
Mathematics of Image and Data Analysis
Math 5467

Lecture 22: Neural Networks

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

(null)://(null)jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/5467S21

Last time
• Graph-based embeddings (spectral and t-SNE)

Today
• Neural networks

Artificial neural networks
(Artificial) neural networks are parameterized functions made up of simple building
blocks: linear functions and simple nonlinearities. The basic building block is a
neuron

f(x) = �(!Tx+ b),

which is a function f : Rn ! R. Common choices for the activation function � is
the rectified linear unit (ReLU)

(1) �(t) = max{t, 0}.

and the sigmoid activation function

(2) �(t) =
1

1 + e�t
.

Common activation functions

(a) ReLU (b) Sigmoid

Figure 1: Plots of the ReLU and Sigmoid activation functions. Both activation
functions have the behavior that they give zero, or close to zero, responses when the
input is below a certain threshold, and give positive responses above.

Neural network

Figure 2: An example of a fully connected neural network with three hidden layers.
The blue nodes are the hidden layers, the red is the input, and the green is the
output. The hidden layers have width n1 = 2, n2 = 6, and n3 = 4 and the number
of input variables is n0 = 6.

Neural network
In more compact notation, we can write a fully connected neural network with L
layers recursively as

(3) fk = �k(Wkfk�1 + bk), k = 1, . . . , L,

where

• f0 2 Rn0 is the input to the network,

• fk 2 Rnk for k = 1, . . . , L � 1 are the values of the network at the hidden
layers,

• fL is the output of the neural network,

• nk is the number of hidden nodes in the kth layer,

• The weights Wk 2 Rnk⇥nk�1 and biases bk 2 Rnk are the learnable parameters
in the neural network.

Loss
The output of the neural network fL 2 RnL is typically fed into a loss function

L : RnL ! R,

which measures the performance of the network for the given learning task.

Typically the loss has the form

(4) L(W1, b1, . . . ,WL, bL) =
mX

i=1

`(fL(xi), yi),

where (xi, yi) for i = 1, . . . ,m are the training data. Here, we write fL(x) to denote
the value of the output of the network fL given the input is f0 = x.

Neural networks are trained by minimizing the loss function L with gradient descent.

Gradient descent

Let @L
@Wk

and @L
@bk

denote the gradients of L with respect to Wk and bk, respectively.

• The gradient @L
@Wk

is the nk ⇥ nk�1 matrix whose (i, j) entry is the partial
derivative of L in Wk(i, j).

• The gradient @L
@bk

2 Rnk is the vector whose ith entry is the partial derivative
of L in bk(i).

Gradient descent for minimizing L corresponds to updating the weights Wk and
biases bk according to

(5) W j+1
k = W j

k � ↵
@L
@Wk

and bj+1
k = bjk � ↵

@L
@bk

,

where ↵ > 0 is the time step, also called the learning rate.

Toy example

(a) Training iterations (b) Neural network vs target

Figure 3: A toy example of fitting the function sin(⇡x) with a 2-layer neural network
with 100 hidden nodes. The loss is L =

Pm
i=1 |fL(xi) � sin(⇡xi)| for evenly spaced

points �1 = x1  x2  · · ·  xm = 1.

Stochastic Gradient Descent (SGD)
For modern machine learning problems with very large training sets, it is sometimes
impractical to compute the full gradients @L

@Wk
and @L

@bk
, since the loss involves all of

the training data.

Stochastic gradient descent (SGD) fixes this by computing the gradient of the loss
over a random subset of the training data

eL(W1, b1, . . . ,WL, bL) =
X

i2I

`(fL(xi), yi),

where I ⇢ {1, 2, . . . , n} is a random subset, called a mini-batch. The mini-batch
changes at each iteration of SGD.

One pass over all the mini-batches in the dataset is called an epoch, and training
usually proceeds for some number of ephochs, say 100.

Momentum descent
Various other trickes are used in the optimization, such as momentum

W j+1
k = W j

k � ↵
@L
@Wk

+ �(W j
k �W j�1

k),

and
bj+1
k = bjk � ↵

@L
@bk

+ �(bjk � bj�1
k),

where � 2 [0, 1] is the momentum parameter. Momentum can help to speed up
convergence of gradient descent.

We will peform a careful analysis of gradient descent, SGD and momentum descent
later.

Back Propagation
For notational simplicity, we will write

(6) zk = Wkfk�1 + bk,

so that fk = �k(zk). Let @L
@zk

2 Rnk denote the gradient of L with respect to zk. We
also let Dk be the diagonal nk ⇥nk matrix with diagonal entries given by the vector
�0
k(zk). That is

Dk = diag(�0
k(zk)).

Theorem 1 (Back propagation). For k = 2, . . . , L we have

(7)
@L

@zk�1
= Dk�1W

T
k

@L
@zk

,

(8)
@L
@Wk

=
@L
@zk

fT
k�1, and

@L
@bk

=
@L
@zk

.

Intro to Pytorch (.ipynb)

https://colab.research.google.com/drive/1Pbt6AGr4zZbZUNuiKajQ-AZ_e9GNJBiJ?usp=sharing

