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Department of Mathematics

University of Michigan
Ann Arbor, MI 48109, USA
Email: esedoglu@umich.edu

Alfred O. Hero III
Department of Electrical Engineering and
Computer Science, University of Michigan

Ann Arbor, MI 48109, USA
Email: hero@eecs.umich.edu

Abstract— Non-dominated sorting is an important combinato-
rial problem in multi-objective optimization, which is ubiquitous
in many fields of science and engineering. In this paper, we
overview the results of some recent work by the authors on
a continuum limit for non-dominated sorting. In particular, we
have discovered that in the (random) large sample size limit,
the non-dominated fronts converge almost surely to the level sets
of a function that satisfies a Hamilton-Jacobi partial differential
equation (PDE). We show how this PDE can be used to design
a fast, potentially sublinear, approximate non-dominated sorting
algorithm, and we show the results of applying the algorithm to
real data from an anomaly detection problem.

Keywords: Non-dominated sorting, Pareto-optimality,
multi-objective optimization, longest chain problem, antichain
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I. INTRODUCTION

Non-dominated sorting is an important combinatorial prob-
lem in multi-objective optimization [1], [2], [3], [4]. The
sorting can be viewed as arranging points in Euclidean space
into layers, or fronts, by repeated removal of the set of minimal
elements with respect to a partial order. It is an essential
step in the so-called genetic and evolutionary algorithms for
continuous multi-objective optimization, where it is employed
to determine fitness levels of feasible solutions in the current
population [3], [5], [6], [2], [7]. Of course, multi-objective
optimization is ubiquitous in many fields of science and
engineering, including control theory and path planning [8],
[9], [10], gene selection and ranking [11], [12], [13], [14],
[15], [16], [17], data clustering [18], database systems [19],
[20] and image processing and computer vision [21], [22].

In probability theory, non-dominated sorting goes by the
pseudonym ‘The longest chain problem’, and has a long
history beginning with Ulam’s famous problem [23] of finding
the length of a longest increasing subsequence of a random
permutation. Some of the major breakthroughs on probabilistic
aspects of the problem were obtained by Hammersley [24],
Vershik and Kerov [25], Logan and Shepp [26], Bollobás
and Winkler [27], and Deuschel and Zeitouni [28]. In com-
binatorics, non-dominated sorting is called the ‘canonical
antichain partition’ [29], and there are further striking appli-
cations in molecular biology [30], graph theory [31], Young

Tableaux [32], [29], materials science [33], and even in phys-
ical layout problems in the design of integrated circuits [34].

In this paper, we overview the results of some recent
work by the authors on a continuum limit for non-dominated
sorting [35], [36]. In particular, we prove that in the (random)
large sample size limit, the non-dominated fronts converge
almost surely to the level sets of a function that satisfies
a Hamilton-Jacobi partial differential equation (PDE). We
also give a fast numerical scheme for solving the PDE and
use it to develop a fast, potentially sublinear, approximate
non-dominated sorting algorithm. We apply this algorithm
to real data from an anomaly detection problem [37], and
show that the algorithm achieves excellent accuracy while
significantly reducing the computational complexity of non-
dominated sorting. We believe this work has the potential to
be particularly useful in the context of big data streaming
problems [38], which involve constant re-sorting of massive
datasets upon the arrival of new samples.

The rest of the paper is organized as follows. In Section
II we describe non-dominated sorting and present our main
result—a PDE for the limiting shapes of the fronts. In Section
III, we present a fast numerical scheme for the PDE and a
fast approximate non-dominated sorting algorithm based on
this scheme. Finally in Section III-C we apply our fast non-
dominated sorting algorithm to real data, and show some
experimental results.

II. MAIN RESULT

A. Non-dominated sorting

In a discrete multi-objective optimization problem, we are
given a number of functions gi : S→ [0,∞), where i = 1, . . . ,d
and S = {x1, . . . ,xn}, and the problem is to find an element
x ∈ S that minimizes all of the functions g1, . . . ,gd simultane-
ously. Since no such solution exists in general, one is instead
interested in a family of solutions that are ‘optimal’ in certain
sense. Formally, we say a feasible solution x ∈ S is Pareto-
optimal if

∀y ∈ S,
{
∃i, gi(y)> gi(x) or ∀i, gi(y) = gi(x)

}
.

