PDEs and Graph Based Learning

Summer School on Random Structures in Optimizations and Related Applications

Lecture 2: PageRank

Instructor: Jeff Calder (jcalder@umn.edu)

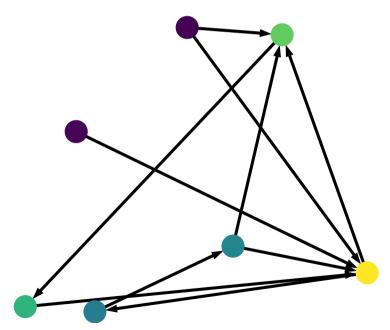
Web: http://www-users.math.umn.edu/~jwcalder

Lecture Notes: http://www-users.math.umn.edu/~jwcalder/5467S21

PageRank

The PageRank algorithm ranks websites based on the link structure of the internet. It was used to sort Google search results until 2006, and has been used in

• Biology (GeneRank), chemistry, ecology, neuroscience, physics, sports, and computer systems...



PageRank

Main Idea: Take a random walk on the internet for T steps.

Rank of site $i = \lim_{T \to \infty} \frac{1}{T}$ (Number of times site i is visited).

Problem: Random walks can get stuck in disconnected components of the internet, and may never visit a given site i.

Solution: Every so often, the random walker teleports to a random site on the internet. The walker is called a random surfer.

Code demo

Mathematics of PageRank

To describe PageRank mathematically, we start with an adjacency matrix W

$$W(i,j) = \begin{cases} 1, & \text{if site } i \text{ links to site } j \\ 0, & \text{otherwise.} \end{cases}$$

We also have a probability transition matrix P for the random walk:

$$P(i, j) = \text{Probability of stepping from } j \text{ to } i.$$

Both P and W are $n \times n$ matrices, n =number of webpages.

Mathematics of PageRank

Clicking on a link at random from webpage j leads to the transition probabilities

$$P(i,j) = \frac{W(j,i)}{\sum_{k=1}^{n} W(j,k)}.$$

Exercise 1. Show that $P = W^T D^{-1}$, where D is the diagonal matrix with diagonal entries $D(i,i) = \sum_{j=1}^{n} W(i,j)$.

Random surfer

Let $\alpha \in [0,1)$ be the random walk probability, and let $v \in \mathbb{R}^n$ be the teleportation probability distribution. That is, $v(i) \geq 0$ for all i, and $\sum_i v(i) = 1$.

Random surfer dynamics: When at website j, the random surfer chooses the next site as follows:

- 1. With probability α the surfer clicks an outgoing link at random, that is, the surfer navigates to website i with probability P(i,j).
- 2. With probability 1α the surfer teleports to website i with probability v(i).

Teleportation

Teleportation distribution: Common choices are

- v(i) = 1/n for all i (jump to a site uniformly at random).
- (Localized PageRank) $v(i) = \delta_{ij}$ (always jump back to site j).

Localized PageRank ranks all sites based on their similarity to site j.

The PageRank vector

For $k \geq 0$ define

 $x_k(i)$ = Probability that the random surfer is at page i on step k.

Definition 2. The PageRank vector x is

$$x(i) = \lim_{k \to \infty} x_k(i),$$

provided the limit exists.

Transition probabilities

To see how x_k transitions to x_{k+1} requires some probability. We condition on the location of the surfer at step k, and on the outcome of the coin flip, to obtain

$$x_{k+1}(i) = (1 - \alpha)v(i) + \alpha \sum_{j=1}^{n} P(i, j)x_k(j).$$

We can write this in matrix/vector form as

$$(1) x_{k+1} = (1 - \alpha)v + \alpha P x_k.$$

If x_k converges to a vector x as $k \to \infty$, then x should satisfy

$$x = (1 - \alpha)v + \alpha Px.$$

Question: Does x_k converge as $k \to \infty$, and if so, how quickly does it converge?

Analysis of PageRank

We consider the PageRank equation

$$(2) x = (1 - \alpha)v + \alpha Px.$$

Lemma 3. Let $v \in \mathbb{R}^n$ and $0 \le \alpha < 1$. Then there is a unique vector $x \in \mathbb{R}^n$ solving the PageRank equation (2). Furthermore, the following hold.

- (i) We have $\sum_{i=1}^{n} x(i) = \sum_{i=1}^{n} v(i)$.
- (ii) If $v(i) \ge 0$ for all i, then $x(i) \ge 0$ for all i.

The ℓ_1 -norm

It will be more convenient to work in the ℓ_1 -norm $\|\cdot\|_1$ defined by

$$||x||_1 = \sum_{i=1}^n |x(i)|.$$

In the ℓ_1 -norm, the transition matrix P is non-expansive.

Proposition 4. We have $||Px||_1 \leq ||x||_1$.

