = 0 in U (written H(x, u,∇u) ≥ 0
in U) if for every x ∈ U and ϕ ∈ C∞(U) such that u− ϕ has a local minimum at x

H(x, u(x),∇ϕ(x)) ≥ 0.

(iii) We say u is a viscosity solution of H(x, u,∇u) = 0 in U if u is both a viscosity sub- and
supersolution.

Remark 4.1. The definition of viscosity solution can ostensibly be applied to any PDE of any
order, not just first order Hamilton-Jacobi type equations. However, uniqueness of viscosity
solutions is based on the maximum principle, which applies only to PDEs of degree at most two
(since the necessary conditions for a maximum only involve first and second derivatives). We
focus mostly on first order Hamilton-Jacobi equations here; for the theory of viscosity solutions
for second order degenerate elliptic equations we refer the reader to the user’s guide [19].

The original motivation for viscosity solutions is the method of vanishing viscosity, whereby
a viscosity term −ε∆u is added to the Hamilton-Jacobi equation to regularize the equation,
resulting in a unique smooth solution uε. As ε→ 0+ the solutions uε can be shown to converge
uniformly to a continuous function u that satisfies the definition of viscosity solution above.
While this is appealing intuitively, it is not generally the most useful way to think about
viscosity solutions.

Being the limit a sequence of semilinear elliptic equations, it turns out that the viscosity
solution inherits useful properties from elliptic equations. The most important property is
the maximum principle, and a useful way to think about viscosity solutions is that they are
a notion of weak solution that obeys the maximum principle. Indeed, we can immediately
see from the definitions that viscosity solutions enjoy the comparison property against smooth
strict super/subsolutions. That is, suppose that v ∈ C∞(U) satisfies H(x,∇v(x)) > 0 in U ,
u is a viscosity subsolution of H(x,∇u) = 0 in U , and U is bounded. Then u − v attains
its maximum value at some x ∈ U . By the definition of viscosity subsolution we must have
x ∈ ∂U (why?) and thus

(4.1) max
U

(u− v) = max
∂U

(u− v).

A similar result holds for smooth strict subsolutions. We note that (4.1) is referred to as
the maximum principle (or sometimes the comparison principle). We prove in Theorem 4.1 a
comparison principle for viscosity solutions when neither u nor v is smooth.

One may naturally be inclined to ask why viscosity solutions are the right notion of solution
for the continuum limits of the data peeling problems we are considering. The reason is actually
quite simple; all of our data peeling algorithms satisfy a type of monotonicity. That is, when
we add new points, the peeling depth function Un can only increase. So if f ≤ g and Un and Vn
are the Pareto depth functions for Poisson point processes Xnf and Xng with intensity nf and
ng, respectively, then Un ≤ Vn (provided we construct the point processes so that Xnf ⊂ Xng).
This is simply a discrete version of the maximum principle (or comparison principle) given in
(4.1) and Theorem 4.1 below.
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4.2 The maximum principle 4 VISCOSITY SOLUTIONS

4.2 The maximum principle

We now give the proof of the comparison principle for viscosity solutions of Hamilton-Jacobi
equations. To simplify the proof as much as possible, we present the proof for strict sub/supersolution
pairs on a bounded domain U ⊂ Rd for the simple Hamilton-Jacobi equation

H(∇u) = f in U,

where U ⊂ Rd is bounded. This version of the proof contains the essence of the result, without
all the bells and whistles attached to a more complicated setup.

Theorem 4.1 (Strict comparison). Let f ∈ C(U) and U ⊂ Rd be bounded. If u, v ∈ C(U)
satisfy

(4.2) H(∇u) ≤ f and H(∇v) ≥ f + ε in U

in the viscosity sense, where ε > 0 is a constant, then

(4.3) max
U

(u− v) = max
∂U

(u− v).

