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Bayesian Active Learning for Sample Efficient 5G
Radio Map Reconstruction

Konstantinos D. Polyzos, Alireza Sadeghi, Wei Ye, Steven Sleder, Kodjo Houssou, Jeff Calder,
Zhi-Li Zhang, and Georgios B. Giannakis

Abstract—The advent of diverse frequency bands in 5G net-
works has promoted measurement studies focused on 5G signal
propagation, aiming to understand its pathloss, coverage, and
channel quality characteristics. Nonetheless, conducting a thor-
ough 5G measurement campaign is markedly laborious given
the large number of samples that must be collected. To alleviate
this burden, the present contribution leverages principled active
learning (AL) methods to prudently select only a few, yet most
informative locations to collect samples. The core idea is to rely
on a Gaussian Process (GP) model to efficiently extrapolate
measurements throughout the coverage area. Specifically, an
ensemble (E) of GP models is adopted that not only provides
a rich learning function space, but also quantifies uncertainty,
and can offer accurate predictions. Building on this EGP model,
a suite of acquisition functions (AFs) are advocated to query
new locations on-the-fly. To account for realistic scenaria, the
proposed AFs are augmented with a novel distance-based AL rule
that selects informative samples, while penalizing queries at long
distances. Numerical tests on 5G data generated by the Sionna
simulator and on real urban and suburban datasets, showcase
the merits of the novel EGP-AL approaches.

Index Terms—Active Learning, 5G measurement, Radio Map
Reconstruction

I. INTRODUCTION

The fifth-generation cellular network, commonly known as
5G, expands its spectrum resources across both the low/mid-
frequency bands (<6GHz) and the high-frequency bands
(>24GHz) [1]. This brings a remarkable improvement in
service quality and outperforms 4G (LTE1), which typically
operates at frequencies below 2 GHz. In some regions, how-
ever, higher bands are also used, including 2.1 GHz, 2.5 GHz,
2.6 GHz, and even up to 6 GHz [2]. In particular, major
5G operators like ATT and Verizon in the US have been
actively deploying C-band (3.7GHz) and mmWave (26GHz)
technologies, achieving impressive gigabits-per-second-level
throughput and millisecond-level latency [1], [3], [4].

Nevertheless, applying these frequency bands introduces
new characteristics to mobile networks. For instance, mmWave
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1Long Term Evolution.

has a much shorter wavelength (about 1∼12mm) [4] , making
its propagation highly directional, easily blocked and reflected
by obstacles. This can lead to complex signal strength be-
haviors in the real world beyond just distance-based depen-
dency [5], [6].

A plethora of wireless network-related tasks, such as net-
work/radio resource/base station planning, handover optimiza-
tion, quality of Service (QoS) management, etc., critically rely
on a better understanding of radio propagation characteristics
in the real world and require quantifying the signal coverage
quality of specific base stations. To gain such insight, a large
number of in-field measurements need to be conducted.

Obtaining these measurements is a laborious process, since
the collection of valid measurements entails a significant
amount of effort and the collected data may not even cover
all of the locations within the coverage area. The lack of
immediate feedback on data quality during in-field measure-
ments can further lead to many redundant and/or useless
measuring efforts. To cope with these challenges, existing
works [6]–[18] have attempted to reconstruct radio maps only
using limited measurements (see Sec. II). Albeit interesting,
these approaches still fail to fully address the aforementioned
practical issues.

The goal of this work is to improve the efficiency of obtain-
ing measurements for reconstructing 5G radio maps by lever-
aging Bayesian-based active learning (AL) methods. Building
on a statistical model to capture the mapping of any location
within the coverage area to its corresponding received signal
strength (RSS) value, AL leverages a collection of acquisition
criteria (i.e., acquisition functions (AFs)) to select a few highly
informative locations to obtain RSS measurements. We utilize
the Gaussian Process (GP) for the underlying statistical model,
which is a well-motivated Bayesian model that is able to
effectively extrapolate and interpolate RSS measurements in
regions with limited or even no observed data. Along with
accurate RSS predictions at unobserved locations, the GP
model provides valuable information about the confidence and
reliability of predictions by offering a well-quantifiable notion
of uncertainty around each predicted RSS value [19]. GPs are
non-parametric models that do not require explicit assumptions
about the functional form or distribution of the data. While
GP models define a Gaussian prior over the target function,
they effectively handle various data distributions by employing
appropriate likelihood functions [19]. With the right choice of
(i) likelihood function; and, (ii) the underlying kernel, GPs
excel in settings where the predictive distribution may be
intricate, or not easily captured by simple parametric models,
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making them versatile for numerous applications [19], [20].
Nonetheless, their performance hinges on a pre-selected

kernel function to evaluate the pairwise similarity of dif-
ferent locations, which subsequently affects the covariance
of the corresponding RSS values. Apriori selection of the
kernel function is a nontrivial task, that may require domain-
knowledge as well. The use of a single pre-selected kernel
in GP modeling confines the expressiveness of the sought
learning function for estimating RSS values. In addition,
the complexity of these methods significantly grows as the
number of available measurements increases. To cope with
expressiveness challenges of single kernel-based GP learning,
and to allow for scalable and online model updates, we will
rely on an ensemble of parametric approximants of GP models,
similarly as in [21] (see also Sec.II).
Contributions. Our contributions in this work can be summa-
rized in the following aspects:

• To the best of our knowledge, this is the first work that
formulates and implements Bayesian-AL for the 5G radio
map reconstruction problem using only a small number
of measurements.

• We advocate intuitive AL methods that leverage an en-
semble of GPs (EGPs) to enhance the model’s expres-
siveness when dealing with multi-modal and complex
data distributions. We then leverage parametric function
approximants of the GP models in the ensemble using
random features (RFs) to offer online and scalable model
updates. These are particularly appealing in AL settings
where new measurements are processed online.

• To allow for path-efficient acquisition of RSS mea-
surements in new locations, we combine a number of
well-motivated AFs with a novel path efficient rule that
penalizes querying far-distant locations at each iteration
of AL.

• We conduct thorough experiments on a total of six simu-
lated datasets with three scenarios and two radio frequen-
cies, and on two real urban and suburban datasets, to cor-
roborate the efficiency and effectiveness of the proposed
EGP-based AL in reconstructing 5G radio maps. Our
numerical tests show that our EGP-based AL approaches
achieve up to 54.8% improvement in terms of normalized
mean square error (NMSE) over the EGP model with
random sampling. In addition, compared to the EGP-
AL methods that do not impose any constraints on the
acquisition of new locations to measure, the EGP-based
AL approaches that consider the novel path efficient
rule, achieve up to 57.1% reduction in terms of required
cumulative traveling distance to obtain measurements.

