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Why /how do bones break?

Main research queries:

@ How do broken bone fragments fit back together?

@ What broke them?

» E.g., Animal, hominin, or natural causes?

Collaboration with Professor Peter Olver (Mathematics, UMN), Professor Martha
Tappen (Anthropology, UMN), Katrina Yezzi-Woodley, Riley O'Neill, Pedro
Angulo-Umana, Bo Hessburg, Jacob Elafandi, Jacob Theis, and Cheri Shakiban.
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When did humans first come to North America?

Anthropology © This article is more than 2 years old
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Researchers present some of the arguments for and against the new evidence. )

Key finding: Bones appear to have been broken by humans with stone tools, though this
is highly controversial in anthropology.
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Questions

@ Does the bone fragment shape tell us anything about the actor responsible for the
fragmentation?

@ If so, can we distinguish hominin damage from carnivore damage?

© Further, can we identify different types of hominin damage?
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Breaking bones: Animal

Crocuta crocuta = hyena
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Breaking bones: Rockfall

Calder (UofM) Spherical Volume Invariant CMIPBP, 06/17/19 9/49



Breaking bones: Hominin

Batting, Hamerstone & Anvil, Hammerstone
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Differential invariants of curves/surfaces

@ Long history of differential invariants in shape processing
» Mean and Gauss curvature of surfaces, etc.

@ Applications:
» Shape recognition and matching

» Feature extraction

@ Advantages: Well-understood from differential geometry, and established
uniqueness of representations.

@ Disadvantages: Lack of robustness to noise.
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Integral Invariants

@ Integral invariants involve integrals of the curve/surface [Manay et al., 2004]

\;f

(a) Circular area invariant ) Cone area invariant

@ Advantage: Automatically robust to noise.

@ Disadvantage: Not much theory. Uniqueness of representations?

» [Calder and Esedoglu, 2012]
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Spherical volume invariant

Definition (Spherical volume invariant)

Consider a closed surface S C R® bounding a domain Q = int S. We define the spherical

volume invariant at each point p € S to be

Vs,r(p) = Vol(2N B:(p)),

@ Used for feature extraction
[Yang et al., 2006, Pottmann et al., 2009, Pottmann et al., 2007]

@ Relation to Mean Curvature:
2 3 1 4 5
Vs,r(p) = 37— ZwH(p)r +0O(r°) asr—0,

where H(p) is the mean curvature of S at p.
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Circular area and spherical volume invariants

(c) Circular Area Invariant (d) Spherical Volume Invariant
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How to compute?

Two existing methods:
@ FFT methods, based on rewriting as a convolution

Vs,r(p) = X0 * X5,

@ Direct numerical integration, e.g., the octree method

I
miiim
mili

Figure 8: Integral invariant computation based on an octree data
structure. The cubes €1, C, C's correspond to cases 2cey, 2b, and
2¢/3 of Algorithm 1, respectively.

[Yang et al., 2006, Pottmann et al., 2009, Pottmann et al., 2007]
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Question: Can we restrict the computation to the surface S, and avoid discretizing the
ambient space?

Calder (UofM) Spherical Volume Invariant



Main idea: Divergence theorem
Fix p = 0 and write B, = B,(0) and Vs, = Vs,-(0).

Let V be a vector field with divV =1 so that

Vs,,:/ didex:/ V-de+/ V.vdsS.
QNB, SNB; QNIB,
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Main idea: Divergence theorem

Fix p = 0 and write B, = B;(0) and Vs, = Vs (0).

Let V be a vector field with divV = 1 so that

VS,T:/ dide:pz/ V-I/dS+/ V-vds.
QNB, SNB, QNOB,

Can we find a smooth vector field V satisfying

divV =1 in B,
V-v=0 ondB,’

Short answer: No, since

/ divVdzr = V-vdsS.
r 9By
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Conversion to Poisson problem