If u, v ∈ C1(U) then the proof of Theorem 4.1 follows a standard maximum principle
argument. We simply examine the point x ∈ U at which u − v attains its maximum value.
The point x cannot be in the interior of the domain, since we would then have ∇u(x) = ∇v(x),
which contradicts (4.2) since ε > 0. Therefore x ∈ ∂U and (4.3) follows. It is remarkable that
this argument can be rescued when u and v are not differentiable, and are merely viscosity
sub- and supersolution of (4.2). The proof is based on the clever idea of doubling the number
of variables and looking instead at the maximum of u(x)− v(y)− k|x− y|2, where k is large.
The additional −k|x−y|2 term serves as a smooth test function from the definition of viscosity
solution that touches u from above and v from below.

Proof. Without loss of generality we may assume that max∂U (u − v) = 0. Assume to the
contrary now that

(4.4) δ := max
U

(u− v) > 0 = max
∂U

(u− v).

We define the auxiliary function

(4.5) Φk(x, y) = u(x)− v(y)− k|x− y|2,

for x, y ∈ U and k > 0. Let (xk, yk) ∈ U × U such that

(4.6) Mk := max
U×U

Φk = Φ(xk, yk).

Since Mk ≥ 0, u(xk)− v(yk)− k|xk − yk|2 ≥ 0, and so

(4.7) |xk − yk| ≤
C√
k
,
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since u and v are bounded. Therefore, there exists x0 ∈ U such that, passing to a subsequence
if necessary, we have xk → x0 and yk → x0 as k →∞. Noticing that Mk ≥ δ and so

δ ≤ lim inf
k→∞

Mk = lim sup
k→∞

Mk ≤ u(x0)− v(x0) ≤ δ,

we see that u(x0)− v(x0) = δ > 0 and so x0 ∈ U .
Since x0 ∈ U , we know that xk, yk ∈ U for k sufficiently large. Note that u − ϕ attains

its maximum over U at xk ∈ U , where ϕ(x) = k|x − yk|2. It follows from the definition of
viscosity subsolution that

H(pk) = H(∇ϕ(xk)) ≤ f(xk)

where pk = 2k(xk−yk). Similarly, v−ψ has a minimum over U at yk, where ψ(y) = −k|xk−y|2.
Therefore

H(pk) = H(∇ψ(yk)) ≥ f(yk) + ε.

Combining the inequalities above yields

f(xk)− f(yk) ≥ ε.

By the uniform continuity of f and (4.7), the left hand side above tends to zero as k → ∞,
which is a contradiction.

Relaxing the strictness condition (i.e., taking ε = 0) in Theorem 4.1 requires some further
structural conditions on H. We show how to relax this condition for the PDE (1.5) below.

Theorem 4.2. If f ∈ C([0,∞)d) then there is at most one increasing viscosity solution of
(1.5).

In the statement of Theorem 4.2, increasing means that u(x) ≤ u(y) whenever xi ≤ yi for
all i. Thus, u is increasing with respect to the partial order for non-dominated sorting, which
is a natural condition to place on solutions of (1.5). We also remark that the key points in
the proof of Theorem 4.2 are (1) dealing with the unbounded domain Rd+ and (2) relaxing the
strictness condition from Theorem 4.1. We sketch the proof below, leaving some details as
exercises.

Proof. Let u, v ∈ C([0,∞)d) be two increasing viscosity solutions of (1.5). For ε > 0 define

vε(x) = v(x) + ε1/d(x1 + · · ·+ xd).