The remainder of the paper is organized as follows. In Sec.
II related works are discussed. Active learning formulation for
5G radio map reconstruction is introduced in Sec. III, while
the advocated EGP-based AL approach with path-efficient
acquisition functions is presented in IV. Upon discussing
details about data generation in Sec. V, numerical tests on
simulated and real 5G datasets are provided in Sec. VI. Finally,
Sec. VII concludes the paper.
Notations. Scalars are denoted by lowercase, column vectors
by bold lowercase, matrices by bold uppercase, and sets by

TABLE I: Symbol Definitions

Symbol Definition
X Spatial coverage area
x 2-dimensional Cartesian coordinate

y(x) Received Signal Strength (RSS) at location x ∈ X
xi i-th probed location in the coverage area X
yi RSS value measured at the i-th probed location xi

f(x) Function mapping location x to associated RSS y(x)

f̂(x) Nonparametric function estimate at location x

f̌(x) Linear and parametric function approximant of f(x)
ν Gaussian observation noise ν ∼ N (ν, 0, σ2

noise)
Dn Dataset of n pairs of data samples {(xi, yi)}ni=1

α(x;Dn) Acquisition function
κ(xi,xj) Kernel function to evaluate similarity of xi and xj

Xn := Data matrix containing all
[x1, . . . ,xn]⊤ n probed locations

Kn Covariance (kernel) matrix of the GP prior over Xn

kn(x) Kernel vector containing similarity between location
x and all n locations in Xn

yn Vector of observed RSS values at locations Xn

ȳn+1|n(x) Predictive mean of RSS at location x given Dn

σ2
n+1|n(x) Predictive variance of RSS at location x given Dn

K Set of M kernels {κ1, . . . , κM} in mixture of GPs
wm

n Weight of the m-th GP model in the ensemble
ϕζ(x) Random feature vector

θ Parameter vector to linearly approximate GP
N (·;µ,K) Gaussian distribution wit mean µ and covariance K
n+ 1|n Processing location n+ 1 uses all previous

n := [1, . . . , n]⊤ measurements
n+ 1|n Processing location n+ 1 uses only previous

measurement n
θ̂
m
n+1 Posterior mean of parametric model m when

processing location n+ 1

Σ̂
m
n+1 Posterior covariance of parametric model m when

processing location n+ 1
H Reproducing Kernel Hilbert Space

H(f̂(x)|Dn) Entropy of the learned function f̂(x) ∀x ∈ X

calligraphic uppercase fonts. Superscripts ⊤ and −1 denote
transpose and inverse respectively; while 1N stands for the
N × 1 all-ones vector; and N (x;µ,K) for the PDF of a
Gaussian random vector x with mean µ, and covariance matrix
K. The identity matrix will be represented by I , and the all-
zeros matrix by 0. Table I lists the most common symbols for
reference purposes.

II. RELATED WORKS

Radio Map Reconstruction. Numerous approaches have been
proposed to reconstruct 5G radio maps, comprising both non-
parametric methods [10]–[12], [22]–[24] and classical para-
metric ones [13], [14], [25]. More recently, researchers have
explored deep learning-based approaches [6], [15]–[18], [26]–
[28] to enhance the accuracy of radio propagation modeling
and better capture its characteristics. In addition, physics-
informed conditional generative models have demonstrated
enhanced ability to enrich geometric information, and re-
construct dense radio maps from sparse observations [29].
However, these methods primarily concentrate on interpolat-
ing or extrapolating unmeasured locations based on existing
measured points, lacking the ability to guide future sampling
—a critical practical challenge. In contrast, the novel active
learning method adopted in this paper effectively addresses
this challenge by providing a principled method to search for
the most informative location to query the next measurement.
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Active Learning. AL methods can be broadly categorized into
parametric AL [30]–[32] and non-parametric ones [33]–[35].
Although most existing parametric approaches in the literature
excel at learning complex representations from data, they
are deterministic and hence fall short in inherently providing
uncertainty quantification. In addition, they are tailored solely
for classification tasks, and do not account for regression tasks,
such as the RSS prediction problem in this paper; see e.g
[36]. On the other hand, Bayesian non-parametric approaches
such as GPs, inherently offer uncertainty quantification, and
demonstrate superior sample efficiency [19], [34]. Existing
GP-based AL approaches typically rely on a single pre-
selected kernel, which limits their expressiveness when dealing
with data exhibiting multi-modal behavior. To cope with this
challenge, existing deep-learning based approaches aim to
learn the kernel with neural networks, but they typically
require a sufficient number of labels which are not available
in several AL settings; see e.g [37]. The proposed AL method
in this paper uses a more expressive statistical model that
relies on an ensemble of GP models with scalable online
model updates as in [38]. Finally, the proposed acquisition
strategies in the existing literature do not impose constraints
on the data to label, which discourages their application in the
5G map reconstruction problem where the travelling cost of
collecting 5G measurements should be minimized. A recent
work [39] has proposed AL methods that consider similarities
of query data samples with previously queried ones, though
the method is not applicable to 5G signal reconstruction.
Specifically, the proposed method operates in batch form, is
tailored for classification, and the selection of query samples
is based on enforcing at least a certain pairwise distance
between samples for the sake of accelerating data annotation
through parallel processing. In contrast, this work aims to
avoid querying locations that are far from each other. To
cope with this challenge, this paper incorporates a novel path-
efficient acquisition rule into the AL process, where locations
at long distances are penalized.

III. PROBLEM STATEMENT

We now formulate the 5G active measurement problem (see
Fig.1) and then briefly discuss the limitations of AL when it
is directly applied in practice.
Active Learning for 5G Measurements. For a 5G coverage
area X ⊂ R2, we are interested in estimating the real-valued
received signal strength (RSS) y(x) ∈ R at any desired loca-
tion (or feature vector) x:= [Cartesian Coordinate-x,
Cartesian Coordinate-y] ∈ R2. Let xi denote the i-
th probed location with associated scalar RSS value yi ∈ R.
We postulate that there exists a ground truth function f(x) :
R2 → R which maps a desired location x to its associated
RSS through

y = f(x) + ν, (1)

where ν ∼ N (ν; 0, σ2
noise) represents the observation noise.