Proof:
$$\|P_{\mathbf{x}}\|_{1} = \sum_{i=1}^{\infty} |P_{\mathbf{x}}(i)|$$

$$= \sum_{i=1}^{\infty} |\sum_{j=1}^{\infty} P(i,j) \times (j)|$$

$$\leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(i,j) |X(j)|$$

$$= \sum_{j=1}^{\infty} |X(j)| \sum_{i=1}^{\infty} P(i,j)$$

$$|X| = |X| | = 1$$

$$|X| =$$

 $||7||_1 = ||x||_2 ||_1 = \propto ||7||_1$ $||7||_1 = ||x||_2 ||_1 = \propto ||7||_1$ $||7||_1 = ||x||_2 ||_1 = \propto ||7||_1$

$$(1-\alpha)|17|1_2 = 0$$
 Since $1-\alpha \ge 0$
Provided $0 \le \alpha < 1$ we have $7 = 0$
and $(1-\alpha)|17|1_2 = 0$ Since $1-\alpha \ge 0$

Thus, for every
$$V$$
, $\mathbb{R}! \times \mathbb{R}^n$ solving

the Page Rank problem.

(i) $\widehat{\mathbb{T}}_{x(i)} = \widehat{\mathbb{T}}_{x(i)} \left((1-\alpha)V(i) + \alpha \widehat{\mathbb{T}}_{x(i)} \times P(i,j)X(j) \right)$
 $= (1-\alpha)\widehat{\mathbb{T}}_{x(i)} + \alpha \widehat{\mathbb{T}}_{x(i)} \times \widehat{\mathbb{T}}_{x(i)} \times P(i,j)$

Provided
$$\angle Z = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(i,j) \times (i)$$
.

(ii) $|X(i)| = |(1-\alpha) \times (i) + \alpha \sum_{j=1}^{\infty} P(i,j) \times (j)|$
 $|X(i)| = |(1-\alpha) \times (i)| + \alpha \sum_{j=1}^{\infty} P(i,j) \times (j)|$

Sum over i on both sides

 $((-\alpha)\sum_{i=1}^{n} \chi(i)) = ((-\alpha)\sum_{i=1}^{n} V(i))$

 $= ((-\alpha) \sum_{i=1}^{n} V^{(i)}) + \alpha \sum_{i=1}^{n} \chi(i)$

 $|x(i)| = x(i) = |x(i)|^2$

 $\frac{2}{1-\alpha} |x(i)| \leq (1-\alpha) \frac{2}{1-\alpha} |x(i)| + \chi \frac{2}{1-\alpha} |x(i)|$

Eigenvector problem

Remark 5. When v is a probability distribution, it is common to re-write the PageRank problem (2) as an eigenvector problem

$$P_{\alpha}x = x$$

where

$$P_{\alpha} := (1 - \alpha)v\mathbf{1}^T + \alpha P.$$

(*) Assume
$$X(i) \ge 0$$
, $1^Tx = 1$ ($P^{nob.}$)

(b) $X = (1-\alpha) \times 1^Tx + \alpha Px$

$$= \left[(1-\alpha) \times 1^T + \alpha P \right] \times$$

Convergence of the PageRank iteration

Let $v \in \mathbb{R}^n$ and $0 \le \alpha < 1$. Let x_k satisfy the PageRank iteration

$$x_{k+1} = (1 - \alpha)v + \alpha P x_k,$$

and let x be the unique solution of the PageRank problem

$$x = (1 - \alpha)v + \alpha Px$$
.

Theorem 6. We have

$$||x_k - x||_1 \le \alpha^k ||x_0 - x||_1.$$

Since $0 \le \alpha < 1$, this is convergence of $x_k \to x$ with a linear convergence rate of α .

Proof:
$$X = (1-\alpha)V + \alpha P_{XK-1}$$

 $X = (1-\alpha)V + \alpha P_{X}$

Sub. equations

$$x_k - x = x_{k-1} - x_k$$

= $x_k - x_k$

 $= 2 ||P(x_{k-1}-x)||$ $\|\chi_{\mathbf{k}} - \chi\|$ € × || x k-1 - x || IPX IL E IXIL Ex 11 xk-2 - x11

 $\leq \propto^3 ||x_{k-3} - \times ||$

$$\chi^{k+1} = \sigma(P\chi^k W^k)$$

$$\sigma(t) = ReLU(t)$$

$$= max (9, t)$$

$$= \max\{9, t\}$$

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

Power iteration

Remark 7. In the eigenvector formulation discussed above, the PageRank iteration $x_{k+1} = P_{\alpha}x_k$ is basically the power iteration to find the largest eigenvector of P. The normalization step is not needed since $||x_k||_1 = 1$ for all k.

$$X_{k+1} = P_{x} X_{k}$$

$$X_{k} = P_{x} X_{o} \longrightarrow \begin{array}{c} largest \\ eisenvector \end{array}$$

Personalized PageRank for image retrieval (.ipynb)