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Abstract We prove that a directed last passage percolation model with discontinuous
macroscopic (non-random) inhomogeneities has a continuum limit that corresponds
to solving a Hamilton-Jacobi equation in the viscosity sense. This Hamilton-Jacobi
equation is closely related to the conservation law for the hydrodynamic limit of the
totally asymmetric simple exclusion process. We also prove convergence of a nu-
merical scheme for the Hamilton-Jacobi equation and present an algorithm based on
dynamic programming for finding the asymptotic shapes of maximal directed paths.

Keywords Directed last passage percolation · Hamilton-Jacobi equations · viscosity
solutions · variational problems · totally asymmetric simple exclusion process ·
hydrodynamic limit

PACS 02.50.Cw · 02.60.Lj · 02.30.Jr

Mathematics Subject Classification (2010) 35D40 · 60F99 · 65N06 · 60K35

1 Introduction

The directed last passage percolation (DLPP) problem can be formulated as follows:
Let X(i, j) be nonnegative independent random variables defined on the lattice N2,
and define the last passage time from (1,1) to (M,N) by

L(M,N) = max
p∈ΠM,N

∑
(i, j)∈p

X(i, j), (1)

where ΠM,N denotes the set of up/right paths from (1,1) to (M,N) in N2. Of interest
are the asymptotics of L as M,N→ ∞, and their first order fluctuations.
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DLPP is an example of a stochastic growth model, and has many applications
in mathematical and scientific contexts. For example, DLPP is equivalent to zero-
temperature directed polymer growth in a random environment—an important model
in statistical mechanics [10, 14, 23, 24]. The model describes a hydrophilic polymer
chain wafting in a water solution containing randomly placed hydrophobic molecules
(impurities) that repel the individual monomers in the polymer chain. Due to thermal
fluctuations and the random positions of impurities, the shape of the polymer chain is
best understood as a random object. The statistical mechanical model for a directed
polymer assumes that the shape of the polymer can be described by a directed path
p ∈ ΠM,N , thus suppressing entanglement and U-turns. The presence, or strength, of
an impurity at site (i, j) is described by a random variable X(i, j), and the energy of
a path p ∈ΠM,N is given by

−β ∑
(i, j)∈p

X(i, j), (2)

where β = 1/T > 0 is the inverse temperature. The typical shape of a polymer is one
that minimizes (2). Of interest is the quenched polymer distribution on paths defined
by

Q(p;M,N) =
1

Z(M,N)
exp

(
β ∑

(i, j)∈p
X(i, j)

)
, (3)

where p∈ΠM,N and the normalization factor Z(M,N) is called the partition function,
and is given by

Z(M,N) = ∑
p∈ΠM,N

exp

(
β ∑

(i, j)∈p
X(i, j)

)
. (4)

In the zero-temperature limit, i.e., β → ∞, the quenched polymer distribution con-
centrates around paths maximizing (2), and we formally have

lim
β→∞

1
β

log(Z(M,N)) = max
p∈ΠM,N

∑
(i, j)∈p

X(i, j) = L(M,N),

Directed polymers are related to several other stochastic models for growing surfaces,
such as directed invasion percolation, ballistic deposition, polynuclear growth, and
low temperature Ising models [28].

DLPP with independent and identically distributed (i.i.d.) exponential weights
X(i, j) is equivalent to the totally asymmetric simple exclusion process (TASEP),
which is an important stochastic interacting particle system [20,34], and to randomly
growing Young diagrams [26, 35, 38]. Briefly, the dynamics of TASEP involve a par-
ticle configuration on the lattice Z, evolving in time, with the dynamical rule that
a particle jumps to the right after an exponential waiting time if the right neighbor-
ing site is empty. The correspondence between DLPP and TASEP proceeds via the
following stochastic corner growth model: Partition R2 into squares defined by the
edges of the lattice Z2. Imagine that at time t = 0, all the squares in [0,∞)2 are colored
white, while the remaining squares are colored black. For each (i, j) ∈ N2, assign a
passage time random variable X(i, j) to the square with (i, j) on the northeast cor-
ner. The dynamic rule governing the growth process is the following: A white square



Directed last passage percolation with discontinuous weights 3

at location (i, j) is colored black exactly X(i, j) time units after both its south and
west neighbors become black. The time until square (M,N) is colored black is ex-
actly L(M,N)—the last passage time from (1,1) to (M,N)—and the set of all black
squares is a randomly growing Young diagram.