To efficiently learn an estimate f̂(x) at any desired x with
only few, but representative, measured RSS data, one can
rely on the active learning (AL) paradigm; see Fig. 1 for
an illustration. AL begins with a relatively small dataset of

Signal Strength Bad Good

?

Active 
Learning

Go there!
Measured 
data points

Fig. 1: Illustration of active learning for efficient RSS ra-
diomap reconstruction. The area of interest is partitioned into
small grids with measurements shown in colors from green
(high RSS) to orange (low RSS). The objective is to identify
the next most informative measurement location, enabling
accurate and sample-efficient RSS reconstruction over the
entire area.

labeled (measured) data Dn := {(xi, yi)}ni=1 (where n is
small). To judiciously update Dn and build an informative
training set, AL leverages an acquisition function (AF) α(·)
to search for the most informative query locations on-the-fly
while updating the underlying model f̂(·). The next query
location xn+1 is obtained by solving

xn+1 := argmin
x∈X

α(x;Dn). (2)

To obtain the RSS value yn+1 := y(xn+1) corresponding to
the next queried location xn+1, a field-test2 can be carried
out. Upon obtaining yn+1, AL augments the training dataset
Dn+1 := Dn ∪ {(xn+1, yn+1)} and updates the estimate f̂(·)
on-the-fly. Having an updated f̂(·), the active learner can
predict the RSS at any desired (unmeasured) location x ∈ X .

Therefore, to learn f̂(·) in a sample-efficient manner with
AL, we aim to properly select a learning model and design
AFs relying on the chosen model, to effectively guide the
acquisition of new query locations to measure in an online
manner.
Challenges Conventional AL methods rely on the ‘indepen-
dent data acquisition’ assumption, meaning that the active
learner can query measurements from any location within the
coverage area independently from the previous measurement
locations. This limits the applicability of conventional AL
in wireless communications, since there exist many practical
considerations that one needs to consider when querying a
new location, such as traveling cost and measurement runtime
complexity. For example, simply selecting a location that may
be informative but requires a much longer travel distance is not
cost-optimized, as the user may have to travel a prohibitively
long distance to take a sufficient number of measurements
and may repeatedly traverse the same regions within the
measurement area (see Sec. VI). In the ensuing sections, we
provide principled methods to facilitate a path- and sample-
efficient data acquisition process.

2One can obtain RSS measurements at different locations within X ,
using some off-the-shelf tools, such as Android-based API [40] running on
smartphones or more professional scanners [41].
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IV. ACTIVE LEARNING WITH ENSEMBLES OF GPS

To effectively estimate the sought function f with well-
quantifiable uncertainty in a sample-efficient fashion, this work
leverages GPs. As nonparametric Bayesian models, GPs will
estimate unknown RSS values and guide the acquisition of
new measurement locations, as outlined next.

A. Gaussian Processes

We leverage GPs to probabilistically model f(x) for all
x ∈ X , and subsequently obtain a model over RSS values
{y(x),∀x ∈ X}. To this aim, let us define a single GP-
based prior distribution over f(x) ∼ GP(µ(x), κ(x,xj)),
with mean µ(x) and a pre-specified kernel function κ(x,xj).
Usually, for notational simplicity it is assumed that µ(x) =
0,∀x ∈ X . This prior on f(x) implies that for any fi-
nite number n ∈ N+ of samples, the random vector of
function values fn := [f(x1), . . . , f(xn)]

⊤ at locations
Xn := [x1, . . . ,xn]

⊤ has a joint Gaussian distribution; that
is p(fn|Xn) = N (fn;0n,Kn), where Kn represents the
n × n covariance matrix with (i, j)-th entry [Kn]i,j :=
cov (f(xi), f(xj)) = κ(xi,xj) [19].

The random vector fn is related to the (possibly) noisy
observations yn := [y1, . . . , yn]

⊤ with yi := y(xi), for i =
1, . . . , n, through the batch likelihood p(yn|fn;Xn) that is
assumed to be factored as p(yn|fn;Xn) =

∏n
i=1 p(yi|f(xi)).

Capitalizing on the GP prior and the batch likelihood, one
can express the joint probability density function (PDF) of
observation vector yn and y(x) at any unmeasured location
as [

yn

y(x)

]
∼ N

(
0,

[
Kn + σ2

noiseIn k⊤
n (x)

kn(x) κ(x,x) + σ2
noise

])
,

(3)
where kn(x) := [κ(x1,x), . . . , κ(xn,x)] is the kernel vector

containing similarity between location x and all n observed
locations {xi}ni=1. Leveraging this joint Gaussian distribution
in (3), and marginalizing it yields the predictive PDF of y(x)
as [19]

p(y(x)|Dn,x) = N (y(x); ȳn+1|n(x), σ
2
n+1|n(x)), (4)

where

ȳn+1|n(x) = k⊤
n (x)

(
Kn + σ2

noiseIn

)−1
yn (5a)

σ2
n+1|n(x) = κ(x,x)− k⊤

n (x)
(
Kn + σ2

noiseIn

)−1
kn(x)

+ σ2
noise, (5b)

with the notation n+ 1|n signifying that all n data samples
are employed to obtain the predictive PDF at the next (n+1)-
th location. The mean in (5a) provides a point estimate of the
RSS value of location x and the variance in (5b) quantifies
the associated uncertainty.

Although intuitive, the predictive PDF in (5) is subject to
certain limitations. Primarily, the predictive mean and variance
in equation (5) depend on a single pre-selected kernel function
which restricts the expressive capacity of the learned function.
In addition, the mean and variance in (5a) and (5b) entail
O(n2) storage requirements and O(n3) computational com-
plexity due to the matrix inversion operation involved, which

may become computationally intractable when n is large. In
the subsequent sections, we will outline how to circumvent
these challenges.

