
Mathematics of Image and Data Analysis
Math 5467

Lecture 24: Universal Approximation and
Convolutional Neural Networks

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

(null)://(null)jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/5467S21

Announcements

• HW4 due April 30, Project 3 due May 9.

• Please fill out Student Rating of Teaching (SRT) online as soon as possible,
and before May 3.

– You should have received an email from Office of Measurement Services
with a link.

– You can also find a link on our Canvas website.

Last time

• Classification with neural networks.

Today

• Universal approximation

• Convolutional neural networks

https://canvas.umn.edu/courses/218893

Universal approximation

Part of the success of neural networks is due to the fact that they can approximate
any continuous function, given enough parameters. In particular, we can approxi-
mate any function by a 2-layer neural network.

• This cannot fully explain this success, since other methods, like polynomial
fitting, can achieve the same universal approximation results.

• It also does not explain why deeper networks can perform better, or why
gradient descent finds networks that generalize.

Today we’ll consider a 2-layer neural network with N hidden nodes and ReLU acti-
vations, which has the form

(1) fN (x) =
NX

i=1

ai(wix+ bi)+,

This is a function fN : R ! R and the weights ai, wi, bi 2 R.

Lipschitz functions

We say a function u : R ! R is Lipschitz continuous if there exists C > 0 such that

(2) |u(x)� u(y)|  C|x� y|.

The smallest such constant is called the Lipschitz constant of u and denoted

(3) Lip(u) = sup
x,y2R
x 6=y

|u(x)� u(y)|
|x� y| .

Universal approximation

Theorem 1. Let " > 0, let u : R ! R be Lipschitz continuous, and let R >
0. There exists a 2-layer ReLU neural network fN (x) of the form (1) with N =
2(RLip(u)"�1 + 1) hidden nodes such that

(4) max
�RxR

|fn(x)� u(x)|  ".

Furthermore, if u0 is Lipschitz continuous then we need only

(5) N = 2(R
p
Lip(u)"�1 + 1)

hidden nodes.

Activations

(a) ReLU (b) Sigmoid

Figure 1: Plots of the ReLU and Sigmoid activation functions. Both activation
functions have the behavior that they give zero, or close to zero, responses when the
input is below a certain threshold, and give positive responses above.

Bump functions

The proof is based on the construction of bump functions out of 2-layer networks.
For ReLU the bump function is

g(x) = (x+ 1)+ � 2x+ + (x� 1)+.

For other activations the construction can be different. For the sigmoid activation
a bump function is

g(x) = �(x+ 1)� �(x� 1).

Bump functions

(a) ReLU bump (b) Sigmoid bump

Figure 2: Examples of bump functions constructed from 2-layer neural networks
with ReLU and sigmoid activations.

Proof of Universal Approximation Theorem

Overfitting

The function

fN (x) =
mX

i=�m

yig(h
�1(x� xi)),

constructed in the proof exactly fits the data fN (xi) = yi. This means a network
with m nodes can exactly fit m datapoints, simply via memorization.

In practice it is hard (but not impossible) to get neural networks to overfit like this,
even in the severely over parameterized regime. This is somewhat of a mystery still
in the community, but is related to the optimization algorithms used to train neural
networks.

Noisy labels

(a) Smooth labels (b) Noisy labels

Figure 3: Example of a network fitting smooth and noisy data. The network has
10000 hidden nodes and only 40 training points.

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are one of the most powerful tools for image
processing. They are special cases of fully connected neural networks that replace
the linear function in a neuron with the convolution

(W ⇤ I)(i, j) =
NX

p,q=�N

W (N + 1 + p,N + 1 + q)I(i+ p, j + q).

Here I is a 2D image, W is a (2N + 1) ⇥ (2N + 1) matrix representing the filter,
which is trainable. N is the width of the filter, which is normally small compared
to the size of the image I.
Key points:

• Translation Invariance: The convolution applies the same filter W to all
locations in the image, finding features no matter where the are within the
image.

• Locality: The small size of filters restricts the features to be localized in the
image.

Typical CNN architecture

Figure 4: An example of a typical Convolutional Neural Network (CNN) architec-
ture.

Pooling

Pooling is a form of subsampling that introduces translation invariance into CNNs,
and allow future layers to pick up on larger scale features in the image, leading to a
multiscale analysis.

Example on MNIST

We ran an experiment testing a simple convolutional neural network for classification
of MNIST digits.

• 4 layer neural network

– First 2 layers are convolutional with 32 and 64 channels
– Final 2 layers are fully connected with 128 hidden nodes.

• Output of the convolutional layers is flattened into a length 9216 array of
features to feed into the fully connected layer.

MNIST Accuracy

• Accuracy is 99.04% after 14 epochs.

• 98.07% after single pixel shift

• 92.06% after two-pixel shift

• 75% after three-pixel shift

The translation invariance is better than with fully connected networks due to the
pooling and translation invariance of convolutional. To get better translation invari-
ance we can introduce more pooling into the network.

Convolutional filters

Figure 5: The 32 3⇥3 filters from the first layer of the convolutional neural network
for classifying MNIST digits.

First layer channels

Figure 6: The 32 channels of output from the first convolutional layer acting on an
image of a 2.

Second layer channels

Figure 7: The 64 channels of output from the second convolutional layer acting on an
image of a 2. Notice the channels appear to be detecting edges in various directions.

FashionMNIST

FashionMNIST accuracy

• Accuracy is 92.55% after 14 epochs.

• 89.73% after single pixel shift

• 75.94% after two-pixel shift

• 47.38% after three-pixel shift

We could choose a larger network with more channels and hidden layers to achieve
better results (around 99%) for FashionMNIST.

Convolutional Neural Networks (.ipynb)

https://colab.research.google.com/drive/1TjMlvAgZkvMZ_jJhj2U8GWgGJRsOgBoE?usp=sharing