Then it follows that vε satisfies

(4.8)

{
vεx1 · · · v

ε
xd
≥ f + ε, in Rd+

vε ≥ 0, on ∂Rd+

in the viscosity sense. Let Φ : R→ R be a smooth function satisfying Φ(t) = t for t ≤ 1, and
0 ≤ Φ′(t) ≤ 1 and Φ(t) ≤ 2 for all t. Define

uε(x) = ε−1Φ(εu(x)).
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Then it follows that

(4.9)

{
uεx1 · · ·u

ε
xd
≤ f, in Rd+

uε = 0, on ∂Rd+

in the viscosity sense. By Theorem 4.1 applied to U = (0, R)d we have

max
[0,R]d

(uε − vε) = max
∂(0,R)d

(uε − vε)

for any R > 0. Since uε is bounded (by 2ε−1) and vε(x) ≥ ε1/d(x1 + · · ·+xd) (since v ≥ 0) we
have that max∂(0,R)d(u

ε − vε) ≤ 0 for all R > 0 sufficiently large. Therefore uε ≤ vε on Rd+.
Sending ε→ 0+ we obtain u ≤ v. Swapping the roles of u and v completes the proof.

Exercise 1. Verify that vε satisfies (4.8) in the viscosity sense, and that uε satisfies (4.9) in
the viscosity sense.

It is possible to prove uniqueness of viscosity solutions of (1.5) when f has certain kinds of
discontinuities. For example, Theorem 4.2 holds provided there exists some open and bounded
set U ⊂ Rd+ with Lipschitz boundary such that f = 0 for x 6∈ U and f is nonnegative and
uniformly continuous on U . The proof follows closely the proof of Theorem 4.1 with some
adjustments to the auxiliary function Φk to account for the discontinuity of f along ∂U . The
notion of viscosity solution must be adjusted slightly for discontinuous f ; we refer the reader
to [12] for more details. Recall that f is the probability density for the random points we are
sorting with non-dominated sorting. The setup described above models the case where the
points are sampled from the domain U ⊂ Rd+. For more information on viscosity solutions we
refer the reader to [6, 19].

5 Convergence to continuum limit

We give in this section the proof of Theorem 1.1, which is split into three main parts.

5.1 Compactness

The first step is to establish a form of compactness for the sequence Un. Without loss of
generality we assume that 0 ≤ f ≤ 1.

Lemma 5.1 (Compactness). Let x, y ∈ [0,M ]d. Then with probability one

(5.1) lim sup
n→∞

n−1/d(Un(x)− Un(y)) ≤ CM (d−1)/d|x− y|1/d.

Proof. It is enough to show that

lim sup
n→∞

n−1/d(Un(x+ he1)− Un(x)) ≤ CM (d−1)/dh1/d

holds with probability one for any h > 0. We may also assume xj > 0 for all j ≥ 2, otherwise
Un(x+ he1) = Un(x) = 0 almost surely for all n.

Let R denote the rectangle spanning x1e1 and x + he1; see Figure 5.1 for an illustration.
Define
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5.1 Compactness 5 CONVERGENCE TO CONTINUUM LIMIT

Figure 5.1: Illustration of quantities from the proof of Lemma 5.1

g(x) =

{
1, if x ∈ R
f(x), if x 6∈ R,

and let Xng be a Poisson point process with intensity ng constructed so that Xnf ⊂ Xng. Any
maximal chain in the rectangle [0, x + he1] can be subdivided into two pieces; one piece c1
contained entirely in [0, x] of length at most Un(x), and one piece c2 in R of length at most
`(Xnf ∩R) (see, again, Figure 5.1). Therefore

Un(x+ he1) ≤ Un(x) + `(Xnf ∩R) ≤ Un(x) + `(Xng ∩R).

By Corollary 1

lim sup
n→∞

n−1/d(Un(x+ he1)− Un(x)) ≤ lim
n→∞

`(Xng ∩R)

n1/d
= cd|R|1/d ≤ cdM (d−1)/dh1/d

with probability one, which completes the proof.

Lemma 5.1 is sufficient to apply an argument similar to the Arzelà-Ascoli Theorem to
obtain uniform convergence of subsequences of n−1/dUn.