B. Ensemble of Gaussian Processes

Instead of relying on a single kernel to estimate f(x), we
target a more expressive function space by utilizing a set of
M kernels, denoted by K := {κ1, . . . , κM} to form a mixture
of GP models. The set K constitutes a diverse collection of
kernels with different hyper-parameters. Each {κm}Mm=1 ∈ K
induces a unique GP prior m over the function f(x) ∼
GP (0, κm(xi,xj)),∀xi,xj ∈ X . Constructing a weighted
combination of these GP models yields a mixture of GP priors
over f(x), as f(x) ∼

∑M
m=1 w

m
n GP(0, κ(x,xj)),∀j subject

to
∑M

m=1 w
m
n = 1. The per-model weight wm

n signifies the
contribution of m-th kernel in the GP prior over f(x). Using
this mixture of GP priors, the posterior distribution of f(x)
can be obtained by

p (f(x) |Dn) =

M∑
m=1

wm
n p (f(x)|Dn, κ = κm) , (6)

with wm
n ∝ Pr(κ = κm)Pr(Dn|κ = κm), where Pr(Dn|κ =

κm) represents the marginal likelihood of data Dn for the
m-th GP. For any desired location x ∈ X , each GP
induces a Gaussian predictive PDF p(y(x)|Dn,m,x) =
N (y(x); ȳmn+1|n(x), (σ

m
n+1|n(x))

2) to estimate the corre-
sponding RSS value. By appropriately updating the mean and
variance for each GP (c.f., (5a) and (5b)) and adjusting the
weights {wm

n }Mm=1 for all GP models, one can obtain [21] the
overall predictive PDF of y(x)

p(y(x)|Dn,x) =

M∑
m=1

wm
n N (y(x); ȳmn+1|n(x), (σ

m
n+1|n(x))

2).

(7)
Although more expressive compared to (4), the predictive PDF
in (7) requires large computational complexity O(Mn3).

C. Random Feature-based EGPs

To bypass this cubic complexity, one can employ parametric
approximants to the non-parametric models using the so-called
random features (RF) [20]. The main idea of the RF-based
approximation is to rely on a shift-invariant kernel κ̄(xi,xj) =
κ̄(xi − xj), normalized as κ̄ = κ/σ2

θ , and express it via the
inverse Fourier transformation of its power spectral density
πκ(ζ) [20]; that is

κ̄(xi − xj) := Eπκ

[
ejζ

⊤(xi−xj)dζ
]

(8)

=

∫
πκ(ζ)e

jζ⊤(xi−xj)dζ

where
∫
πκ(ζ)dζ = 1, so that it can be thought of as a

PDF. Since the values of κ are always real, it holds that
κ̄(xi − xj) := Eπκ

[
cos(ζ⊤(xi − xj))

]
. Leveraging this new

representation, one can approximate the kernel by drawing a
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sufficiently large number of i.i.d samples {ζd}Dd=1 from πκ(ζ)
yielding

ˆ̄κ(xi − xj) :=
1

D

D∑
d=1

cos(ζ⊤
d (xi − xj)) = ϕζ(xi)

⊤ϕζ(xj),

(9)

where the random feature vector ϕζ(·) ∈ R2D×1 is defined as

ϕζ(x) :=
1√
D

[
sin(ζ⊤

1 x), cos(ζ
⊤
1 x), . . . , cos(ζ

⊤
Dx)

]
. (10)

Relying on the RF vector ϕζ(·), a linear and parametric
approximant of the sought function can be obtained as [20]

f̌(x) = θ⊤ϕζ(x), θ ∼ N (θ;02D, σ
2
θI2D). (11)

To elaborate more on (11), and the parameter vector θ,
assuming a GP prior over f induced by a kernel function
κ implies that the function f belongs to a reproducing ker-
nel Hilbert space (RKHS) [19]; that is H := {f |f(x) =∑∞

i=1 αiκ(x,xi)} for some constants {αi} to be determined
from data. From the so-termed Representer theorem, the
optimal function approximant for f can be written [42], [43]

f̌(x) =

n∑
i=1

αiκ(x,xi) (12)

where {αi}ni=1 are to be learned, and κ is the pre-selected
kernel function. Leveraging the RF vector one can have a
kernel approximant expressed as κ(x,xi) ≈ ϕζ(x)

⊤ϕζ(xi),
and upon replacing it in equation (12) yields

f̌(x) =

n∑
i=1

αi κ(x,xi) ≈
n∑

i=1

αiϕζ(xi)
⊤ϕζ(x) =(

n∑
i=1

αi ϕζ(xi)

)
︸ ︷︷ ︸

θ:=

⊤

ϕζ(x) (13)

The parameter vector θ represents the weights of a linear
function that approximates the desired f in RKHS. From a
Bayesian perspective, all {αi}ni=1 are assumed to be random
variables which are Gaussian distributed, and it follows that θ
is also Gaussian distributed as a sum of Gaussians, yielding
θ ∼ N (θ;02D, σ

2
θI2D) (c.f., (11).

This parametric model over f̌(x) enables the propagation
of the posterior p(θ|Dn) = N (θ; θ̂n,Σn) using a recursive
Bayesian iteration, which can be updated as new data arrive
on-the-fly, as will be shown next.

D. Ensemble of Parametric GPs

To allow for reduced complexity and online model updates
that are particularly appealing in the AL setting, we consider
an ensemble of parametric GPs. Each GP model m, relies
on a shift-invariant and normalized kernel κ̄m = κm/σ2

θm to
construct its RF vector ϕm

ζ (·) by drawing i.i.d random vec-
tors {ζm

d }Dd=1 from its corresponding power spectral density

πκ̄m(ζ). Similar to (11), each learner m forms a generative
parametric model as

p(θm) = N (θm;02D, σ
2
θmI2D) (14)

p(f(x)|κ = κ̄m,θm) = δ(f(x)− ϕm
ζ (x)⊤θm) (15)

p(y(x)|θm,x) = N (y(x);ϕm
ζ (x)⊤θm, σ2

noise). (16)

This generative model allows model m to form the posterior
PDF p(θm|Dn) = N (θm; θ̂

m

n ,Σ
m
n ) using available data Dn,

and the advocated parametric EGP model combines them with
the weights {wm

n }Mm=1 to form the ensemble predictive PDF
over the target y(x), for all x ∈ X . This predictive PDF not
only offers an estimate of the RSS value at location x, but
will further guide the design of a set of acquisition functions
to find the next locations to obtain measurements, as will be
discussed in the next subsection.

We now show how the EGP model parameters will be
updated as a newly acquired measurement at a new location
indexed by n + 1 is obtained. Each model m leverages the
learned posterior p(θm|Dn) to find the predictive PDF of y(x)
at any desired target location x as

p(y(x)|κ =κ̄m,Dn,x)

=

∫
p(y(x)|θm,x)p(θm|Dn)dθ

m

= N (y(x); ˆ̄ymn+1|n(x), (σ
m
n+1|n(x)))

2, (17)

with mean and variance given by

ˆ̄ymn+1|n(x) = ϕm
ζ (x)⊤θ̂

m

n (18a)

(σm
n+1|n(x))

2 = ϕm
ζ (x)⊤Σm

n ϕm
ζ (x) + σ2

noise . (18b)

To estimate the RSS value y(x), the EGP model forms a
Gaussian mixture (GM) model by combining all M predictive
PDFs to form the ensemble predictive PDF

p(y(x)|Dn,x) =

M∑
m=1

wm
n N (y(x); ˆ̄ymn+1|n(x), (σ

m
n+1|n)

2(x)).