Let's make an ansatz (in R")
V(z) = lx + Vu
n
where u : B, — R. Then divV =1 + Awu and the problem

divV =1 in B,
V-vr=0 ondB,

is reduced to

Au=0 in B,
ou 7

% = _E on 8Br,

since v =z/r.
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Solving the Poisson problem
To make the Poisson problem solvable, we add a source
—Au=a,r"§ in B,
Ou _ 1 on dB
o n "
where a, = |B1|. The solution is

u(z) = anr"®(z),
where @ is the fundamental solution of Laplace's equation

—2ilog|x|, ifn=2
o(z) = ! :
, ifn>3
n(n —2)ay, |z|"—2

This gives
1 r" oz

n Jaft
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Back to the divergence theorem

TTL

Set V(z) = %x - —

n |zl

and compute for 0 < e < r

/ V.-vdS+ / V.-vdS

9(Q2N(Br\Be)) QNOBe

/ dide:r+/ (E_ Til)ds
QN (Br\Be) QNOBe n ner

/ dz + (5 SR 71> H* (2N B.)
QN(B,\Be) n nev

Vs, — Vs,e + (E S—
n

/ V-vdS
SA(B,\B)

nen—1

) H" N (QNIB.),

where H"! denotes (n — 1)-dimensional Hausdorff measure. Therefore

1 " H" QN IB:)
V,TZV,E—i—f/ <1——) z-v)dS +a,(rt —e") ————————=2
Sr=Vse ey W el ) Y (=) e any)
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Main Result

Theorem ([O'Neill et al., 2019])

Let © C R"™ be open and bounded with Lipschitz boundary S := 0X). Let p € S and

assume the limit

_ o H'HQNIB(p))
M )= i 1(6B.(»))

exists. Then we have

1 r"
2 Vs,r(p :7/ <1—7) z—p)-vdS+a,r"T'(p).
@  vew-i[ (1-g5p)e-» »

@ If S is differentiable at p then I'(p) = 1.

@ If S is a triangulated mesh, I'(p) exists and
(z—p)-v=0
for z in the vertex polygon of p, so the kernel in (2) is integrable.
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Computing I'(p)

e PR OB(p))
D)= i 8. (o))

Y e

(e) Vertex triangles ) Small sphere ) From above
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Computing I'(p)

k
1
I'(p) = 3~ Z arcsin(d; sin(0;41 — d;)) — arcsin(d; sin(6; — 6;)),
where
di =/ (v9)? + (8)2, &; = atan2(vs, vi), and 6; = atan2(y;, ;).
) Vertex triangles (i) Small sphere (j) From above
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Numerical integration

Recall

1 r’
Vs, r z—/ (1—7) z—p)-vdS+azr’T(p).
s.(p) =~ s PR (z—p) 37°T(p)

Assume S is a triangulated mesh. Then we need to compute

3
I::/ (1— |;|3>:c-1/d5,
T

where T C R? is a planar triangle with 0 ¢ T. Note that

I:(z-y)|T|—r3(z-u)/ ﬁdx,
T

for any z € T. This is a hypersingular integral.
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Explicit expressions for 3D boundary integrals in potential theoryi

S. Nintcheu Fata*-t

Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008,
MS 6367, Oak Ridge, TN 37831-6367, U.S.A.

SUMMARY

On employing isoparametric, piecewise linear shape functions over a flat triangular domain, exact expres-
sions are derived for all surface potentials involved in the numerical solution of three-dimensional singular
and hyper-singular boundary integral equations of potential theory. These formulae, which are valid for an
arbitrary source point in space, are represented as analytic expressions over the edges of the integration
triangle. They can be used to solve integral equations defined on polygonal boundaries via the collocation
method or may be utilized as analytic expressions for the inner integrals in the Galerkin technique.
In addition, the constant element approximation can be directly obtained with no extra effort. Sample
problems solved by the collocation boundary element method for the Laplace equation are included to
validate the proposed formulae. Copyright © 2008 John Wiley & Sons, Ltd.