Lemma 5.2. Suppose un : [0,∞)d → R are increasing functions satisfying un(0) = 0 and

(5.2) lim sup
n→∞

(un(x)− un(y)) ≤ C|x− y|α for all x, y ∈ [0,∞)d ∩Qd,

where α > 0 and C depends only on max{x1, y1, . . . , xd, yd}. Then there exists a subsequence
nk →∞ and an increasing function u ∈ C([0,∞)d) such that

unk −→ u locally uniformly on [0,∞)d as k →∞.

Proof. By (5.2) and the assumption that un(0) = 0, the sequence {un(x)}∞n=1 is bounded for
each x ∈ [0,∞)d∩Qd. Therefore we can use the Bolzano-Weierstrass Theorem and a diagonal
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argument to obtain a subsequence unk such that the sequence {unk(x)}∞k=1 is convergent for
all x ∈ [0,∞)d ∩Qd. Let us write u(x) := limk→∞ unk(x). For any x, y ∈ [0,∞)d ∩Qd

|u(x)− u(y)| = lim
k→∞

|unk(x)− unk(y)| ≤ C|x− y|α.

Therefore, u can be extended uniquely to a continuous increasing function u : [0,∞)d → R.
We now show that unk → u locally uniformly on [0,∞)d. Fix M > 0 and let ε > 0. Let

h > 0 be small enough so that

u(x+ 1h)− u(x) < ε for all x ∈ hZd ∩ [0,M ]d,

where 1 = (1, . . . , 1) ∈ Rd. Let y ∈ [0,M ]d and choose x ∈ hZd ∩ [0,M ]d such that xi ≤ yi <
xi + h for all i. Then since unk and u are increasing we have

unk(y)− u(y) ≤ unk(x+ 1h)− u(x+ 1h) + ε,

and
u(y)− unk(y) ≤ u(x)− unk(x) + ε.

Therefore
‖unk − u‖L∞([0,M ]d) ≤ max

x∈hZd∩[0,M+h]d
|unk(x)− u(x)|+ ε

and so
lim sup
k→∞

‖unk − u‖L∞([0,M ]d) ≤ ε.

It follows that unk → u uniformly on [0,M ]d, which completes the proof.

5.2 Longest chain in a simplex

As we did in the nonrigorous argument in Section 2, the next step is to count the length of a
longest chain in simplices of the form

(5.3) Sv =
{
x ∈ (−∞, 0]d : 1 + x · v ≥ 0

}
,

where v ∈ (0,∞)d. The simplex Sv is a simplex with orthogonal corner at the origin and side
lengths `1 = v−11 , `2 = v−12 , . . . , `d = v−1d (i.e., the set A from Figure 2.1).

Lemma 5.3. For any v ∈ (0,∞)d and x ∈ Rd we have

(5.4) lim sup
n→∞

`((x+ Sv) ∩Xnf )

n1/d
≤ cd

d

(
supx+Sv f

v1 · · · vd

)1/d

,

and

(5.5) lim inf
n→∞

`((x+ Sv) ∩Xnf )

n1/d
≥ cd

d

(
infx+Sv f

v1 · · · vd

)1/d

,

with probability one.
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Proof. We sketch the proof of (5.4); the proof of (5.5) is similar. Without loss of generality
we can take x = 0.

We first prove the result for f = 1 and v = 1. In this case we claim that

(5.6) lim
n→∞

`(Xn ∩ S1)

n1/d
=
cd
d

almost surely.

To see this, note that the rectangle of largest area contained in S1 is R = [−1/d, 0]d, which has
measure |R| = 1/dd. Let ε > 0 and let R1, . . . , Rm be m rectangles such that |Rj | ≤ 1/dd + ε
for all j, S1 ⊂ ∪mj=1Rj , and 0 ∈ Rj for all j. Then any chain in Xn ∩ S1 is contained in at
least one of the rectangles Rj and hence

`(Xn ∩ S1) ≤ max
1≤j≤m

`(Xn ∩Rj).

By Corollary 1

lim sup
n→∞

`(Xn ∩ S1)

n1/d
≤ cd

(
1

dd
+ ε

)1/d

almost surely.