(19)
Having this Gaussian mixture model over y(x), one can obtain
an estimate of the RSS value along with the corresponding
uncertainty, by considering the minimum mean-square error
(MMSE) estimator of y(x) along with the variance of the
estimator; that is

ŷn+1|n(x) =

M∑
m=1

wm
n
ˆ̄ymn+1|n(x) (20a)

σ2
n+1|n(x) =

M∑
m=1

wm
n

[
(σm

n+1|n(x))
2

+ (ŷn+1|n(x)− ˆ̄ymn+1|n(x))
2

]
. (20b)

where “n + 1|n” denotes that only the measurement from
location n is needed to predict y at the next location n+ 1.

Leveraging the learned PDF in (19) along with the mean and
variance in (20), one can find the next query location xn+1 to
obtain the RSS measurement yn+1 by minimizing the AFs as
will be elaborated in the next subsection IV-E. Upon obtaining
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xn+1 and yn+1, one can update the EGP model parameters.
Specifically, each model m uses Bayes’ rule along with (18)
to update its weight wm

n as

wm
n+1 =

wm
n N (yn+1; ˆ̄y

m
n+1|n, (σ

m
n+1|n)

2)∑M
m′=1 w

m′
n N (yn+1; ˆ̄ym

′

n+1|n, (σ
m′

n+1|n)
2)
, (21)

and its posterior PDF as

p(θm|Dn+1) =
p(θm|Dn)p(yn+1|θm,xn+1)

p(yn+1|θm,Dn,xn+1)

= N (θm; θ̂
m

n+1,Σ
m
n+1), (22)

where

θ̂
m

n+1 = θ̂
m

n +
Σm

n ϕm
ζ (xn+1)(yn+1 − ˆ̄ymn+1|n)

(σm
n+1|n)

2
(23a)

Σm
n+1 = Σm

n −
Σm

n ϕm
ζ (xn+1)ϕ

m
ζ (xn+1)

⊤Σm
n

(σm
n+1|n)

2
. (23b)

The required complexity of updating the model parameters
in (23) is O(M((2D)2 + 2Dn))), which is smaller than the
O(Mn3) complexity of the original EGP-based model.

E. Acquisition functions for EGP-based active learning.

This section introduces a number of EGP-based AFs, which
depend on the learned predictive PDF p(y(x)|Dn) in (19), to
guide the acquisition process; that is to find the next most
informative location within the coverage area, i.e., xn+1 ∈ X ,
and obtain its associated RSS measurement yn+1.

1) Weighted variance: To exploit the uncertainty of each
GP model, we leverage the variance of all GP models’ pos-
terior PDFs and combine them to form the weighted variance
AF as

αwVar(x;Dn) :=

M∑
m=1

wm
n (σm

n+1|n(x))
2. (24)

The intuition is that locations with high uncertainty can
be informative for the training dataset. Although αwVar(·)
well captures the uncertainty of each GP model, it ignores
the information offered by the predicted means (c.f. (18a)),
motivating the next AF.

2) Query-by-committee: Considering M GP models as
members of a committee, the Query-by-committee (QBC) AF
chooses the next location to be measured where the committee
members exhibit the most disagreement; that is

αQBC(x;Dn) :=

M∑
m=1

wm
n

(
ˆ̄ymn+1|n(x)− ȳn(x)

)
, (25)

where ˆ̄ymn+1|n(x) represents the estimated mean of RSS values
at location x by learner m (c.f., (18a)), and ȳn(x) :=∑M

m=1 w
m
n
ˆ̄ymn+1|n(x) denotes the weighted mean of the com-

mittee. Note that only the predictive means are used in
αQBC(·) and the predictive variances are not considered.

3) Variance of GP mixture: To simultaneously account for
the means and variances associated with each GP model’s
predictive PDF, the variance of GP mixture AF combines the
the per-learner uncertainty in (24) and committee disagreement
in ((25) (c.f., (20b)) as

αGPM−var(x,Dn) := σ2
n+1|n(x). (26)

4) Weighted entropy: Relying on the entropy as an alter-
native measure of the associated uncertainty, one can form an
AF using a weighted combination of the entropies associated
with the predictive PDFs of all learners as

αwEnt(x;Dn) :=

M∑
m=1

wm
n log ((σm

n+1|n(x))
2). (27)

5) Entropy of GP mixtures: Instead of employing the
entropies of individual GP models independently as in (27),
we can leverage the entropy of the learned GP-mixture. While
an analytical closed-form expression for this entropy does not
exist, we leverage a closed-form lower bound; see e.g [38].
To this aim, let us first define the entropy H(f̂(x)|Dn) of the
learned function f̂(x) at any location x

H(f̂(x)|Dn)

:= −
∫ ∞

−∞

M∑
m=1

wm
n N (f̂(x)|ˆ̄ymn+1|n(x), (σ

m
n+1|n(x))

2)

× log(p(f̂(x)|Dn)) df̂(x) (28)

where the integration here is taken over all the random function
values that f̂(x) can take at any desired, but fixed x ∈ X .
Using Jensen’s inequality yields a lower bound for the entropy
H at any location x ∈ X as follows

H(f̂(x)|Dn) ≥

−
M∑

m=1

wm
n log

(∫ ∞

−∞
N (f̂(x)|ˆ̄ymn+1|n(x), (σ

m
n+1|n(x))

2)

× p(f̂(x)|Dn) df̂(x)
)
. (29)

The term inside the logarithm in (29) admits a closed-form
expression and hence the lower-bound can be expressed ana-
lytically as

αGPM−Ent(x;Dn) :=

M∑
m=1

log

(
M∑

m′=1

wm′

n ψm,m′

n

)
, (30)

where ψm,m′

n captures the intra-GP interactions and is given
by

ψm,m′

n :=

∫ ∞

−∞
N (f̂(x)|ˆ̄ymn+1|n(x), (σ

m
n+1|n(x))

2)

×N (f̂(x)|ˆ̄ym
′

n+1|n(x), (σ̂
m′

n+1|n(x))
2)df̂(x)

= N (ˆ̄ymn+1|n; ˆ̄y
m′

n+1|n, (σ
m
n+1|n)

2 + (σm′

n+1|n)
2). (31)

While these AFs cover a diverse range of important ideas
within AL, they impose no constraints on the spatial locations
of the next query point, which can lead to prohibitively long
travelling distances required to collect the necessary measure-
ments dictated by the AFs. To address this limitation, we will
couple these EGP-based AFs with a minimum distance-based
criterion, described in the next subsection.
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(a) Scenario-1: Open Space. (b) Scenario-2: Reflection & Blockage. (c) Scenario-3: Urban Canyon.

