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Last time

e Spectral Clustering

Today

e PageRank



PageRank

The PageRank algorithm ranks websites based on the link structure of the internet.
It was used to sort Google search results until 2006, and has been used in

e Biology (GeneRank), chemistry, ecology, neuroscience, physics, sports, and
computer systems. ..



PageRank

Main Idea: Take a random walk on the internet for 1" steps.

Rank of site i = lim — (Number of times site i is visited).
T—o00

Problem: Random walks can get stuck in disconnected components of the internet,
and may never visit a given site 1.

Solution: Every so often, the random walker teleports to a random site on the
internet. The walker is called a random surfer.

Code demo



Mathematics of PageRank

To describe PageRank mathematically, we start with an adjacency matrix W

1, if site 7 links to site j

0, otherwise.

W(Zu?) — {

We also have a probability transition matrix P for the random walk:

P(i,j) = Probability of stepping from j to i.

Both P and W are n X n matrices, n =number of webpages.



Mathematics of PageRank

Clicking on a link at random from webpage j leads to the transition probabilities

L W)
P(i,j) = ST W)

Exercise 1. Show that P = W7D~ where D is the diagonal matrix with diagonal
entries D(i,i) = Y. W (i, j). A



Random surfer

Let o € [0,1) be the random walk probability, and let v € R™ be the teleportation
probability distribution. That is, v(i) > 0 for all ¢, and », v(i) = 1.

Random surfer dynamics: When at website j, the random surfer chooses the
next site as follows:

1. With probability « the surfer clicks an outgoing link at random, that is, the
surfer navigates to website i with probability P(i, j).

2. With probability 1 — « the surfer teleports to website ¢ with probability v(7).



Teleportation

Teleportation distribution: Common choices are
e v(i) = 1/n for all i (jump to a site uniformly at random).
e (Localized PageRank) v(i) = d;; (always jump back to site j).

Localized PageRank ranks all sites based on their similarity to site j.



The PageRank vector

For k > 0 define

xk (1) = Probability that the random surfer is at page ¢ on step k.

Definition 2. The PageRank vector z is

x(1) = klgl(;lo x (1),

provided the limit exists.



Transition probabilities

To see how xj, transitions to x4 requires some probability. We condition on the
location of the surfer at step k, and on the outcome of the coin flip, to obtain

e () = (L= a)o(i) + a > P(i, j)z(j).

7j=1
W ite this in matrix/vector f ‘
e can write this in matrix/vector form as PX)() ( (/)
(1) Thy1 = (1—@)U+C¥P$k
& J/

If x;, converges to a vector = as k’ — 00, then z Should satisfy

Question: Does z; converge as k — oo, and if so, how quickly does it converge?




Analysis of PageRank
We consider the PageRank equation
(2) r=(1—-a)v+aPr.

Lemma 3. Letv € R"” and 0 < a < 1. Then there is a unique vector x € R™ solving
the PageRank equation (2). Furthermore, the following hold.

(i) We have Y x(i) = i v(i). &= {‘F Z\/ () = | m\
(17) If v(i) > 0 for all i, then x(i) > 0 for all i. 2 X)) =)
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Eigenvector problem

Remark 5. Whén v is a probability distributi it is common to re-write the

PageRank problem=<2yas an eigenvector problem

Xl) 2 O
P.x==x
Tx = 1
where ~
P := (1 —a)vl” +aP. - )(VL)
cc(
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Convergence of the PageRank iteration
Let v € R™ and 0 < a < 1. Let x; satisfy the PageRank iteration
Trr1 = (1 — a)v + aPxy,
and let x be the unique solution of the PageRank problem
z=(1-a)v+ aPu.
Theorem 6. We have

(3) |z, = zll < allzo — 2.

Since 0 < a < 1, this is convergence of x; — x with a linear convergence rate of a.

?(/Ooi', X = [(«04)\/-)'%%(





















Power 1teration

Remark 7. In the eigenvector formulation discussed above, the PageRank iteration
Tr+1 = Pyxp is basically the power iteration to find the largest eigenvector of Pa‘
The normalization step is not needed since ||z||y = 1 for all .



Personalized PageRank for image retrieval (.ipynb)


https://colab.research.google.com/drive/1WKpzLLu6P4kW7ObnATne3T-G7KvEN49d?usp=sharing