Sending ε→ 0+ we get

lim sup
n→∞

`(Xn ∩ S1)

n1/d
≤ cd

d
almost surely.

The lim inf inequlity is immediate, since S1 ⊃ R. This establishes (5.6).
We now prove (5.4). We define

g(x) =

{
supSv f, if x ∈ Sv,
f, otherwise,

and let Xng be Poisson point process with intensity ng constructed so that Xnf ⊂ Xng. Let
Φ(x) = (v1x1, . . . , vdxd). Then X := Φ(Xng) is a Poisson point process with intensity

λ = |det Φ|−1n sup
Sv

f =
n supSv f

v1 · · · vd

on the simplex S1 = Φ(Sv). Since Φ sends chains to chains we have

(5.7) `(Sv ∩Xn) ≤ `(Sv ∩Xng) = `(Φ(Sv) ∩ Φ(Xng)) = `(S1 ∩X).

By (5.6) we have

lim sup
n→∞

`(Sv ∩Xn)

n1/d
≤ lim

n→∞

(
λ1/d

n1/d

)
`(S1 ∩X)

λ1/d
=
cd
d

(
supSv f

v1 · · · vd

)1/d

almost surely.

5.3 Proof of main result

We now give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let Ωx,y denote the event that (5.1) holds for x, y ∈ [0,∞)d, and let Ω
denote the intersection of Ωx,y over the countable collection of x, y ∈ [0,∞)d∩Qd. By Lemma
5.1 we know that P(Ωx,y) = 1, and so P(Ω) = 1. By the same argument, the event Ω′ that
(5.4) and (5.5) hold for all x ∈ [0,∞)d ∩ Qd and all v ∈ (0,∞)d ∩ Qd has probability one.
For the remainder of the proof we fix a realization in the probability one event Ω ∩ Ω′. The
remainder of the proof is deterministic.

The sequence un := n−1/dUn satisfies the hypotheses of Lemma 5.2. Therefore, passing to
a subsequence, which we again denote by un for convenience, there exists u ∈ C([0,∞)d) such
that un → u locally uniformly on [0,∞)d.3 We claim that u is the unique viscosity solution of

(5.8)

ux1 · · ·uxd =
cdd
dd
f, in Rd+

u = 0, on ∂Rd+.

This will complete the proof, since all subsequences contain subsequences converging to the
solution of (5.8), so the entire sequence must converge to the same function. Note in Theorem
1.1 we absorb the constant cdd/d

d into the convergence statement (1.4) instead of the PDE.
To show that u is the viscosity solution of (5.8) we have to verify the sub- and supersolution

conditions.
1. We first verify that u is a viscosity subsolution of (5.8). Let x0 ∈ Rd+ and let ϕ ∈ C∞(Rd)

such that u − ϕ has a local maximum at x0. Since u is increasing we must have ϕxi(x0) ≥ 0
for all i (why?), and if ϕxi(x0) = 0 for any i then the subsolution property holds trivially,
since f(x0) ≥ 0. Therefore we may assume that ϕxi(x0) > 0 for all i. By modifying ϕ away
from x0, we may also assume, without loss of generality, that u(x0) = ϕ(x0), u(x) ≤ ϕ(x) for
all x ∈ [0, x0], and ϕ is increasing for all x ∈ [0, x0].

Let ε > 0, v ∈ (0,∞)d, and set4

(5.9) An = {x ∈ [0, x0] : un(x) ≥ ϕ(x0 − εv)}.

and

(5.10) A = {x ∈ [0, x0] : ϕ(x) ≥ ϕ(x0 − εv)− ε2}.

We claim that

(5.11) Un(x0) ≤ n1/dϕ(x0 − εv) + `(An ∩Xnf ).