Fig. 2: Radio coverage maps of diverse scenarios rendered with Blender (top) and Sionna ray-tracing simulator at 3.7GHz
(bottom left) and 26GHz (bottom right).

TABLE II: Simulation configurations.
Parameters Descriptions

D
at

a Scenario OpenSpace Reflection UrbanCanyon
3.7GHz Samples 780.5K 841.7K 47.9K
26GHz Samples 779.8K 744.5K 41.3K

A
nt

en
na

C
on

fig
s Rx Pattern Isotropic

Tx Pattern TR 38.901
Tx Power 24.0 dB
Ray Interactions 9
Clipping Range (0.0, 160.0] dB
Cell Size 5m x 5m

F. Path efficient EGP-based AFs

To allow for efficient and cost-effective data acquisition
strategies, thereby enhancing the practical feasibility and eco-
nomic viability of acquiring measurements and reconstructing
5G radio maps, we consider AFs with the following form

α(x,Dn) :=

{
αEGP(x,Dn) w.p. ε

αEGP(x,Dn) c(x,xn−1) w.p. 1− ε
(32)

where c(x,xn−1) := 1
λ+dist(x,xn−1)

is a distance-penalizing
function with λ being a hyperparameter to be tuned, αEGP(·)
is one of the above EGP-based AFs, and ε > 0 is a small
hyperparameter.3 With a small probability 0 < ε < 1 our
novel AF in (32) allows exploring X while adhering to the
EGP-based AF αEGP(x,Dn). With a much larger probability
1 − ε our AF is strongly encouraged to select points nearby
the most recently obtained measurement xn by penalizing
far distant points via the path-cost function c(x,xn−1). This
allows the AF to explicitly acknowledge that obtaining mea-
surements from diverse locations in 5G scenarios can be
costly and resource-intensive, while still allowing a user-
controlled degree of exploration through the parameter ε. This
is crucial in several AL applications including the 5G radiomap
reconstruction that this paper focuses on.

V. DATASET GENERATION

We now introduce the dataset utilized for evaluation, which
comprises simulated and real measurements. The simulated

3The abbreviation w.p. stands for with probability.

(a) Urban Canyon. (b) Suburban.

Fig. 3: Radio coverage maps for real RSS measurements.
Green color represents strong RSS, while red poor RSS.

dataset replicates three distinct scenes: open space, reflection
& blockage, and urban canyon. Meanwhile, the real measure-
ments consist of two scenes: suburban and urban canyons.
Simulated Dataset. Following [44], we employ Blender [45]
and Sionna [46] to produce radio maps and use them as ground
truth for the evaluation. Blender is an open-source software
that can create different 3D environments. We utilize its Open
Street Map (OSM) and Mitsuba plugins to load the real-world
map and render the digital scenes. Subsequently, these scenes
are imported into Sionna, an open-source link-level ray-tracing
simulator that is compatible with the 3GPP channel models,
to generate radio coverage maps that we sample from.

The upper panel of Fig. 2 depicts the loaded digital scenes,
illustrating three distinct scenarios: (1) a large open space
with the line-of-sight propagation of radio signals; (2) a more
complex wall scenario featuring multiple walls to demon-
strate reflection, diffraction, and signal blockage; and (3) a
highly complex downtown urban canyon, where the signals
are reflected and obstructed by the surrounding buildings. The
lower panel of Fig. 2 shows the simulated radio coverage
maps. We also investigate the propagation characteristics of
different frequency radio waves across 3.7GHz (mid-band) and
26GHz (high-band) in light of commercial 5G networks. For
each scenario-frequency pair, we place the transmitter (Tx) at
the center location with a directional antenna oriented at the
negative y-axis. The map is divided into sets of cells, each con-
taining a receiver (Rx) with an omnidirectional antenna, gen-
erating a total of N unique samples of the form [Cartesian
Coordinate-x, Cartesian Coordinate-y, RSS]. To
determine the RSS value, rays are fired from a Tx at the origin
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Fig. 4: NMSE vs iteration for 3.7GHz mid-band data under (a) open space; (b) reflect scenarios; and (c) urban canyon.

Fig. 5: NMSE vs iteration for 26GHz high-band data under (a) open space; (b) reflect scenarios; and (c) urban canyon.

Fig. 6: NMSE vs iteration for the real (a) urban and (b) suburban datasets.

and are allowed to interact with the environment, i.e., reflect,
diffract, etc., up to a bounded number of times. The RSS is
aggregated from per intersecting rays [46], clipped to a range.
For specific configuration parameters of our dataset, we refer
the reader to Table II 4.
Real Measurement Dataset. In addition to simulated datasets,
we have gathered real RSS radio measurements from urban
and suburban environments. Specifically, we used a smart-
phone as an Rx, which was connected to a commercial
5G network by running the “iperf3” application to main-
tain active connection. The phone is also connected to a
laptop equipped with the professional software XCAL [41]
to read RSS measurements from the phone’s chipset-level
diagnostics. This enabled us to collect a total of 27k data
samples from an urban area of size 0.8 km2, and 18k
data samples from a suburban area of size 1.0 km2. Sim-
ilar to the simulated data, each real data sample is rep-

4The dataset is publicly available at: https://github.com/StrongWeiUMN/
Active-Learning-for-5G-Measurement.

resented by [Cartesian Coordinate-x, Cartesian
Coordinate-y, RSS]. The visualization of the collected
real radio RSS map is depicted in Fig. 3.

VI. EVALUATION

In this section, we evaluate the performance of our EGP-
based AL methods on the simulated 5G mid-band, high-band
and real urban and suburban datasets described above. We
will first quantify the advantages of the advocated EGP-based
AL approaches over random sampling with EGPs and then
highlight the benefits of our novel path-aware method. We
will also conduct an in-depth study with visualized results to
demonstrate the efficacy of those AL algorithms in the 5G
measurement problem.

