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Lecture 7: Spectral Clustering
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e Spectral Clustering
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Two-moons

e Sometimes a single point is not a good representative of a cluster, in Euclidean
distance.

e Instead, we can try to cluster points so that nearby points are assigned to the
same cluster, without specifying cluster centers.



Weight matrix

Let x1,2x9, ..., 2, be points in R"™. To encode which points are nearby, we construct
a weight matrix W, which is an m X m symmetric matrix where W (i, j) represents
the similarity between datapoints x; and ;. A common choice for the weight matrix
is Gaussian weights
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where the o is a free parameter that controls the scale at which points are connected.
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Graph cuts for binary clustering

A graph-cut approach to clustering minimizes the graph cut energy
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Notes:
e The value z(i) € {0, 1} indicates which cluster x; belongs to.

e The graph-cut energy is the sum of the edge weights W (i, j) that must be cut
to separate the dataset into two clusters.



Balanced graph cuts for binary clustering

Minimizing the graph cut energy
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can lead to very unbalanced clusters (e.g., one cluster can have just a single point).

A more useful approach is to minimize a balanced graph cut energy
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The denominator is the product of the number of points in each cluster, which is
maximized when the clusters are balanced.

Balanced graph-cut problems are NP hard.



Relaxing the graph cut problem

To relax the graph-cut problem, we consider minimizing the graph cut energy
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over all real-vectors z € R"™. We still have a balancing issue (here z = 0 is a

minimizer), so we impose the balancing constraints
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Definition 1. The binary spectral clustering problem is
Minimize E(z) over z € R™, subject to 172 = 0 and ||z||* = 1.

The resulting clusters are C; = {z; : 2(i) > 0} and Cy = {x; : z(i) < 0}.
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The graph Laplacian and Fiedler vector
Let W be a symmetric m X m matrix with nonnegative entries.
Definition 2. The graph Laplacian matrix L is the m X m matrix
(4) L=D-W
where D is the diagonal matrix with diagonal entries
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Lemma 3. Then the graph cut energy can be expressed as

LS 1o (o .

=3 DD Wi, g)la(i) — 2(j))? = 2" Lz,
i=1 j=1

where L is the graph Laplacian.
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Properties of the graph Laplacian

Lemma 4. Let L = D — W be the graph Laplacian corresponding to a symmetric
matriz W with nonnegative entries. The following properties hold.

(i) L is symmetric.
(ii) L is positive semi-definite (i.e., zT Lz > 0 for all z € R™).

(iii) All eigenvalues of L are monnegative, and the constant vector z = 1 is an
eigenvector of L with eigenvalue A = 0.
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Fiedler vector

Let v1,v9,...,v,, be the eigenvectors of the graph Laplacian, with corresponding

eigenvalues
O0=X1 <A <--- < Ay

Definition 5. The second eigenvector vy of the graph Laplacian L is called the
Fiedler vector.

Theorem 6. The Fiedler vector z = vy solves the binary spectral clustering problem

Minimize E(z) over z € R™, subject to 172 = 0 and ||z||* = 1.
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k-nearest neighbor graph

The Gaussian weights
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are not always useful in practice, since the matrix W is dense (all entries are non-
zero), and the connectivity length o is the same across the whole graph.

It is more common to use a k-nearest neighbor graph. Let dj ; denote the Euclidean
distance between z; and its k*"" nearest Euclidean neighboring point from 1, ..., Zm.
A k-nearest neighbor graph uses the weights

L if flog — z;]] < max{dp,i,dk.;}
0, otherwise.
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The weights need not be binary, and can depend on ||x; —x,||, similar to the Gaussian
weights. The k-nearest neighbor graph weight matrix W is very sparse (most entries
are zero), so it can be stored and computed with efficiently.



Spectral clustering in Python (.ipynb)


https://colab.research.google.com/drive/1Ht6JY3cSF4M3K82O2xBbh9CIrTISJ0r2?usp=sharing