Briefly, the idea is to peel away all points on fronts with indices less than or equal to n1/dϕ(x0−
εv), and then compute Un(x0) by peeling (or counting the longest chain in) An. Furthermore,
since un → u uniformly and u ≤ ϕ for x ∈ [0, x0], we have An ⊂ A for n sufficiently large. See
Figure 2(a) for an illustration. Therefore

3The reader should note that the particular subsequence we pass to, and the limit u both depend on the
realization selected earlier in the proof.

4Notice we are “looking backwards”, contrary to the nonrigorous argument in Section 2.
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(a) An ⊂ A (b) B ⊂ Bn

Figure 5.2: Illustration of the inclusions An ⊂ A and B ⊂ Bn from the proof of Theorem 1.1.

ε∇ϕ(x0) · v − Cε2 ≤ ϕ(x0)− ϕ(x0 − εv)

= u(x0)− ϕ(x0 − εv)

= lim
n→∞

un(x0)− ϕ(x0 − εv)

≤ lim
n→∞

n−1/d`(An ∩Xnf )

≤ lim sup
n→∞

n−1/d`(A ∩Xnf ).

The reader should contrast this with the first part of (2.1) from Section 2.
Since A ⊂ B(x0, Cε) for some C > 0 (why?), we can apply Taylor expansions to ϕ in

(5.10) to obtain
ε∇ϕ(x0) · v + Cε2 +∇ϕ(x0) · (x− x0) ≥ 0

whenever x ∈ A. Letting y ∈ [0,∞)d ∩ Qd with yi ≥ x0,i for all i and |y − x0| ≤ ε2 we find
that

1 + (x− y) · p ≥ 0

whenever x ∈ A, where

p =
∇ϕ(x0)

ε∇ϕ(x0) · v + Cε2
.

Let q ∈ Qd with 0 < qi < pi for all i and |q − p| ≤ ε2. Then for any x ∈ A

1 + (x− y) · q ≥ 0,

and so A ⊂ y + Sq, where y and q have rational coordinates. We therefore have

ε∇ϕ(x0) · v − Cε2 ≤ lim sup
n→∞

n−1/d`((y + Sq) ∩Xnf ) ≤ cd
d

(
supy+Sq f

q1 · · · qd

)1/d

.

Sending ε→ 0+ we obtain

1 ≤ cd
d

(
f(x0)

ϕx1(x0) · · ·ϕxd(x0)

)1/d

,
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which is exactly the subsolution property.
2. We now show that u is a viscosity supersolution of (5.8). Let x0 ∈ Rd+ and let ϕ ∈

C∞(Rd) such that u − ϕ has a local minimum at x0. Since u is increasing we must have
ϕxi(x0) ≥ 0 for all i (why?). Let λ > 0 and define

ψ(x) = ϕ(x) + λ(x1 + · · ·+ xd).

Then for x ∈ B(x0, r) ∩ [0, x0] we have

u(x)− ψ(x) = u(x)− ϕ(x)− λ(x1 + · · ·+ xd)

≥ u(x0)− ϕ(x0)− λ(x0,1 + · · ·+ x0,d)

= u(x0)− ψ(x0).

Therefore u − ψ has a local maximum at x0 relative to [0, x0] and ψxi(x0) ≥ λ > 0. We can
again translate ψ and modify ψ away from x0 so that u(x0) = ψ(x0), u ≥ ψ on [0, x0], and ψ
is increasing on [0, x0].

As before, let ε > 0, v ∈ (0,∞)d and set

(5.12) Bn = {x ∈ [0, x0] : un(x) ≥ ψ(x0 − εv)}.

and

(5.13) B = {x ∈ [0, x0] : ψ(x) ≥ ψ(x0 − εv) + ε2}.

Similar to (5.11) we have

Un(x0) ≥ n1/dψ(x0 − εv) + `(Bn ∩Xnf )− 2.