There is a one-to-one correspondence between TASEP configurations, and con-
figurations of black and white squares in the corner growth model. The idea is that
when a white square is colored black, it corresponds to a particle jumping from a site
j to its necessarily vacant neighbor j+1. The explicit correspondence is as follows:
For every edge separating a white and black square, assign a value of 1 to vertical
edges, and a value of 0 to horizontal edges. The TASEP configuration corresponds
exactly to reading these binary values sequentially from (1,∞) to (∞,1). We give this
correspondence more rigorously in Section 1.2 (see Figure 2). There are further ap-
plications of DLPP in queueing theory [1,22], and the model is also related to greedy
lattice animals [29].

One quantity of interest in DLPP is the time constant, U , given by

U(x) := lim
N→∞

1
N

L(bNxc) , (5)

where x = (x1,x2) ∈ [0,∞)2. The exact form of U is known for i.i.d. geometric
weights [26], and i.i.d. exponential weights [34], and is given by

U(x) = µ(x1 + x2)+2σ
√

x1x2, (6)

where µ and σ2 are the mean and variance, respectively, of the either geometric or
exponential weights. For more general distributions, Martin [30] showed that U is
continuous on [0,∞)2 and gave the following asymptotics at the boundary:

U(1,α) = µ +2σ
√

α +o(
√

α).

In similar fashion to the longest increasing subsequence problem [3], the fluctuations
of L for geometric and exponential weights are non-Gaussian, and instead follow the
Tracy-Widom distribution asymptotically [26]. It is an open problem to determine
U(x) and the fluctuations of L for weights other than geometric and exponential.

We study the DLPP problem with independent weights X(i, j) that are either ge-
ometric or exponential, but not identically distributed. For exponential DLPP, we
assume that X(i, j) is exponentially distributed with mean λ (iN−1, jN−1) where λ :
[0,∞)2 → [0,∞), and we consider the aymptotics as N → ∞. The setup is identical
for geometric DLPP, except that the macroscopic inhomogeneity is in the parameter
q of the geometric distribution. For directed polymers, this models a macroscopic
(non-random) inhomogeneity in the strength of impurities; while for TASEP, it corre-
sponds to an inhomogeneity in the rate at which particles move to the right. Our main
result, presented in Section 1.1, is a Hamilton-Jacobi equation for the continuum limit
of this DLPP problem.

In the exponential case with continuous λ , Rolla and Teixeira [33] showed that
U has a variational interpretation. Their result is in many ways analogous to the
variational problem for the longest chain problem [18] that we exploited in our pre-
vious work [12, 13]. Macroscopic inhomogeneities have also been considered for
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TASEP [21], and for other similar growth models [32]. In particular, Georgiou et
al. [21] proved a hydrodynamic limit for TASEP with a spatially (but not temporally)
inhomogeneous jump rate c, which may admit discontinuities. Their result gives the
limiting density profile in terms of a variational problem, and they connected this to a
conservation law in the special case that the rate c(s) is piecewise constant with one
jump, i.e.,

c(s) =

{
c1, s≤ 0
c2, s > 0.