A. Experiment Settings

We denote the advocated EGP-based AL methods that em-
ploy the AFs in (24)-(30) as ‘EGP-WVar’, ‘EGP-QBC’, ‘EGP-
GM-Var’, ‘EGP-Went’, and ‘EGP-GM-Ent’ respectively. We

https://github.com/StrongWeiUMN/Active-Learning-for-5G-Measurement
https://github.com/StrongWeiUMN/Active-Learning-for-5G-Measurement
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Fig. 7: Left: Predicted RSS values of the EGP-QBC method for 5000 test instances on the Mid-band open space dataset; Right:
Ground truth RSS values.

Fig. 8: Left: Predicted RSS values of the EGP-GM-Var method for 5000 test instances on the Mid-band reflection dataset;
Right: Ground truth RSS values.

TABLE III: NMSE performance for Mid-band (a) open space; (b) reflection; and (c) urban datasets.

Method Mid-band open space Mid-band reflection Mid-band urban
EGP-GM-Var 0.4904± 0.0117 0.5041± 0.0052 0.3417± 0.0055

EGP-Wvar 0.4811± 0.0183 0.5087± 0.0010 0.3459± 0.0076
EGP-Went 0.4775± 0.0208 0.5115± 0.0032 0.3457± 0.0130

EGP-GM-Ent 0.4901± 0.0091 0.5083± 0.0033 0.3466± 0.0064
EGP-QBC 0.4079± 0.0271 0.5123± 0.0142 0.3442± 0.0107

Ordinary Kriging 1.0052± 0.0035 0.4558± 0.0037 1.0075± 0.0042
Universal Kriging 0.8255± 0.0087 0.4614± 0.0052 1.0248± 0.0089
Residual Kriging 0.7695± 0.1161 0.7287± 0.0616 1.0246± 0.0081

also implement the ‘EGP-Random’ baseline for comparison,
which relies on the EGP model as well but randomly selects
new locations to query at each time slot. For all competing
approaches, 100 initial labeled (measured) data samples are
considered for training, and at each iteration of the AL process,
one sample is queried from an unlabeled set consisting of
700 available unmeasured locations. Their performance is
evaluated on a test set T := {(xtest

n′ , ytest
n′ )}N

test

n′=1 consisting
of N test = 5000 test locations. As a figure of merit the
normalized mean squared error (NMSE) is used, which is
expressed as NMSEn := 1

N test

∑N test

n′=1(ŷ
test
n′|n−y

test
n′ )2/σ2

y , where
ŷtest
n′|n represents the point estimate of the RSS value of test

location n′ upon having processed location n, and σ2
y :=

E∥ytest
N test − E{ytest

N test}∥2, where ytest
N test := [ytest

1 , . . . , ytest
N test ]⊤.

For each method, the EGP model consists of 11 GP learners,

each capitalizing on a distinct radial basis function (RBF)
kernel with characteristic length scale chosen from the set
{10c}6c=−4. The kernel hyperparameters of each GP learner are
obtained by maximizing the marginal log-likelihood utilizing
the sklearn Python package. To allow for scalability and online
model updates, D = 50 RFs are employed to yield the RF-
based parametric and approximate GP models in the ensemble.

B. Performance of AL in the 5G Measurement Problem

Effectiveness of EGP-based AFs. To demonstrate the signif-
icance of the EGP-based AFs, we first compare them with the
‘EGP-Random’ baseline. To this end, the path-cost function
c(x,xn−1) is not taken into account; that is ε = 1 in (32).

Figs. 4, 5 and 6 illustrate the average NMSE performance
of all competing approaches over 10 independent runs along
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TABLE IV: NMSE performance for the High-band (a) open space; (b) reflection; and (c) urban datasets.

Method High-band open space High-band reflection High-band urban
EGP-GM-Var 0.3810± 0.0062 0.6638± 0.0112 0.3831± 0.0037

EGP-Wvar 0.3803± 0.0079 0.6663± 0.0114 0.3849± 0.0050
EGP-Went 0.3870± 0.0074 0.6677± 0.0140 0.3915± 0.0136

EGP-GM-Ent 0.3841± 0.0033 0.6617± 0.0092 0.3802± 0.0048
EGP-QBC 0.3833± 0.0070 0.6593± 0.0169 0.4023± 0.0123

Ordinary Kriging 0.4356± 0.0054 0.6626± 0.0061 1.0068± 0.0066
Universal Kriging 0.4352± 0.0051 0.6641± 0.0062 0.9949± 0.0027
Residual Kriging 0.5019± 0.0032 0.7114± 0.0062 0.8952± 0.1392

Fig. 9: NMSE vs cumulative distance for 3.7GHz mid-band data under (a) open space; (b) urban canyon; and (c) reflect
datasets.

Fig. 10: NMSE vs cumulative distance 26GHz high-band data under (a) high-band open space; (b) high-band urban canyon;
and (c) high-band reflect datasets.

TABLE V: NMSE performance for the Urban; and Suburban
datasets.

Method Urban Suburban
EGP-GM-Var 0.3831± 0.0037 0.1701± 0.0074

EGP-Wvar 0.3849± 0.0050 0.1691± 0.0144
EGP-Went 0.3915± 0.0136 0.1623± 0.0127

EGP-GM-Ent 0.3802± 0.0048 0.1646± 0.0081
EGP-QBC 0.4023± 0.012 0.1931± 0.0100

Ordinary Kriging 0.7136± 0.0746 0.3351± 0.0232
Universal Kriging 0.7131± 0.0767 0.3323± 0.0222
Residual Kriging 0.7259± 0.0572 0.5316± 0.0523

with the corresponding highlighted standard deviation, on the
mid-band, high-band and real urban and suburban datasets,
respectively, for 70 iterations of the AL process; that is 70
queried locations that are measured. It is evident that in all

mid-band, in almost all high-band and in all real datasets, the
advocated EGP-based AL methods markedly outperform the
‘EGP-Random’ baseline that does not rely on AL, achieving
up to 54.8% improvement. This showcases the significance of
judiciously selecting the few, but most informative, locations to
measure so as to accurately predict the RSS values in unknown
locations. For visualization purposes, Figs. 7 and 8 illustrate
the predicted RSS values for 5000 test instances compared to
the ground truth ones for the Mid-band open space and Mid-
band reflection datasets respectively.