Since un → u uniformly and u ≥ ψ on [0, x0], we have B ⊂ Bn for n sufficiently large. See
Figure 2(b) for an illustration. Therefore

ε∇ϕ(x0) · v + Cε2 ≥ ϕ(x0)− ϕ(x0 − εv)

= u(x0)− ϕ(x0 − εv)

= lim
n→∞

un(x0)− ϕ(x0 − εv)

≥ lim
n→∞

n−1/d`(Bn ∩Xnf )

≥ lim inf
n→∞

n−1/d`(B ∩Xnf ).

Again, for ε > 0 small enough we have B ⊂ B(x0, Cε), and so we can apply Taylor expansions
to ψ to find that if x ∈ B(x0, Cε) and

ε∇ψ(x0) · v − Cε2 +∇ψ(x0) · (x− x0) ≥ 0

then x ∈ B. Let y ∈ [0,∞)d ∩ Qd such that yi ≤ x0,i for all i and |y − x0| ≤ ε2. Then if
x ∈ B(x0, Cε) and 1 + (x− y) · p ≥ 0 then x ∈ B, where

p =
∇ψ(x0)

ε∇ψ(x0) · v − Cε2
.
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It follows that y + Sq ⊂ B for any q ∈ Qd with qi > pi and, say, |q − p| ≤ ε2. Therefore

ε∇ϕ(x0) · v + Cε2 ≥ lim inf
n→∞

n−1/d`((y + Sq) ∩Xnf ) ≥ cd
d

(
infy+Sq f

q1 · · · qd

)1/d

.

Sending ε→ 0+ and recalling ψxi = ϕxi + λ we find that

(ϕx1(x0) + λ) · · · (ϕxd(x0) + λ) ≥
cdd
dd
f(x0).

Sending λ→ 0+ we obtain the supersolution property

ϕx1(x0) · · ·ϕxd(x0) ≥
cdd
dd
f(x0).

This completes the proof.

Exercise 2. Fill in some of the missing steps marked by “(why?)” in the proof of Theorem
1.1.

A Poisson point processes

A Poisson point process Xf with intensity function f is a random at most countable collection
of points in Rd with the following properties:

(i) For every Borel set A ⊂ Rd, the number of points in Xf ∩A, denoted N(A), is a Poisson
random variable with mean λ =

∫
A f dx.

5

(ii) For disjoint Borel sets A,B ⊂ Rd, the random variablesN(A) andN(B) are independent.

Poisson point processes are not all that far removed from sequences of independent and iden-
tically distributed (i.i.d.) random variables. Indeed, if

∫
Rd f dx = 1 then one way to construct

the Poisson point process Xnf for n ∈ N is

Xnf = {Y1, . . . , YN},

where Y1, Y2, Y3, . . . is a sequence of i.i.d. random variables with probability density function
f , and N is a Poisson random variable with mean n.

Poisson point processes have many properties that make them more mathematically con-
venient compared to i.i.d. sequences. First, note that the independence of N(A) and N(B)
does not hold if Xf is replaced by a collection of n i.i.d. random variables X1, . . . , Xn (they
are negatively correlated). Second, the restriction Y = Xf ∩ A to any Borel set A is again a
Poisson point process on A with intensity f . Third, the union Y = Xf ∪Xg is a Poisson point
process with intensity f + g, i.e., Y = Xf+g. Fourth, given a Poisson point process Xf and
another intensity function g with f ≤ g (resp. f ≥ g) it is possible to construct a Poisson point
process Xg so that Xf ⊂ Xg (resp. Xf ⊃ Xg). In the former case, we set Xg = Xf ∪Xg−f ,
while the latter case involves randomly deleting points from Xf (called “thinning”) to recover
Xg ⊂ Xf . Finally, if A ∈ Rd×d is a nonsingular matrix, and b ∈ Rd, then Y := AXf + b is
again a Poisson point process with intensity

g(y) = | detA|−1f(A−1(y − b)).

For more details on Poisson point processes we refer the reader to Kingman’s book [44].
5N is Poisson with mean λ if P(N = k) = e−λλk/k!.
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