In other words, no other feasible solution is better in every
objective. The set of Pareto-optimal solutions is denoted F1
and usually called the first Pareto front, or first non-dominated
front. It is a natural notion of solution for a multi-objective
optimization problem in which one has no a priori information
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Fig. 1. Examples of exact finite sample Pareto fronts for X1, . . .Xn chosen from the uniform distribution on [0,1]2. In (b) and (c), 29 equally spaced fronts are
depicted.

concerning the relative importance of each objective. The sec-
ond Pareto front, F2, consists of the Pareto-optimal elements
of S\F1, and in general

Fk = Pareto optimal elements of S\
⋃
j<k

F j. (1)

Now set Xi = (g1(xi), . . . ,gd(xi)) ∈ Rd for i = 1, . . . ,n. In this
paper, we view non-dominated sorting as acting on X1, . . . ,Xn,
which are simply points in Rd , so that the problem of non-
dominated sorting is removed from the underlying multi-
objective optimization problem. Figure 1 shows the Pareto
fronts obtained by non-dominated sorting of n = 50,104, and
n = 106 points chosen from the uniform distribution on [0,1]2.

Let us now describe the connection to the longest
chain problem. Let X1, . . . ,Xn be independent and identi-
cally distributed (i.i.d.) random variables. The points Xn =
{X1, . . . ,Xn} form a (random) partially ordered set under the
usually coordinate-wise partial order

x 5 y ⇐⇒ xi ≤ yi for i = 1, . . . ,d. (2)

Let `(n) denote the length of a longest chain1 in Xn, and
for x ∈ Rd let un(x) denote the length of a longest chain in
Xn consisting of points less than x with respect to 5. When
Xi = (g1(xi), . . . ,gd(xi)) ∈ Rd for i = 1, . . . ,n, we have

xi ∈F1 ⇐⇒ un(Xi) = 1,

and in general

xi ∈Fk ⇐⇒ un(Xi) = k,

provided all Xi are distinct. This observation is critical; it
says that studying the shapes of the Pareto fronts F1,F2, . . .
is equivalent to studying the level sets of the longest chain
function un. Notice in Figure 1, that the points on each Pareto
front are connected by a staircase curve that represents the
jump set of un.

The problem of studying the asymptotics of `(n) can be
traced back to Ulam’s problem [23], which was first tackled by

1A chain is a totally ordered subset of Xn.

Hammersley [24]. He showed that for X1, . . . ,Xn independent
and uniformly distributed on [0,1]2 we have `(n)∼ c

√
n almost

surely, and he conjectured that c= 2. This conjecture was later
verified by Vershik and Kerov [25] and Logan and Shepp [26].
Bollobás and Winkler [27] extended Hammersley’s results
to dimensions d ≥ 3, showing that there exist positive con-
stants cd such that `(n) ∼ cdn

1
d almost surely, and cd 1 e as

d→∞. Deuschel and Zeitouni [28] considered non-uniformly
distributed points. They showed that for X1, . . . ,Xn i.i.d. on
[0,1]2 with C1 density function f : [0,1]2→R, bounded away
from zero, we have `(n)∼ 2J

√
n in probability, where J is the

supremum of the energy

J(ϕ) =
∫ 1

0

√
ϕ ′(x) f (x,ϕ(x))dx,

over all ϕ : [0,1]→ [0,1] nondecreasing and right continuous.
Our work is most closely related to [28]. In particular, we

extend their results to higher dimensions and to densities f
on arbitrary domains, and more importantly, we connect the
variational problem to a Hamilton-Jacobi partial differential
equation, which allows us to design a fast non-dominated
sorting algorithm.

B. Continuum limit

Our main result is the following continuum limit:

Theorem 1: Let X1, . . . ,Xn be i.i.d. random variables
on Rd with density function f : Rd → [0,∞). Suppose
there exist Ω ⊂ Rd

+ open and bounded, with Lipschitz
boundary, such that f is continuous on Ω and f = 0 on
Rd \Ω. Then there exists a positive constant cd such that

n−
1
d un −→

cd

d
U in L∞(Rd) almost surely,

where U ∈C0, 1
d ([0,∞)d) is the unique Pareto-monotone

viscosity solution of the Hamilton-Jacobi equation

(P)

{
Ux1 · · ·Uxd = f on Rd

+,

U = 0 on ∂Rd
+.



Here, R+ = (0,∞), Uxi refers to the partial derivative of U
in the ith coordinate direction, and by Pareto-monotone, we
mean that x 5 y =⇒ U(x) ≤U(y). The set Ω is the domain
of the random variables X1, . . . ,Xn, and the constants cd are
the same as those given by Bollobás and Winkler [27]. In
particular, c1 = 1, c2 = 2 and cd 1 e as d→ ∞. The proof of
Theorem 1 will appear in the SIAM Journal on Mathematical
Analysis in 2014 [35].

