Mathematics of Image and Data Analysis
Math 5467

Lecture 11: Parseval’s identities and Convolution

Instructor: Jeft Calder
Email: jcalder@umn.edu
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Last time

e The Fast Fourier Transform (FFT)

Today

e Parseval’s identities

e Convolution and the DFT



Recall

Definition 1. The Discrete Fourier Transform (DFT) is the mapping D : L*(Z,) —
L?(Z,,) defined by

n—1 n—1
Df() =) f(k)w ™ =) fk)e>mH/m,
k=0 k=0

where w = €2™/™ and Z,, = {0,1,...,n — 1} is the cyclic group Z, = Z/n.

The DFT can be viewed as a change of basis into the orthogonal basis functions
ué(k) _ wké _ e27m'k€/n

for { =0,1,...,n— 1.



Inverse Fourier Transform

Theorem 2 (Fourier Inversion Theorem). For any f € L*(Z,) we have

n—1 n—1
(1) F(R) == S DI = = S D)
£=0 £=0

Definition 3 (Inverse Discrete Fourier Transform). The Inverse Discrete Fourier
Transform (IDFT) is the mapping D~ : L?(Z,) — L*(Z,,) defined by
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Adjoint of D

o> = £ oS

We first show that D~1 is the adjoint of D, up to the factor 1/n. <
Hermedan

Lemma 4. For each f,g € L*(7Z,) we have i\/\V\Qr‘\m”("";f
(Df,0) = (£.D"q).
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Recall L (ph o> = £, 552

Parseval’s identities

An immediate consequence of the adjoint lemma is Parseval’s identities.

Theorem 5 (Parseval’s Identities). Let f,g € L?(Zy). Then it holds that

(1) <f7g> - %<Df,Dg>, and M\DM(%—
i) 1712 = LIDs)2. ) orpahy

Peo oF () <£/ 4 = <v/,\75(30)>

"’/J‘\( D’ﬁ )”D§>)

?72:4:7,7# (i) “10/1:1:, £,

83
(i) = 7(7\ (pf, DF> = 'J,‘\ /?D#l/m




ga% 2=} Wq+k+\0\1 OJF Cf??(‘/(l‘\/\-“(ﬁ"q 57szﬂ'1~












Parseval’s identities

Remark 6. Of course, a similar statement holds for the inverse transform D~!.
Indeed, Lemma 4 and Theorem 2 imply

1 1 _ _ _
_<f7.g> - _<DD 1fag> - <D 1f’D 1g>
n n

Setting f = g yields || f[| = |[D~! f[|*.
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Convolution

Definition 7. The discrete cyclic convolution of f,g € L?(Z,), denoted f * g, is the
function in L?(Z,) defined for each k by

n—1

(f=g)(k) =D f(G)glk - ).

3=0

We note that the definition of the convolution makes use of the fact that Z,, is a
cyclic group when k — j falls outside of 0,1,...,n —1 (i.e., the values wrap around).
We leave some basic properties of the convolution to an exercise.

Exercise 8. Let f,g,h € L?*(Z,). Show that the following hold.
(i) frg=gxf;

(ii) fx(gxh)=(f*g)*h;

(iii) f*x(g+h) :f*g—kf*h.cz



Convolution and the DFT

Lemma 9 (Convolution and the DFT). For f,g € L?(Z,) we have

(2) D(fxg) =Df-Dg.

Remark 10. Lemma 9 is the most important property of the DFT, that it turns
convolution into multiplication. It allows us to compute convolutions with the FFT

in O(nlogn) operations as
fxg=D(Df- Dg).j

Computing convolution the ordinary way takes O(n?) operations:

n—1

(f*g)(k) =D f(5)glk — j).

j=0

The convolution property is also what allows the FFT to be used for solving PDEs
numerically (all discrete derivatives are convolutions).

DF+r5) =Df- P3.
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Exercise on discrete derivatives

Exercise 11. Discrete derivatives (difference quotients) can be interpreted as con-
volutions. Complete the following exercises.

(i) For f € L?(Z,,) define the backward difference

V7 f(k) = f(k) = f(k—=1).

Find g € L?(Z,,) so that V~ f = f % g and use this with Lemma 9 to show that
DV~ F)(k) = (1 —w™*)Df(k), where w = e27/™,

(ii) For f € L?(Z,) define the forward difference
VTf(k) = f(k+1) = f(k).

Find g € L?(Z,) so that VT f = f g and use this with Lemma 9 to show that
D(V*f)(k) = (W —1)Df(k).



(iii) For f € L?(Z,) define the centered difference by

V() = (V7 F(R) + VEF(R) = 5(f 0k + 1) = (k1))

Use parts (i) and (ii) to show that
D(VF) (k) = %(wk — W MYDF(k) = isin(2rk/n)Df (k).

(iv) For f € L*(Z,), define the discrete Laplacian as
Af(k)=VTfk) =V~ f(k) = f(k+1)—2f(k) + f(k —1).
Use parts (i) and (ii) to show that

D(Af)(k) = (W* +w™* = 2)Df(k) = 2(cos(2rk/n) — 1)Df (k).