In addition, we compare our EGP-based AL methods with
three additional baselines, namely, (a) Ordinary Kriging [47];
(b) Universal Kriging [48]; and, (c) Residual Kriging [49]. In
Tables III, IV, V we report the prediction (test) performance
of all competing methods over 5000 testing data samples.
Training has been carried out using in total 170 data samples
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Fig. 11: NMSE vs cumulative distance for the real (a) urban and (b) suburban datasets.

(a) (b) (c)
Fig. 12: Trajectory of the queried locations from the EGP-GM-Ent method for (a) ε = 1; (b) ε = 0.3; and ε = 0 in the
mid-band open space dataset. The background corresponds to the radio coverage information in an open space environment as
shown in Fig. 2a.

(the same 100 initial samples plus 70 newly acquired samples).
Table III reports the results of our methods compared with
these three baselines in the three Mid-band cases namely (i)
open space; (ii) reflection; and, (iii) urban setting. Clearly, our
proposed methods enjoy a substantially lower prediction error
compared to the newly considered baselines in open and urban
spaces, while they have similar performance on the reflection
scenario. Similar results are reported in Table IV, where
we use a high-frequency setting, where again our advocated
methods outperform the considered baselines in the open-
space and urban settings, while having similar performance in
the reflection scenario. Finally, Table V reports the prediction
performance on the real urban and suburban datasets where it
is evident that the EGP-based approaches markedly outperform
the kriging-based baselines.

Although effective, these AFs by themselves do not impose
constraints on the traveling distance needed to collect the
necessary measurements, which may limit their application in
settings with restricted travel budgets.
Path-aware AF. We now show the importance of adopting
the novel path-cost related AF in (32) that allows for accurate
RSS estimates with less required traveling distance. Regarding
the exploration-exploitation parameter ε in (32), we set ε =
0.3, meaning that our method selects a location to query not
far away with probability 0.7 or selects any location without
any path constraint with probability 0.3, allowing for further
exploration.

In Figs. 9, 10 and 11, the average NMSE performance along
with the corresponding standard deviation are reported, with

respect to the cumulative traveling distance for 70 iterations of
the AL process. It can be clearly seen that in both simulated
mid-band and high-band, and real urban and suburban datasets,
all EGP-AL methods that use (32) with ε = 0.3 have
comparable or even lower NMSE compared to the EGP-
AL counterparts that do not consider any path constraint
(ε = 1), while at the same time requiring significantly less
traveling distance (up to 57.1% reduction in terms of required
cumulative traveling distance).

C. In-depth Results Study

Sampling Trajectory. To further demonstrate the efficiency of
the advocated method, Figs. 12 and 13 depict the trajectories
of the queried locations obtained by the ‘EGP-GM-Ent’ and
‘EGP-GM-Var’ AFs for the mid-band and high-band open
space datasets, respectively, for ε ∈ {0, 0.3, 1}5. As expected,
in both datasets the corresponding required traveling distance
significantly reduces as the value of ε decreases. Interest-
ingly, in the mid-band open space dataset, the EGP-GM-Ent
approaches with ε = 1 and ε = 0.3 query very similar
measurement locations; however, the latter entails much less
traveling cost, as shown in Fig. 12.
Hyper-Parameter Sensitivity. Fig. 14a illustrates the NMSE
performance of the ‘EGP-GM-Ent’ methods with ε = 1, 0.3, 0
respectively for a fixed cumulative distance budget, where it
can be seen that the latter two can query more locations and

5Trajectories of other AL methods and datasets are omitted due to space
limitations.
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(a) (b) (c)
Fig. 13: Trajectory of the queried locations from the EGP-GM-Var method for (a) ε = 1; (b) ε = 0.3; and ε = 0 in the
high-band open space dataset. The background corresponds to the radio coverage information in an open space environment
as shown in Fig. 2a.

(a) (b) (c)
Fig. 14: NMSE vs cumulative distance of the EGP-GM-Ent method for different values of ε for (a) mid-band open space
dataset; (b) high-band open space dataset; and (c) uncertainty quantification performance of EGP-GM-Var on the High-band
open space dataset (RSS values are in dB).

thus achieve superior NMSE performance compared to the
ε = 1 case. Similarly, Fig. 14b depicts the NMSE performance
of the EGP-GM-Var approach for different values of ε and a
given distance budget for the high-band OpenSpace dataset. It
is evident that the case of ε = 0.3 enjoys substantially lower
NMSE compared to the ε = 0 and ε = 1 cases whereas the
AL methods with ε = 0 and ε = 1 have similar performance.
This emanates from the fact that although the approach with
ε = 0 queries many more locations compared to ε = 1, for
a distance budget of 5.2km, these locations are only from
two clusters and are not from different regions of the radio
map as shown in Fig. 13c. This showcases the importance of
small but non-zero values of ε that do not so heavily penalize
distant locations but instead allow for further exploration that
yields improved prediction performance without the need for
large traveling costs. Finally, to evaluate the well-quantifiable
uncertainty offered by the advocated EGP-AL methods, Fig.
14c shows the predicted RSS values of the EGP-GM-Var
(ε = 0.3) method on some test locations of the high-band
OpenSpace dataset along with σ-confidence intervals, where
it is intuitive that the ground truth RSS values fall inside these
intervals.

VII. CONCLUSIONS
This work investigated novel Bayesian AL approaches for

sample- and path-efficient 5G radio map reconstruction. The
advocated AL approaches judiciously select only a few rep-

resentative locations to collect RSS measurements so that to
efficiently and accurately estimate the RSS values at unmea-
sured locations. To effectively estimate the sought function that
predicts RSS values across the coverage area, an ensemble of
GPs was utilized. Inspired by the notions of (i) multi-kernel
learning; and, (ii) RF approximation, the advocated EGP
model offered a more expressive function space compared to
a single GP, while enjoying scalable online updates, which are
particularly appealing in AL settings where data are processed
online. The proposed EGP model not only provided accurate
RSS predictions with quantifiable uncertainty, but also offered
a suite of pertinent AFs to guide the acquisition of new
locations to measure. To further accommodate real-world 5G
measurement campaigns, where traveling distances to collect
RSS measurements might be limited, these AFs were coupled
with a novel path-efficient rule that penalized queries at long
distances. Numerical tests on three simulated scenarios with
two different radio frequencies and on two real datasets,
showcased the significance of the proposed AL methods in
the 5G radio map reconstruction problem.

Future research will develop algorithms that account for
various practical constraints, such as dynamic and hetero-
geneous environmental conditions, network traffic, among
others, and tailoring EGPs for applications beyond radio map
reconstruction.
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