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Last time
• Intro to Machine Learning

Today
• Graph-based semi-supervised learning.



Graph
Recall: Semi-supervised learning uses both labeled and unlabeled data to learn.

One way to use the unlabeled data is to build a graph, which is encoded into a

weight matrix W .

• W (i, j) is the similarity between i and j (W (i, j) � 0).

• We assume W is symmetric W = WT
.

• Often can choose Gaussian weights (recall spectral clustering)

W (i, j) = e�
kxi�xjk

2

2�2 .

Some datasets already have graph structure (citation databases, network problems,

etc.).



Example graph

Figure 1: An example of a k-nearest neighbor graph.



Graph-based semi-supervised learning
Let Im = {1, 2, . . . ,m} denote the indices of all our datapoints.

We asssume there is a subset of the nodes � ⇢ Im that are asssigned label vectors

from the one-hot vectors

Sk = {e1, e2, . . . , ek} .

We can treat the labels as a function g : � ! Sk, where g(i) is the label of node

i 2 �.

Task: Extend labels from the subset � to the rest of the graph is a meaningful way.



Laplacian regularization
It is common in practice to take the semi-supervised smoothness assumption, which

stipulates that the learned labels should vary as smoothly as possible, and in par-

ticular, should not change rapidly within high density regions of the graph, which

are likely to be clusters with the same label.

Laplacian regularized learning imposes the semi-supervised smoothness assumption

by minimizing the function

(1) E(u) =
1

4

mX

i=1

mX

j=1

W (i, j)ku(i)� u(j)k2

over labeling functions u : Im ! Rk
, subject to u = g on �, that is, that the known

labels are correct.



Gradient descent
To minimize E we use gradient descent. Define the inner product for u, v : Im ! Rk

by

(2) hu, vi =
mX

i=1

d(i)u(i)T v(i),

where d : Im ! R are the degrees, given by d(i) =
Pm

j=1 W (i, j). The induced norm

is

kuk2 = hu, ui =
mX

i=1

d(i)ku(i)k2.

We claim that rE(u) = d�1Lu.













Gradient descent
Using gradient descent to minimize E amounts to the iteration

(3) uk+1 = uk � dtrE(uk).

Lemma 1. If 0 < dt  1 then for all k � 1 and 1  i  m we have

(4) kuk(i)k  max
1im

ku0(i)k.









Convergence?
We may wish to go beyond stability and instead prove convergence of the iterations

as k ! 1 to a solution of the equation rE = 0, that is

(5)

(
Lu(i) = 0, if i 2 Im \ �
u(i) = g(i), otherwise.

• Depends on whether the graph is connected.

• If the graph is connected, (5) has a unique solution and gradient descent con-

verges.

• If the graph is not connected, then (5) can have multiple solutions, and gradient

descent will converge to one, but which one is dependent on initialization.



Clasification of MNIST digits
We use a k-nearest neighbor graph with k = 10 and weights given by

W (i, j) = exp

✓
�4kxi � xjk2

dk(xi)2

◆
,

where dk(xi) is the distance to the kth nearest neighbor. The matrix is then sym-

metrized W = W +WT
.

10 20 40 80 160

85.4 (4.4) 91.7 (1.2) 93.4 (0.5) 94.3 (0.3) 94.8 (0.1)

Table 1: Laplace learning on MNIST with 10, 20, 40, 80, and 160 labels per class.

The average (standard deviation) classification accuracy over 100 trials is shown.



GraphLearning (.ipynb)

https://colab.research.google.com/drive/1s1AN59icvak3OAukI_wA8VQmqjGGIVOn?usp=sharing

