
Mathematics of Image and Data Analysis
Math 5467

Lecture 10: The Fast Fourier Transform (FFT)

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

 

(null)://(null)jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/5467S21


Last time
• Intro to the DFT

Today
• The Fast Fourier Transform (FFT)



Recall
Definition 1. The Discrete Fourier Transform (DFT) is the mapping D : L2(Zn) !
L
2(Zn) defined by

Df(`) =
n�1X

k=0

f(k)!�k` =
n�1X

k=0

f(k)e�2⇡ik`/n
,

where ! = e
2⇡i/n and Zn = {0, 1, . . . , n� 1} is the cyclic group Zn = Z/n.

The DFT can be viewed as a change of basis into the orthogonal basis functions

u`(k) = !
k` = e

2⇡ik`/n

for ` = 0, 1, . . . , n� 1.



Inverse Fourier Transform
Theorem 2 (Fourier Inversion Theorem). For any f 2 L

2(Zn) we have

(1) f(k) =
1

n

n�1X

`=0

Df(`)!k` =
1

n

n�1X

`=0

Df(`)e2⇡ik`/n.

Definition 3 (Inverse Discrete Fourier Transform). The Inverse Discrete Fourier
Transform (IDFT) is the mapping D�1 : L2(Zn) ! L

2(Zn) defined by

D�1
f(`) =

1

n

n�1X

k=0

f(k)!k` =
1

n

n�1X

k=0

f(k)e2⇡ik`/n.



Basic properties
Exercise 4. Show that the DFT enjoys the following basic shift properties.

1. Recall that u`(k) := e
2⇡ik`/n = !

k`. Show that

D(f · u`)(k) = Df(k + `).

2. Let T` : L2(Zn) ! L
2(Zn) be the translation operator T`f(k) = f(k � `).

Show that
D(T`f)(k) = e

�2⇡ik`/nDf(k).

[Hint: You can equivalently show that D�1 (f · u`) (k) = D�1
f(k � `), using

an argument similar to part 1. ]

4







Computational Complexity
Question: How many operations (multiplications or additions) does it take to com-
pute Df for f 2 L

2(Zn)? Recall we have to compute

Df(`) =
n�1X

k=0

f(k)e�2⇡ik`/n

for ` = 0, 1, . . . , n� 1.



The Fast Fourier Transform (FFT)
The Fast Fourier Transform computes Df in O(n log n) operations. It is one of the
most important and widely used algorihtms in science and engineering.

• One of the top 10 algorithms of 20th Century — IEEE Computing in Science
& Engineering magazine.

• “The most important numerical algorithm of our lifetime” — Gilbert Strang,
MIT.



The Fast Fourier Transform (FFT)
Notation: Let n be even. For f 2 L

2(Zn) the even and odd parts of f , denoted fe

and fo, respectively, are the functions in L
2(Zn

2
) defined by

fe(k) = f(2k) and fo(k) = f(2k + 1),

for k = 0, 1, . . . , n
2 � 1. We also denote by Dn the DFT on L

2(Zn).

The FFT is based on the following observation.

Lemma 5. For each f 2 L
2(Zn) with n even we have

(2) Dnf(`) = Dn
2
fe(`) + e

�2⇡i`/nDn
2
fo(`),

for ` = 0, 1, . . . , n� 1.









Remember Zn is cyclic
Remark 6. In the expression

Dnf(`) = Dn
2
fe(`) + e

�2⇡i`/nDn
2
fo(`),

it is important to point out that Dnf 2 L
2(Zn) and Dn

2
fe,Dn

2
fo 2 L

2(Zn
2
).

For n
2  `  n� 1, the periodicity of Zn

2
gives that

Dnf(`) = Dn
2
fe(`� n

2 ) + e
�2⇡i`/nDn

2
fo(`� n

2 ).

This is important to keep in mind in practical implementations, since indexing arrays
in Python or Matlab does not work cyclically.



The FFT Algorithm
The FFT is based on using the expression

Dnf(`) = Dn
2
fe(`) + e

�2⇡i`/nDn
2
fo(`),

to recursively reduce to the DFT on shorter signals (by half each time we iterate).
We only need to iterate log2 n times before reaching D1 (if n = 2k), and D1f = f is
the identity.

Rough Computational Complexity: Whenever we use the expression above to
combine the DFT on smaller spaces, it costs O(n) operations. The splitting is done
log2 n times, yielding O(n log2 n) operations.



The FFT Algorithm
The FFT can be implemented with recursive programming.

Algorithm 1 The Fast Fourier Transform (FFT) in Python
1 import numpy as np
2

3 def fft(f):
4 n = len(f)
5 k = np.arange(n) #Array [0,1,2,...,n-1]
6 if n == 1:
7 return f #D_1 is the identity
8 else:
9 Dfe = fft(f[::2]) #FFT of even samples

10 Dfo = fft(f[1::2]) #FFT of odd samples
11 Dfe = np.hstack((Dfe,Dfe)) #Extend periodically
12 Dfo = np.hstack((Dfo,Dfo)) #Extend periodically
13 return Dfe + np.exp(-2*np.pi*1j*k/n)*Dfo #Combine via Lemma



Complexity Analysis
We measure complexity in terms of the number of real operations, which are addi-
tions, subtractions, multiplications, or divisions of two real numbers.

Applying other functions (like sin and cos) can take longer and might sometimes be
counted differently. We will count these as one operation too.

Important points:

• Adding two complex numbers requires 2 real operations.

• Multiplying two complex numbers requires 6 real operations.



Complexity Analysis
We define

An = Number of real operations taken by the FFT on L
2(Zn).

Since D1 is the identity, A1 = 0.

We assume that n = 2k so we can always split evenly. Using the expression

Dnf(`) = Dn
2
fe(`) + e

�2⇡i`/nDn
2
fo(`),

we obtain the recusion
An = 2An

2
+ 8n.







Complexity Analysis
Lemma 7. Let n = 2k for a positive integer k, and assume An satisfies

An = 2An
2
+ 8n

for n � 2 and A1 = 0. Then we have

(3) An = 8n log2 n.

Note: The lemma says that the FFT on a signal of length n, where n is a power of
2, takes exactly 8n log2 n operations.







The Fast Inverse Fourier Transform
The FFT can be easily extended to compute the inverse DFT, using the analogous
identity

(4) D�1
n f(`) =

1

2
D�1

n
2
fe(`) +

1

2
e
2⇡i`/nD�1

n
2
fo(`).

The proof of (4) is left to an exercise.

Alternatively, we may use the identity (also left as an exercise)

D�1
n =

1

n
Dnf

to compute the inverse DFT efficiently using a single forward FFT, two complex
conjugation operations, and an elementwise division.



FFT in Python (.ipynb)

https://colab.research.google.com/drive/1dCtmAD1ww4XeydfinZa8l-VuF2ddLGRp?usp=sharing