In the context of exponential DLPP, this would be equivalent to assuming that the
macroscopic mean λ : [0,∞)2→ [0,∞) is given by λ (x) = c−1

1 for x1 ≥ x2 and λ (x) =
c−1

2 otherwise. Our main result, Theorem 1, gives a Hamilton-Jacobi equation for the
limiting time constant in DLPP when the macroscopic inhomogeneity λ is piecewise
Lipschitz. In the context of TASEP, this allows for a discontinuous inhomogeneous
jump rate which has a spatial and temporal dependence.

1.1 Main result

Let us mention the conventions used in this paper. We say X is geometrically dis-
tributed with parameter q if

P(X = k) = (1−q)kq,

for k ∈ {0,1,2,3, . . .} and 0 < q≤ 1, so that we have

E(X) =
1−q

q
and Var(X) =

1−q
q2 . (7)

We say that X is exponentially distributed with mean λ ≥ 0 if for λ > 0 we have

P(X ∈ dx) =
1
λ

e−
x
λ dx for x ∈ [0,∞),

and when λ = 0 we have X = 0 with probability one. Here we have

E(X) = λ and Var(X) = λ
2. (8)

In order to ensure that our results are applicable to both exponential and geometric
DLPP, we parameterize these distributions instead by their mean µ . For the exponen-
tial distribution there is no change; we have λ = µ . For the geometric distribution,
we have by (7) that a geometric random variable with mean µ ≥ 0 has parameter

q =
1

1+µ
. (9)

For both cases, the variance is of course a function of the mean; in the exponential
case we have σ = µ , and in the geometric case we have σ =

√
µ(1+µ).

Let us now present our main result. We consider the following two-sided DLPP
model, similar to [2, 5, 9, 11, 15]. Let X(i, j) be independent nonnegative random
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variables defined on the latticeN2
0, whereN0 = {0,1,2, . . .}. Let L(M,N;Q,P) denote

the last passage time from (M,N)∈N2
0 to (Q,P)∈N2

0, where M≤Q and N ≤ P. This
is defined as follows:

L(M,N;Q,P) = max
p∈Π(M,N),(Q,P)

∑
(i, j)∈p

X(i, j), (10)

where Π(M,N),(Q,P) denotes the set of up/right paths from (M,N) to (Q,P) in N2
0.

The macroscopic inhomogeneity is described by functions µ : [0,∞)2 → [0,∞) and
µs : ∂R2

+ → [0,∞), where R+ = (0,∞). Specifically, given a parameter N we make
the following assumption:

The weights X(i, j) are independent with mean

E(X(i, j)) =

{
µ(iN−1, jN−1), if (i, j) ∈ N2,

µ(iN−1, jN−1)+µs(iN−1, jN−1), if i = 0 or j = 0.
(11)

The term µ corresponds to the macroscopic mean within the bulk R2
+, and the term

µs corresponds to an additional source active only on the boundary ∂R2
+.

We also assume the weights X(i, j) are either all geometrically distributed, or all
expontially distributed. We can construct the random variables X(i, j) on a common
probability space as follows. Let Y (i, j) be i.i.d. exponential random variables with
mean λ = 1, where i, j ∈ N0. In the exponential case, we can simply set

X(i, j) =

{
µ(iN−1, jN−1)Y (i, j), if (i, j) ∈ N2,(
µ(iN−1, jN−1)+µs(iN−1, jN−1)

)
Y (i, j), if i = 0 or j = 0.

This setup is similar to [33]. In the geometric case, we note that if Y is an exponential
random variable with mean λ = 1, then for any ν > 0, X = bνYc is geometrically
distributed with parameter q = 1− e−

1
ν . In order to obtain E(X) = µ > 0, we need

that
1

1+µ
= q = 1− e−

1
ν ,

which gives that ν = 1/(log(1+ µ)− log(µ)). If µ = 0, then we set ν = 0. Hence,
let us set ν(x) = 1/(log(1+ µ(x))− log(µ(x))) for µ(x) > 0 and ν(x) = 0 when
µ(x) = 0. We make a similar definition for νs. Setting

X(i, j) =

{⌊
ν(iN−1, jN−1)Y (i, j)