Let us say a few words about the notion of viscosity
solutions of Hamilton-Jacobi equations. In general, there does
not exist a continuously differentiable function U satisfying
a Hamilton-Jacobi equation like (P), due to the possibility
of crossing characteristics. On the other hand, it is often
the case that there exist infinitely many almost everywhere
differentiable functions U satisfying (P) at every point of
differentiability. These solutions are called almost everywhere
solutions. The notion of viscosity solution selects the “physi-
cally correct” almost everywhere solution. For more details
on viscosity solutions, we refer the reader to the standard
references [39], [40]. We should note that when f is a product
density, i.e., f (x) = f1(x1) · · · fd(xd), U has a familiar form; it
is given by the dth-root of the cumulative distribution function

U(x) = F(x)
1
d =

(∫
05y5x

f (y)dy
) 1

d
. (3)

Theorem 1 provides a new tool for studying the asymptotic
properties of non-dominated sorting. For example, in [35],
we used Theorem 1 to show that non-dominated sorting is
asymptotically stable under bounded random perturbations.
Furthermore, convexity (or lack thereof) is a crucial property
of Pareto fronts [1]. When the Pareto fronts are non-convex,
linear scalarization—a popular approach to multi-objective
optimization based on minimizing a linear combination of
the objectives—will only find Pareto-optimal solutions on the
convex hull of the Pareto front, and will neglect equally
good solutions on non-convex portions. Since the Pareto fronts
converge to the level sets of U , the asymptotic convexity of
the Pareto fronts is related to the quasiconcavity of U ; thus
an interesting problem is to characterize the class of density
functions f for which the solution U of (P) is quasiconcave.

III. NUMERICS

Evidently, Theorem 1 reduces the problem of non-
dominated sorting (in the asymptotic regime) to solving a
Hamilton-Jacobi equation. We now show how to exploit this
to design a fast approximate non-dominated sorting algorithm.

A. Numerical scheme

When f is a product density, U can be computed efficiently
by numerically integrating (3). Our main result here is that
for general densities, f , there is a similarly efficient numerical
scheme for computing U . The numerical scheme is as follows:

(S)


d

∏
i=1

h−1(Uh(x)−Uh(x−hei)) = f (x), x ∈ hNd

Uh(x) = 0, x ∈ hNd
0 \hNd .

Here, Uh : hNd
0 → R is the numerical solution on a grid of

spacing h > 0, e1, . . . ,ed are the standard basis vectors in Rd ,
and N0 = {0,1,2, . . .}. The choice of backward difference
quotients gives what is called an ‘upwind scheme’ due to
the fact that information propagates along coordinate axes in
the definition of Pareto fronts (1). There numerical solution
Uh satisfying (S) is computed recursively in the following
way: Given Uh(x− he1), . . . ,Uh(x− hed), we compute Uh(x)
by solving the algebraic equation given in (S). There are in
general d solutions, for given values of Uh(x−he1), . . . ,Uh(x−
hed). We obtain the Pareto-monotone viscosity solution of (P)
by selecting the unique Uh(x) satisfying

Uh(x)≥max
(

Uh(x−he1), . . . ,Uh(x−hed)
)
.

The algebraic equation in (S) can be solved in general by an
efficient binary search. In dimension d = 2, the equation is
quadratic, and we can explicitly write

Uh(x) =
1
2
(Uh(x−he1)+Uh(x−he2))

+
1
2

√
(Uh(x−he1)−Uh(x−he2))2 +4h2 f (x).

Computing Uh involves visiting each grid point exactly once in
any sweeping pattern that respects the componentwise partial
order 5, and therefore has linear complexity.

Our main numerical result is the following

Theorem 2: Assume f satisfies the hypotheses from
Theorem 1. Then Uh→U uniformly on [0,∞)2 as h→ 0.

This result guarantees that the numerical solutions Uh are arbi-
trarily good approximations to the viscosity solution of (P) for
h > 0 sufficiently small. The theorem does not guarantee any
rate of convergence. In [36], we give some numerical evidence
indicating that Uh =U +O(h

1
d ). The proof of Theorem 2 can

be found in a recent preprint by the authors [36]. Figure 2
compares the Pareto fronts to the level sets of the numerical
solution Uh of (P) computed via the scheme (S). Here, we
chose f to be the multi-modal density depicted in Figure 2(a)
and solved (S) on a 1000×1000 grid (h = 0.001).

