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Announcements
• HW4 due April 30, Project 3 due May 9.

• Please fill out Student Rating of Teaching (SRT) online as soon as possible,
and before May 3.

– You should have received an email from Office of Measurement Services
with a link.

– You can also find a link on our Canvas website.

Last time
• Universal approximation

• Convolutional neural networks

Today
• Gradient Descent

https://canvas.umn.edu/courses/218893


Gradient Descent
Gradient descent is one of the most important algorithms in many areas of science
and engineering. To minimize an objective function f : Rn ! R, gradient descent
iterates

(1) xk+1 = xk � ↵rf(xk)

until convergence. The parameter ↵ > 0 is the time step (often called the learning
rate when using gradient descent to train machine learning algorithms).



Assumptions on f

We assume the objective function f : Rn ! R is a smooth function that admits a
global minimizer x⇤ 2 Rn. That is

f(x⇤)  f(x)

for all x 2 Rn. We denote the optimal value of f by f⇤ := f(x⇤).



Sublinear convergence rate
We say rf is L-Lipschitz continuous if

(2) krf(x)�rf(y)k  Lkx� yk for all x, y 2 Rn
.

Theorem 1. Assume rf is L-Lipschitz and that ↵  1
L . Then for any integer

t � 1 we have

(3) min
0kt

krf(xk)k2  2(f(x0)� f⇤)

↵t
.

Remark 2. The theorem says, with very few assumptions on f , that gradient
descent converges at a rate of O

�
1
t

�
to a critical point of f , in the sense that

rf ⇠ 1
t ! 0. Since f is not assumed to be convex, critical points need not be

minimizers and could be also include saddle points.

























Convergence to a minimizer
To show that gradient descent converges to a global minimizer of f , we need to
assume that f is convex, which for us means that f lies above its tangent planes,
that is

(4) f(y) � f(x) +rf(x)T (y � x)

for all x, y 2 Rn.

Other equivalent definitions of convexity include positive definiteness of the Hessian
matrix r2

f(x) for all x, and the convexity along lines definition

f(�x+ (1� �)y)  �f(x) + (1� �)f(y)

for all x, y 2 Rn and � 2 [0, 1].



Convergence to a minimizer
Theorem 3. Assume f is convex, rf is L-Lipschitz, and take ↵  1

L . Then for
any integer t � 1 we have

(5) f(xt)� f⇤  kx0 � x⇤k2

2↵t
,

where x⇤ is any minimizer of f .

Remark 4. Theorem 3 shows that the values f(xk) of gradient descent converge
to the optimal value f⇤ at a rate of O

�
1
t

�
when f is convex. This is an extremely

slow convergence rate, known as sublinear. To get with " > 0 of the optimal value
requires O

�
"
�1

�
iterations. So if you want 10�6 accuracy you need 106 iterations.













Linear convergence
To obtain a better convergence rate, we need to make an additional assumption
about how flat f can be at minima. We say that f is µ-strongly convex if

(6) f(y) � f(x) +rf(x)T (y � x) +
µ

2
kx� yk2

for all x, y 2 Rn.

Note: If we take x = x⇤ then rf(x⇤) = 0 and we get

(7) f(y) � f⇤ +
µ

2
ky � x⇤k2.



Polyak-Lojasiewicz (PL) inequality
If f is µ-strongly convex, then f satisfies the PL inequality

(8)
1

2
krf(x)k2 � µ(f(x)� f⇤)

for all x 2 Rn.

Remark 5. The PL inequality is weaker than strong convexity, and even nonconvex
functions can satisfy it (as an exercise, show that f(x) = x

2 + 3 sin2(x) satisfies the
PL inequality (8) with µ = 1

32 , but f is not convex).









Linear convergence
Theorem 6. Assume f satisfies the PL inequality (8), rf is L-Lipschitz, and take
↵  1

L . Then for any integer t � 0 we have

(9) f(xt)� f⇤  (1� ↵µ)t(f(x0)� f
⇤).









Convergence of minimizers
Remark 7. It is also natural to ask how quickly xk is converging to x⇤. For this,
we require strong convexity. If f is µ-strongly convex then we have

µ

2
kxt � x⇤k2  f(xt)� f⇤  (1� ↵µ)t(f(x0)� f

⇤).