⌋
, if (i, j) ∈ N2,⌊(

ν(iN−1, jN−1)+νs(iN−1, jN−1)
)

Y (i, j)
⌋
, if i = 0 or j = 0,

we see that X(i, j) are independent geometric random variables satisfying (11).
Before stating the, somewhat technical, hypotheses on µ and µs, we need to in-

troduce some notation. We say a curve Γ in R2 is continuous and strictly increasing
if it can be parameterized in the form

Γ : t 7→ (t, f (t)) for t ∈ I,
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Fig. 1 Depiction of quantities Ωi and Γi. The function µ is assumed to be Lipschitz with constant Clip
when restricted to any Ωi, and µ = 0 on Ω .

where f : I → R is continuous and strictly increasing, and I is an interval in R. We
make a similar definition for strictly decreasing. Notice that a continuous strictly in-
creasing (resp. decreasing) curve can also be parameterized in the form t 7→ ( f (t), t)
where f : I→R is continuous and strictly increasing (resp. decreasing). For simplic-
ity, we will also use Γ to denote the locus of points that lie on the curve Γ .

Let Γ be a continuous strictly decreasing curve in [0,1]2 with endpoints (1,0)
and (0,1), and let Ω ⊂ [0,∞)2 denote the bounded component of the complement of
Γ in [0,∞)2. Let {Γi}i∈Z be a locally finite non-intersecting collection of continuous
strictly increasing curves. For each i we assume one endpoint of Γi is on ∂ ([0,∞)2\Ω)
and the other endpoint is at ∞, i.e., the curve is unbounded. The complement of ∪iΓi
in [0,∞)2 \Ω therefore consists of a family {Ωi}i∈Z of connected components. Each
curve Γi is on the boundary of exactly two components, which we may assume are
labeled Ωi and Ωi−1. See Figure 1 for an illustration of these quantities.

We place the following assumptions on µ and µs:

(F1) The function µ : [0,∞)2 → [0,∞) is bounded and upper semicontinuous, µ|Ω =
0, and there exists a constant Clip such that for every i ∈ Z, µ|Ωi is Lipschitz
continuous with constant Clip.

(F2) The source term µs : ∂R2
+→ [0,∞) is bounded and upper semicontinuous with a

locally finite set of discontinuities.

Throughout the paper we will regard µs as a function on [0,∞)2 by setting µs = 0 on
R2
+. We also make the following technical assumption:

(F3) For every i ∈ Z and x ∈ Γi, there exists ε > 0 and ζ ∈ {−1,+1} such that for all
y ∈ Bε(x)∩Γi we have

ζ

(
lim

Ωi−13z→y
µ(z)− lim

Ωi3z→y
µ(z)

)
≥ 0. (12)

Our main result is the following continuum limit:
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Theorem 1 Let µ : [0,∞)2→ [0,∞) satisfy (F1) and (F3), and let µs : ∂R2
+→ [0,∞)

satisfy (F2). Suppose that the weights X(i, j) satisfy (11) and are either all expo-
nential, or all geometric random variables, constructed on a common probability
space as above. In the exponential case, set σ = µ , and in the geometric case, set
σ =

√
µ(1+µ). Then with probability one we have

1
N

L(0;bN·c)−→U locally uniformly on [0,∞)2, (13)

where U is the unique monotone viscosity solution of

(P)

{
(Ux1 −µ)+(Ux2 −µ)+ = σ

2 on R2
+,

U = ϕ on ∂R2
+,

and ϕ(x) = (x1 + x2)
∫ 1

0 µ(tx)+µs(tx)dt.

Here, Ux1 and Ux2 denote the partial derivatives of U , t+ denotes the positive part of
t given by max(t,0), and by monotone we mean that U is monotone non-decreasing
with respect to all variables.