To give an idea of the computational complexity, it takes
approximately one quarter of a second to solve (S) on a 1000×
1000 grid using an average laptop. In practice, such a fine
grid is unnecessary, and we have found that a grid on the
order of 100×100 (h = 0.01) to be sufficient. Of course, the
complexity of solving (S) on a fixed grid grows exponentially
fast in dimension d, hence the scheme (S) is only applicable
in relatively small dimensions, i.e., d = 2,3,4. It is thus a
very interesting problem to numerically solve (P) in higher
dimensions, and we leave this to future work.

B. Fast approximate sorting

If the data X1, . . . ,Xn are drawn i.i.d. from a smooth density
function f , and n is large enough so that n−

1
d un is well

approximated by cdd−1U , then it is reasonable to consider the
following approximate non-dominated sorting algorithm: 1)
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Fig. 2. Comparison of the exact Pareto fronts and the continuum approximation via the level sets of Uh—the numerical solution of (P)—for the density f
depicted in (a). In each case, we show 15 equally spaced Pareto fronts and the corresponding level sets of Uh. We used a 1000×1000 grid for solving the
PDE, which corresponds to h = 0.001.

Since the density f is rarely known in practice, we first form an
estimate f̂ of f using a small (random) subset of the samples
X1, . . . ,Xn. We opt for a simple histogram estimator, but there
are of course other more accurate options available [41],
[42]. 2) Use the numerical scheme (S) and the estimate f̂
to solve (P) on a fixed grid of size h. This yields a numerical
solution Ûh. (3) Evaluate Ûh at each sample X1, . . . ,Xn to yield
approximate Pareto ranks. In summary we have

Algorithm 1: Fast approximate non-dominated sorting
1a) Select k points from X1, . . . ,Xn at random. Call

them Y1, . . . ,Yk.
1b) Select a grid spacing h for solving the PDE and

estimate f with a histogram aligned to the grid hNd
0 ,

i.e., for x ∈ hNd
0 we have

f̂h(x) =
1

khd ·#
{

Yi : x 5Yi 5 x+h(1, . . . ,1)
}
. (4)

2) Compute Ûh on hNd
0 ∩ [0,1]d via (S).

3) Evaluate Ûh(Xi) for i = 1, . . . ,n via interpolation.

The final evaluation step can be viewed as an interpola-
tion, and the specific form of interpolation is not all that
important; d-linear interpolation is sufficient, and in [36] we
use a marginally more accurate interpolation algorithm based
adapting the scheme (S) to subgrid resolution. For simplicity
of presentation, we assumed that X1, . . . ,Xn ∈ [0,1]d , but the
scheme can be easily adapted to any compact hypercube.

It is natural to wonder if one can obtain a rate of con-
vergence for Ûh → U . In [36], we show formally that the
following estimate should hold with high probability:

‖Ûh−U‖L∞([0,1]d) ≤C
(

k−
1

2d h−1 +h
1
d

)
. (5)

Here, C > 0 is a constant independent of h and k. We intend
to prove (5) rigorously in a future work. The first term on the
right hand side in (5) arises from the effects of random errors
(variance) due to an insufficient number of samples k, whereas
the second term is due to the effect of non-random errors (bias)

due to insufficient grid resolution h. This decomposition is in
some ways analogous to the mean integrated squared error
decomposition in the theory of non-parametric regression and
image reconstruction [43]. The estimate (5) is of course useful
in choosing appropriate values of k and h in Algorithm 1.

Notice that Steps 1) and 2) in Algorithm 1 require only
O(k + h−d) operations. Therefore, Algorithm 1 can be con-
sidered sublinear in the following sense: For any ε > 0, by
choosing k and h appropriately, and fixing them independent
of n, we can obtain an algorithm that requires O(1) operations,
as n→ ∞, to compute an estimate Ûh of U satisfying ‖Ûh−
U‖L∞([0,1]d) ≤ ε with high probability. Of course, evaluating
Ûh at each sample X1, . . . ,Xn requires O(n) operations.

