Mathematics of Image and Data Analysis
Math 5467

Lecture 16: The Sampling Theorem and Cosine
Transform

Instructor: Jeftf Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~ jwcalder/5467521


(null)://(null)jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/5467S21

Last time

e Mult-dimensional DFT

e Image denoising

Today

e The sampling theorem

e Discrete Cosine Transform



The Sampling Theorem

If a signal v : R — R contains no frequencies greater than o,,,,, then u can be
perfectly reconstructed from evenly spaced samples provided the sampling frequency

is greater than the Nyquist rate 20,,,, and we have the Sinc Interpolation formula
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e The sampling frequency is +, so the Nyquist rate condition for the Sampling
Theorem is that + = > 20mam, or h <

2Umam

e At sampling intervals h > 5—— hlgh frequencies are aliased to lower frequen-
cies, creating distortion.

e CD quality audio samples at a rate of 44.1 kHz, which was chosen to capture
frequencies up to 22.05 kHz, higher than most humans can hear.
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The Sampling Theorem (periodic version)

Let u : R — R be periodic with period 1, and assume u has no frequency larger
than o0,,4., Wwhere 0,,4, is a positive integer. This means that the signal v has the
Fourier Series representation
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Theorem 1. Suppose that u is given by (3) and let h = 1/n for n € N with
n > 20maz- Assume also that n is odd. Then u(t) can be reconstruted from its
evenly spaced samples u(jh) and furthermore we have
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where S(t) is given by
sinc(t)
sinc(ht)’

S(t) =



Sinc kernel
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Figure 1: Depiction of the Sinc-like kernel S(t) = sinc(t)/sinc(ht) for n = 21 and
h = 1/21. The kernel is periodic with period n = 21. '



Proof of Sampling Theorem
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Discrete Cosine Transform

It is often useful in practical applications to avoid complex numbers and work with
real-valued transformations. If f € L?(Z,,) is real-valued then the Fourier Inversion
Theorem yields
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Even/odd extensions

Let f : Z, — R. We define the even extension f. : Zg,—1) — R by
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The odd extension f, : Zy(n41) — R is defined by
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Even/odd extensions
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(a) Even extension

Figure 2: Example of the even and odd extensions of a signal on Zg,
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(b) Odd extension
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Discete Cosine Transform

Recall
L#Q f(k) = %i i f(j)cos(2mjl/n) | cos(2mkl/n)
=0 \ j5=0

+ % Z Z f(4)sin(2mjl/n) | sin(2wkl/n).

We now apply the representation formula above to the even extension f., taking
2(n — 1) in place of n, to obtain the Discrete Cosine Transform

—

1

f(k) = m(!‘lo + (=

where







C(ot(vv\; @/@:O (S/ché 7A¢ " @UQ"‘)

Qxeccist -
Lé% Cf CDV"L«)O\ALQ 74/6 -

'V&(/‘) QSKS_ Nn—
106 (k)= /

f(atn-y—0), n Lk €l

n~| v Alr-1)—)
/AD@ = Z 10 (§) Cos ( 7:?_%) fyZ"\’F (3 (n-1) j)Co) (l’fé
)7 -

—
C







= (- O™

o =
R L
) 4+ -ﬂ(wa) coi (
)












Discrete Sine Transform

Using the odd extension we get the Discrete Sine Transform

") F0) = g X B (TEEAEEL),

where
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Image compression (.ipynb)
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