Received 15 May 2008; Revised 11 July 2008; Accepted 21 August 2008
KEY WORDS: analytic integration; singular integrals; boundary integral method; triangular boundary;

potential theory
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Let z* € R denote the orthogonal projection of the origin onto the plane P containing T'. Let zl, 12, 23 € R3 be the
vertices of T' and write 2% = z1. Define

0, if z*e€P\T

z
@) P if ¥ €dT\ {«', 22,23}
- 2w, if z¥ €T
0,, if z* =z

where 6, is the interior angle of T at the vertex z".
Let L" denote the oriented edge of the triangle T from z* to z'T1. Associated with each edge L', we construct an
orthonormal basis (e, e5) for the plane P with origin z*, ] taken in the direction of the edge L', and e}, = v X e chosen

so that (e’i s e;, v) is an orthonormal basis for R3. Let

pl = (a/ —a") e, g = (2’ —a") ey,
be the planar coordinates of the vertex 27 in the basis (e’i,eg). By definition, q11 = q21, q% = q23, and qg = qg, since the
vertices z7 and 2717 lie along the line spanned by e71 We denote the common values as

1
q; = qf:qfr .

1

Finally, set n = z~ - v, noting that  # 0, since 0 ¢ T. We then define

i i+1
—2piqin|z’| —2pi L gim|aitl
(4) i = arctan arctan
i = o e, o o | p - .
(a)%[2]2 = (p})2n? (0)2]e" 112 = (p;T1)2n2

The hypersingular integral is now given by

(5

/ L= 1T y2 s A+ 2sign(n) 6
T |z|3 27
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Circular area and spherical volume invariants

(k) Circular Area Invariant () Spherical Volume Invariant
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PCA on local neighborhoods

In order to capture more information about the surface, we follow
[Pottmann et al., 2007] and perform PCA on the set region QN B, (p):

Ms . (p) == / o = E) T

where

1
T(p) := 7/ z dz.
VS,r(P) QN B, (p)

The eigenvalues of Mg -(p) have the asymptotic expansions

M (p) = 220 = [ (o) + ma()° + O()
Xa(p) = 221° = Tfra(p) + 3ma()” + O()
Xa(p) = gon 1 = 2 [sa(p) + ma(p)]r +O(r7),

as 7 — 0, where x1(p), k2(p) are the principal curvatures of the surface S at the point
peSs.
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PCA on local neighborhoods

To compute Mg (p) we just need to compute

(6)  mi(p) == /QOB ( )(xi — pi) dz, and c;;(p) :=/ (z: — pi) (2 — p;) da.

QNBr(p)

Lemma ([O'Neill et al., 2019])
Let us abbreviate y = © — p. Then, for any 1 < i,5 < n, we have
™) m@ = [ ) v ds(a)
' n+1 Jsnp, ) ' ' '
and
©) )= 5oy Ver®bs + 5 [ Guapy = et ) v dS()
i (P) = n+2 S,r(P )03 o+ 4 B (0) YilYi Yy Yji T Yi€j .
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Experimental results

CPU time on Stanford dragon

Mesh size Radius
(# triangles/#vertices) | r=05 | r=1 | r=2 | r=3 | r=4 | r=5
45,360/22,678 0.19s | 0.69s | 2.bs 6.1s 10.3s | 16.8s
90,722/45,359 0.67s 2.1s 89s | 26.2s | 40.7s | 66.7s
181,444/90,720 2.0s 7.8s | 32.8s | 83.3s | 151.4s | 268.4s

Figure: Spherical volume invariant for radii of 1, 2, and 5.

Calder (UofM) Spherical Volume Invariant



Experimental results

Figure: Spherical volume invariant computed at radii of 1, 2, and 5.
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Experimental results

Figure: Spherical volume invariant computed at radii of 1, 2, and 5.
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Experimental results

Figure: Spherical volume invariant computed at radii of 1, 2, and 5.
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Experimental results

Figure: Gauss curvature with r = 0.5.
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Experimental results

Figure: Principal curvature x; with r = 0.5.
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Experimental results

Figure: Principal curvature ko with 7 = 0.5.
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Fracture edge detection

Figure: Results of edge detection via thresholding the spherical volume invariant 1
standard deviation below the mean.
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Fracture edge detection

Figure: Results of edge detection via thresholding the spherical volume invariant 1
standard deviation below the mean.
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Curent/Future Work

@ Use spherical volume invariant and machine learning to classify fragments by agent
of breakage.

@ Automatic refitting of bone fragments.
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