C. Anomaly detection

We now demonstrate Algorithm 1 on a large-scale real-
world dataset from an anomaly detection problem [37]. The
data consists of thousands of pedestrian trajectories, captured
from an overhead camera, and the goal is to differentiate
nominal from anomalous pedestrian behavior in an unsuper-
vised setting. The data is part of the Edinburgh Informatics
Forum Pedestrian Database and was captured in the main
building of the School of Informatics at the University of
Edinburgh [44]. Figure 3(a) shows 100 of the over 100,000
trajectories captured from the overhead camera.

The approach to anomaly detection employed in [37] uti-
lizes multiple criteria to measure the dissimilarity between
trajectories, and combines the information using a Pareto-front
method, i.e., non-dominated sorting. The database consists
of a collection of M =110,035 trajectories, and the criteria
are 1) a walking speed dissimilarity, and 2) a trajectory
shape dissimilarity. The walking speed dissimilarity is the L2

distance between the velocity histograms of two trajectories,
and the shape dissimilarity is the L2 distance between the
trajectories, assuming a uniform walking speed. There is then
a Pareto point Xi, j ∈R2 for every pair of trajectories, yielding(M

2

)
≈ 6× 109 Pareto points. Figure 3(b) shows an example

of 50,000 Pareto points and Figure 3(c) shows the respective
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(c) Pareto fronts

Fig. 3. (a) Example pedestrian trajectories, (b) Plot of 50,000 of the approximately 6× 109 Pareto points, (c) Depiction of 30 evenly spaced Pareto fronts
associated to the 50,000 points in (b).

Pareto fronts. In [37], only 1,666 trajectories from one day
were used, due to the computational complexity of computing
the dissimilarities and non-dominated sorting.

The anomaly detection algorithm from [37] performs non-
dominated sorting on the Pareto points {Xi, j}1≤i< j≤M , and
uses this sorting to define an anomaly score for every trajec-
tory. Trajectories with anomaly scores higher than a specific
threshold are deemed anomalous. Using Algorithm 1, we
can approximate the non-dominated sorting of all

(M
2

)
Pareto

points using only a small subset of size k. This allows us to
efficiently train the algorithm with all of the training data,
instead of just one day.

In practice, the numerical ranks assigned to each point are
largely irrelevant, provided the relative orderings between sam-
ples are correct. Thus, to evaluate the accuracy of Algorithm
1 for the anomaly detection problem, we define the following
accuracy score:

Accuracy = Fraction of pairs (Xi,X j) correctly ordered.

Figure 4 shows the accuracy scores for Algorithm 1 versus
the number of subsamples k, and the CPU time used by
Algorithm 1 and non-dominated sorting. Notice that we plotted
− log(1−Accuracy), since the values are very close to one.
Due to the memory requirements for non-dominated sorting,
we cannot sort datasets significantly larger than than 109

points. In order to have ground truth to compare against,
we used only 44722 out of 110035 trajectories, yielding
approximately 109 Pareto points. Note that a 500× 500 grid
was used for solving the PDE, and we show the CPU time
for steps 1) and 2) (Solve PDE) separate from the time to
execute all of Algorithm 1 to illustrate the sublinearity of this
portion of the algorithm. We compared against the O(n logn)
non-dominated sorting algorithm given in [29], [4].

We also compare Algorithm 1 against a naı̈ve algorithm
for fast non-dominated sorting. We call the algorithm subset
ranking [36], and the idea is to randomly sample k points
from X1, . . . ,Xn, sort this small subset, and then extrapolate the
Pareto ranks to the larger dataset X1, . . . ,Xn. Subset ranking is
fast—comparable to Algorithm 1—but there is no reason to

expect it to be accurate. In Figure 4, we show the accuracy of
subset ranking. Although it is not as accurate as Algorithm 1,
the strong performance of subset ranking is quite surprising,
and there is, to our knowledge, no rigorous justification for
this. We note also that {Xi, j}1≤i< j≤M are not i.i.d., since they
are elements of a Euclidean dissimilarity matrix, so these
results are also strong evidence that Theorem 1 holds for some
special cases of non-i.i.d. random variables.

IV. CONCLUSION

In conclusion, we have presented an overview of our recent
work on a continuum limit for non-dominated sorting [35],
[36]. We identified a Hamilton-Jacobi partial differential equa-
tion (PDE) for this continuum limit, and showed how to
numerically solve the PDE efficiently. We presented a fast
approximate non-dominated sorting algorithm based on nu-
merically solving this PDE, and applied the algorithm to
real-world data from an anomaly detection problem with
favorable results. We expect this work to be useful in other
multi-objective optimization problems as well; in particular, it
seems very well-suited for big data problems in the streaming
context [38].
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