
Mathematics of Image and Data Analysis
Math 5467

Lecture 23: Classification with Neural Networks

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

 

(null)://(null)jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/5467S21


Announcements

• HW4 is online, due April 30.

• Project 3 online, due May 9.

• Please fill out Student Rating of Teaching (SRT) online as soon as possible,
and before May 3.

– You should have received an email from Office of Measurement Services
with a link.

– You can also find a link on our Canvas website.

Last time

• Intro to Neural Networks

Today

• Classification with neural networks.

https://canvas.umn.edu/courses/218893


Neural networks

Figure 1: An example of a fully connected neural network with three hidden layers.
The blue nodes are the hidden layers, the red is the input, and the green is the
output. The hidden layers have width n1 = 2, n2 = 6, and n3 = 4 and the number
of input variables is n0 = 6.



Neural network

In more compact notation, we can write a fully connected neural network with L
layers recursively as

(1) fk = �k(Wkfk�1 + bk), k = 1, . . . , L,

where

• f0 2 Rn0 is the input to the network,

• fk 2 Rnk for k = 1, . . . , L � 1 are the values of the network at the hidden
layers,

• fL is the output of the neural network,

• nk is the number of hidden nodes in the kth layer,

• The weights Wk 2 Rnk⇥nk�1 and biases bk 2 Rnk are the learnable parameters
in the neural network.



Loss

The output of the neural network fL 2 RnL is typically fed into a loss function

L : RnL ! R,

which measures the performance of the network for the given learning task.

Typically the loss has the form

(2) L(W1, b1, . . . ,WL, bL) =
mX

i=1

`(fL(xi), yi),

where (xi, yi) for i = 1, . . . ,m are the training data. Here, we write fL(x) to denote
the value of the output of the network fL given the input is f0 = x.

Neural networks are trained by minimizing the loss function L with gradient descent.



Back Propagation

For notational simplicity, we will write

(3) zk = Wkfk�1 + bk,

so that fk = �k(zk). Let @L
@zk

2 Rnk denote the gradient of L with respect to zk. We
also let Dk be the diagonal nk ⇥nk matrix with diagonal entries given by the vector
�0
k(zk). That is

Dk = diag(�0
k(zk)).

Theorem 1 (Back propagation). For k = 2, . . . , L we have

(4)
@L

@zk�1
= Dk�1W

T
k

@L
@zk

,

(5)
@L
@Wk

=
@L
@zk

fT
k�1, and

@L
@bk

=
@L
@zk

.



ResNet

The traditional neural network architecture

fk = �k(Wkfk�1 + bk), k = 1, . . . , L,

often yields worse performance for deeper networks compared to shallower ones.

The Residual Neural Network (ResNet) architecture is a recent development in deep
learning that solves this problem by changing the architecture to

(6) fk = fk�1 +Wk,1�k(Wk,2fk�1 + bk), k = 1, . . . , L.

The idea is to have each layer learn the residual fk�fk�1, which allows the network
to easily skip layers, by setting fk = fk�1. Thus, a deeper network with ResNet
architecture should not perform worse than a shallower network.



Classification with neural networks

Recall that our label vectors are given as one hot vectors e1, . . . , ek in Rk (i.e., the
standard basis vectors), where ei represents the ith class.

For a k-class classification problem, the output of the neural network fL(x) has k
components, so fL(x) 2 Rk, and the classification of x is taken to be the largest
component of fL(x).

Let z1, . . . , zm 2 Rk denote the output vectors of the neural network aplied to m
training points x1, x2, . . . , xm, so

zi = fL(xi).

These outputs are fed through the soft-max function to conver them into probability
vectors p1, . . . , pm 2 Rk given by

pi(j) :=
ezi(j)

Pk
q=1 e

zi(q)
.



Loss

The loss used for classification is normally the negative log likelihood loss. Letting
y1, . . . , ym 2 Rk denote the one hot vectors representing the classes of the training
data, the negative log likelihood loss is

(7) L(fL) = �
nX

i=1

yTi log(pi).

We claim that

L(fL) = �
nX

i=1

fL(xi)
T yi +

nX

i=1

log

0

@
kX

j=1

efL(xi)
T ej

1

A .







Toy data

Figure 2: Synthetic data on rings consisting of two classes.



Training

(a) Iteration 50 (b) Iteration 150 (c) Iteration 250

(d) Iteration 350 (e) Iteration 500 (f) Iteration 3000



MNIST

We consider classification of MNIST digits with 60000 training images and 10000
testing images.

• 2-Layer network with 10 hidden nodes: 93% testing accuracy

• 2-Layer network with 32 hidden nodes: 97% testing accuracy

• Even with good testing accuracy, there is overfitting:

– 1-pixel shift of testing data: 87% accuracy
– 2-pixel shift of testing data: 62% accuracy



MNIST

We consider classification of MNIST digits with 60000 training images and 10000
testing images.

• 2-Layer network with 10 hidden nodes: 93% testing accuracy

• 2-Layer network with 32 hidden nodes: 97% testing accuracy

• Even with good testing accuracy, there is overfitting:

– 1-pixel shift of testing data: 87% accuracy
– 2-pixel shift of testing data: 62% accuracy

Figure 3: The 10 hidden nodes for MNIST classification.



Overfitting with less tranining data

(a) 60000 Training images (b) 10000 Training images



Overfitting with less tranining data

(c) 1000 Training images (d) 100 Training images



Classification with Torch (.ipynb)

https://colab.research.google.com/drive/1Pbt6AGr4zZbZUNuiKajQ-AZ_e9GNJBiJ?usp=sharing

