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Last time

e PageRank

Today

e Discrete Fourier Transform (DFT)



Audio compression basis
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Figure 1: The first 4 principal components computed during PCA-based audio com-
pression. Two of the basis functions strongly resemble the trigonometric functions
sin and cos.



A role for a hand-crafted change of basis

e PCA finds the best change of basis that represents your data with as few basis
vectors as possible.

e In some setting PCA is too expensive (embedded environments, cell phones,
digital cameras, video surveillance, etc.).

e A hand-crafted change of basis can be computed very efficiently and studied
much more deeply mathematically.



Complex numbers

We recall that a complex number has the form z = a + ib where a,b € R and
1t = v/—1. The set of all complex numbers is denoted C. For a complex number
2z = a + 1b, the complex conjugate, denoted Z, is given by

Z=a—1b.

The modulus of z, denoted |z|, is given by
12| = Va2 + b2 :@ .
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Complex exponential and Euler’s formula

The complex exponential of z € C is defined by the Taylor series expansion
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The Taylor series is absolutely convergent in the whole complex plane. A very

important identity involving the complex exponential is Euler’s identity
e
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for all real numbers ¢ € R.
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Proof of Euler’s formula

S | flo=1 ?@

( ( ( /
d /ett\_ fo leLt-—-e“CnC ()
e | fo Loeyt

Ley*

- O




ct
6 g - C’ constut

<@‘F ‘(_‘,:0) @o:/
,@(9): Co5 (o) tisno

=

— > (= 7






The Discrete Fourier Transform (DFT)

Let Z, = {0,1,...,n — 1} be the cyclic group Z,, = Z/n (i.e., integers p,q € Z,, are
added, subtracted, or multiplied, the result is interpreted modulo n).

Example 1. In Z4 we have 2+ 2 =4 = 0 mod 4. A

"4
~ C
Let L?(Z,) denote the vector space of functions f : Z, — C. We define the inner
product on L?(Z,) by

) =S F(R)g(R).
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The norm of f € L?(Z,) is defined by || f|| = +/{f, f)-




The Discrete Fourier Transform (DFT)

The DFT is an orthogonal change of basis in L?(Z,) that expresses a function
f :€ L*(Z,) — C in terms sinusoidal basis functions of different frequencies

(2) k — e2™9F = cos(2mok) + isin(2nok).
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DFT basis functions
We define

(3) we(k) := ¥ M 0 =0,1,...,n—1.

It is often useful to note that we can get w = g2mi/n ;}]d write

up(k) = wh.

h

The complex number w is an n*™ root of unity, meaning that

We also have w = e 274/ — (y—1,

eﬁ'b = s t—ds~ Tt ,
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Orthogonality

Lemma 1. The functions ug,u1,...,U,_1 are orthogonal. In particular
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Definition

Definition 2. The Discrete Fourier Transform (DFT) is the mapping D : L*(Z,) —

L*(Z,) defined by (£ ueD
'Df(f) — nilf w ke Z f —zm'k;ﬁ/n,
where w = 27/, | — kL
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Proposition 3. If f € L*(7Z,) is real-valued (i.e., f(k) € R for all k), then
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Inverse Fourier Transform

Theorem 4 (Fourier Inversion Theorem). For any f € L*(Z,) we have

n—1 n—1
) F(R) == S DI = = S D)
£=0 £=0

Definition 5 (Inverse Discrete Fourier Transform). The Inverse Discrete Fourier
Transform (IDFT) is the mapping D~ : L?(Z,) — L*(Z,,) defined by
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Matrix version L&( ZV\> X (

Remark 6. Define the n x n complex-valued matrix with entries W (k,£) = w*’,
that is
11 1 . 1 AT
1 w w? e wn 1 =
2 4 . 2(n—1) 2 &
(6) w=|1l w w w

i w”:_l w2(7-1—1) w(n—l.)(n—l)

Then the DFT can be expressed via matrix multiplication as Df = W f. The inverse
DFT can be expressed as D1 f = %Wf. In both cases we treat f as a vector f € C".

Theorem 4 (Fourier Inversion) can be restated as saying that WW = nl.



Basic properties

Exercise 7. Show that the DFT enJoys the following basic shift properties.
1. Recall that u,(k) := e=2 2& Show that
e&‘ﬂ’Lk /,,\
D(f - ue)(k) =Df(k +1).

2. Let T, : L*(Z,) — L*(Z,) be the translation operator T, f(k) = f(k — ¢).
Show that

D(Tuf)(k) = e "D (k).

[Hint: You can equivalently show that D=1 (f-uy) (k) = D1 f(k

— (), using
an argument similar to part 1. |
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Intro to DFT (.ipynb)
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