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Lecture 10: The Fast Fourier Transform (FF'T)
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Last time

e Intro to the DFT

Today

e The Fast Fourier Transform (FFT)



Recall fe " c=> £=(f0,{0,.  Fo-) fae

Definition 1. The Discrete Fourier Transform (DFT) is the mapping D : L*(Z,) —
L?(Z,,) defined by

[Hey= ¢
—> Df Zf —kE Zf —27rik;€/n,

where w = e2™/™ and Z,, = {0,1,...,n — 1} is the cyclic group Z,, = Z/n.
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The DFT can be viewed as a change of basis into the orthogonal basis functions
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Inverse Fourier Transform

Theorem 2 (Fourier Inversion Theorem). For any f € L*(Z,) we have
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Definition 3 (Inverse Discrete Fourier Transform). The Inverse Discrete Fourier
Transform (IDFT) is the mapping D~ : L?(Z,) — L*(Z,,) defined by
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Basic properties

Exercise 4. Show that the DFT enjoys the following basic shift properties.
1. Recall that ug(k) := e>™*¢/" = (,*_ Show that

D(f - ur)k) = D=8, = D{ (fe—_0).

2. Let T, : L*(Z,) — L*(Z,) be the translation operator T, f(k) = f(k — ¢).
Show that —

| D(Tf)k) = m

[Hint: You can equivalently show that D=1 (f - uy) (k) = D_lf(kal—f), using
an argument similar to part 1. |
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Computational Complexity

Question: How many operations (multiplications or additions) does it take to com-
pute Df for f € L?*(Z,)? Recall we have to compute

n—1
Df(f) — Z f(k)e—%riké/n
k=0

for { =0,1,...,n— 1.
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The Fast Fourier Transform (FFT)

The Fast Fourier Transform computes Df in O(nlogn) operations. It is one of the
most important and widely used algorihtms in science and engineering.

e One of the top 10 algorithms of 20th Century — IEEE Computing in Science
& Engineering magazine.

e “The most important numerical algorithm of our lifetime” — Gilbert Strang,
MIT.



The Fast Fourier Transform (FFT)

Notation: Let n be even. For f € L?(Z,) the even and odd parts of f, denoted f.
and f,, respectively, are the functions in L2(Z%) defined by

fe(k) = f(2k) and  fo(k) = f(2k +1),

for k=0,1,...,%2 — 1. We also denote by D,, the DFT on L*(Z,).

The FFT is based on the following observation.

Lemma 5. For each f € L*(Z,) with n even we have
(2) an(ﬁ) = D%fe<€) + 6—2wi€/nD%fo(£),

fort=0,1,...,n—1.
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Remember Z, is cyclic
Remark 6. In the expression
Dy f(£) = D fo(l) + e 2™/ "D £,(0),

it is important to point out that D, f € L*(Zy) and D=z f, D fo € L*(Z
For 5 < /¢ <mn —1, the periodicity of Z=» gives that

).

|3

,an(E) - ,D%fe(g - %) + 6_27Ti£/nD%fo(€ - %)

This is important to keep in mind in practical implementations, since indexing arrays
in Python or Matlab does not work cyclically.



The FFT Algorithm O (V\ )
The FFT is based on using the expression (//

Dnf(€) = D% fe(€) + 6_2m£/nD% fo(£),

— S
to recursively reduce to the DFT on shorter signals (by half each time we iterate).
We only need to iterate log, n times before reaching Dy (if n = 2%), and D, f = f is

the identity.

Rough Computational Complexity: Whenever we use the expression above to
combine the DFT on smaller spaces, it costs O(n) operations. The splitting is done
log, n times, yielding O(nlog, n) operations.
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The FFT Algorithm Lo
= F k=0

The FFT can be implemented with recursive programming.

Algorithm 1 The Fast Fourier Transform (FFT) in Python
1 1lmport numpy as np

3 def fft(f):

1 n = len(f)

5 k = np.arange(n) #Array [0,1,2,...,n-1]

6 if n ==

7 return f #D_1 is the identity

8 else:

9 Dfe = fft(f[::2]) #FFT of even samples
10 Dfo = fft(£f[1::2]) #FFT of odd samples

11 Dfe = np.hstack((Dfe,Dfe)) #Extend periodically
12 Dfo = np.hstack((Dfo,Dfo)) #Extend periodically
13 return Dfe + np.exp(-2*np.pi*1j*k/n)*Dfo #Combine via Lemma




Complexity Analysis

We measure complexity in terms of the number of real operations, which are addi-
tions, subtractions, multiplications, or divisions of two real numbers.

couI di1 IrU'ry. We will cu‘u heb' as .
S (ot (et id) = (avb) + L(e+d)

Important points:

e Adding two complex numbers requires 2 real operations.

e Multiplying two complex numbers requires 6 real operations.

(autéb)-(augol) - gc fiadk b + ( 4
= (ac-bd) + ((ad+ b)




Complexity Analysis
We define
A,, = Number of real operations taken by the FFT on L*(Z,).

Since D, is the identity, A; = 0.

We assume that n = 2¥ so we can always split evenly. Using the expression

Do f(f) = Dy fob) + e > /"Dy f, (0= ( op
- AN pest 247
A, = QA% + 8n.
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Complexity Analysis

Lemma 7. Let n = 2% for a positive integer k, and assume A, satisfies
—

forn>2 and A1 = 0. Then we have

(3) A,, = 8nlog, n.

Note: The lemma says that the FF'T on a signal of length n, where n is a power of
2, takes exactly 8nlog, n operations.

feds fo=2hs + 7

=2 (24 +8) + Bn
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The Fast Inverse Fourier Transform

The FFT can be easily extended to compute the inverse DFT, using the analogous
identity

-1 1 1 2mil /ny—1
(4) f( ) - _D fe( ) 26 D% fo(g)

The proof of (4) is left to an exercise.

Alternatively, we may use the identity (also left as an exercise)

to compute the inverse DFT efficiently using a single forward FFT, two complex
conjugation operations, and an elementwise division.



FFT in Python (.ipynb)


https://colab.research.google.com/drive/1dCtmAD1ww4XeydfinZa8l-VuF2ddLGRp?usp=sharing

