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Last time

• The sampling theorem

• Discrete Cosine Transform and image compression

Today

• The Wavelet Transform (1D and 2D Haar Wavelets)



Localization/delocalization of the DFT

(a) v(k) = cos(2⇡k`/n) (b) |Dv(k)|

Figure 1: A plot the real part of a Fourier basis function and its Discrete Fourier
Transform (DFT). The function v (` = 4, n = 128) is completely delocalized (most
values are nonzero), while its DFT is highly localized (all values vanish except one).



Forcing spatial localization through blocking/windowing

Figure 2: The cameraman image and its Discrete Cosine Transform (DCT) coeffi-
cients computed on 8⇥ 8 blocks.



Windowing delocalizes the frequency domain

(a) v(k) = cos(2⇡k`/n) (b) |Dv(k)|

Figure 3: A plot the real part of a Fourier basis function and its Discrete Fourier
Transform (DFT). The function v (` = 4, n = 128) is completely delocalized (most
values are nonzero), while its DFT is highly localized (all values vanish except one).



Windowing delocalizes the frequency domain

(a) Windowed Fourier basis function (b) Windowed DFT

Figure 4: A plot the real part of a windowed Fourier basis function and its Discrete
Fourier Transform (DFT). The windowed function is more localized in space, while
its DFT is less localized in the frequency domain, compared to Figure 3.



Uncertainty Principle

In fact, there is a fundamental limit to how much a function and its DFT can both
be localized. The uncertainty principle states that

kfk0kDfk0 � n,

where kfk0 is the number of nonzero values of f .

• This says that it is impossible for both f and Df to both be localized (i.e.,
have mostly zero entries).

• This bound is saturated by the Fourier basis functions u`, which satisfy ku`k0 =
n and kDu`k0 = 1.
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Heisenberg Uncertainty Principle:

In quantum mechanics, the probability distributions of the position and momentum
of a particle are the Fourier Transforms of each other. In this context, the uncertainty
principle (1) says that their distributions cannot both be localized, meaning we
cannot determine both the position and momentum of a particle with high precision.



The Wavelet Transformation

The Wavelet Transformation is a principled approach to finding a decomposition of
a signal or image into frequency components where the basis functions are localized
in time/space and frequency, as much as is possible.

• Multi-scale analysis.

• Many different varieties of wavelets.

In this course, we will cover the Haar Wavelet in depth, and discuss general Wavelet
transformations briefly.



The 1D Haar Wavelet Transformation

The Wavelet Transform is based on repeatedly decomposing a signal into a low fre-
quency part, called the approximation coefficients, and a high frequency part, called
the detail coefficients. This is best illustrated at first with an example. Consider the
following length n = 8 signal

Signal: (7,5,6,3,2,5,4,1)











Matrix of Haar Wavelet Transformation

We can view the 3-level Haar Wavelet Transformation as multiplication of the signal
f = (7, 5, 6, 3, 2, 5, 4, 1) by the matrix

(2) W =

2

66666666664

1 1 1 1 1 1 1 1
�1 �1 �1 �1 1 1 1 1
�1 �1 1 1 0 0 0 0
0 0 0 0 �1 �1 1 1
�1 1 0 0 0 0 0 0
0 0 �1 1 0 0 0 0
0 0 0 0 �1 1 0 0
0 0 0 0 0 0 �1 1

3

77777777775

.



Haar Transform

In general, we can define a one-level Haar Wavelet Transform of a signal f 2 L2(Zn)
of length n = 2k as the signal W1f given by

(3) W1f(j) =

(
f(2j + 1) + f(2j), if 0  j  n

2 � 1

f(2j � n+ 1)� f(2j � n), if n
2  j  n� 1.

In general, the `th-level Haar Wavelet Transformation is

(4) W`f(j) =

8
><

>:

W`�1f(2j + 1) +W`�1f(2j), if 0  j  n
2` � 1

W`�1f(2j � n
2`�1 + 1)� f(2j � n

2`�1 ), if n
2`  j  n

2`�1 � 1

W`�1f(j), if n
2`�1  j  n� 1



Python Code

Algorithm 1 The Haar Wavelet Transformation in Python
1 import numpy as np
2

3 def haar_wavelet(f,depth):
4 g = np.zeros_like(f)
5 n2 = len(f)>>1
6 g[:n2] = f[::2] + f[1::2] #Approximation coeff
7 g[n2:] = f[1::2] - f[::2] #Detail coeff
8 if depth >= 2:
9 g[:n2] = haar_wavelet(g[:n2],depth-1)

10 return g

Similar recursive structure as the FFT. Since only half of the signal is recursed on,
the total complexity is O(n).



The inverse Haar Transform

Algorithm 2 The Inverse Haar Wavelet Transformation in Python
1 import numpy as np
2

3 def inverse_haar_wavelet(f,depth):
4 if depth == 0:
5 return f
6 else:
7 n2 = len(f)>>1
8 h = inverse_haar_wavelet(f[:n2],depth-1)
9 g = np.zeros_like(f)

10 g[1::2] = (h + f[n2:])/2
11 g[::2] = (h - f[n2:])/2
12 return g



Example on a noisy signal

(a) Noisy Signal (b) Haar Wavelet Transform (1 level)

Figure 5: One level of the Haar Wavelet Transformation applied to a noisy signal.
Notice that much of the noise appears in the detail coefficients. Wavelet based de-
noising and compression algorithms are based on thresholding the detail coefficients.



2D Haar Wavelets

One level of the 2D Haar Wavelet Transformation acts on 2x2 blocks in images:

a b
c d

�

The approximation, vertical, horizontal, and diagonal detail coefficients, denoted
A, V,H,D, respectively, are given by

A = a+ b+ c+ d

H = �a� b+ c+ d

V = �a+ b� c+ d

D = a� b� c+ d.



2D Haar Wavelets

The inverse transform is simple to obtain; indeed, we have

a =
1

4
(A�H � V +D)

b =
1

4
(A�H + V �D)

c =
1

4
(A+H � V �D)

d =
1

4
(A+H + V +D).

Further levels of the transform are obtained by applying the transform again to the
approximation image.



Example of 2D Haar Wavelets

(a) 1 Level (b) 2 Levels (c) 9 Levels

Figure 6: The Haar Wavelet Transformation of levels 1, 2, and 9 on the cameraman
image. The approximation image is placed in the upper left coner, the horizontal
detail in the lower left, the vertical detail in the upper right, and the diagonal detail
in the lower right.



Wavelet compression and denoising (.ipynb)

https://colab.research.google.com/drive/1rVMCEVLXGdVRK5rAPqz-TrNKAQVSjUJC?usp=sharing