Theorem 1 is an extension of our previous work [12, 13], in which we proved a
similar result for the longest chain problem. This result can be viewed as a type of
stochastic homogenization [37], where the effective Hamiltonian is given in (P). A
similar stochastic homogenization result has been obtained recently for first passage
percolation [27], though in that case the exact form of the effective Hamiltonian is
unknown. The Hamilton-Jacobi equation (P) is also closely related to the conserva-
tion law for the hydrodynamic limit of TASEP [21], and in Section 1.2 we show a
formal equivalence between the two continuum limits.

We believe this new Hamilton-Jacobi equation will prove to be a useful tool for
studying the DLPP problem, both theoretically and numerically. As an example, in
Section 5.2 we show how to combine the numerical solution of this Hamilton-Jacobi
equation with dynamic programming to find the asymptotic shapes of optimal paths.
We also believe that this work will provide a new perspective on the hydrodynamic
limit of TASEP, and may be useful for studying the corresponding conservation law.

Some remarks on the hypotheses (F1), (F2), and (F3) are in order. First, the as-
sumption that µ and µs are bounded in (F1) and (F2) is made for simplicity. It can be
replaced by the assumption that µ and µs are bounded on compact sets, with minor
changes to the proofs. Recall that in the exponential case, we have σ2 = µ2, and in
the geometric case, we have σ2 = µ(1+ µ). Thus, if µ satisfies (F1), (F3), then so
will σ2, though possibly with a larger Lipschitz constant Clip. Since it is convenient
for the analysis, we will often regard µ and σ2 as independent functions both satis-
fying (F1) and (F3). We will only need to recall the relationship between µ and σ at
a few key points. In particular, the uniqueness proof for (P) (see Section 3) requires
that µ and σ2 satisfy (F3) simultaneously with the same choice of ζ . This is of course
always true, since σ is a monotone increasing function of µ in both the exponential
and geometric cases.

Let us briefly comment on the significance of Γ and Ω . The correspondence
between exponential DLPP and TASEP (described in detail in Section 1.2) implies
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that the initial macroscopic density ρ0 for TASEP is encoded into the curve Γ . If Γ

and Ω are not present, then we have TASEP with the common step initial condition
ρ0(s) = 1 for s≤ 0 and ρ0(s) = 0 for s > 0. Suppose now that Γ and Ω are present,
and parameterize Γ by t 7→ (t, f (t)) where f is continuous and strictly decreasing
with f (0) = 1 and f (1) = 0. Let us assume additionally that f is continuously differ-
entiable. Based on the correspondence between TASEP and exponential DLPP, the
initial density will be given by

ρ0(s) =


1, if s≤−1
− f ′(ts)/(1− f ′(ts)), if s ∈ (−1,1)
0, if s≥ 1.

where for s∈ (−1,1), ts is the unique t ∈ (0,1) satisfying s= t− f (t). Thus by choos-
ing f appropriately, one can obtain a large class of initial densities ρ0 for TASEP with
this setup.

The rest of the paper is organized as follows: In Section 1.2 we show formally that
(P) is equivalent to the conservation law for the hydrodynamic limit of TASEP [21].
The proof of Theorem 1 is given in Section 4 after some preliminary results. In partic-
ular, in Section 2 we present and analyze a variational problem for (P), and in Section
3, we prove a comparison principle for (P), which generalizes our previous work [13].
In Section 5, we present a fast numerical scheme for computing the viscosity solu-
tion of (P), and we present the results of various numerical simulations in Section
5.1. Finally, in Section 5.2, we give an algorithm based on dynamic programming
for finding the asymptotic shape of optimal DLPP paths, and in Section 6 we discuss
possible directions for future work.

1.2 Formal equivalence to hydrodynamic limit of TASEP

We show here a formal equivalence between (P) and the hydrodynamic limit of
TASEP, given in [21]. TASEP is an interacting stochastic particle system on Z with
state space {0,1}Z, whose elements, η , represent particle configurations. If a parti-
cle is present at site j ∈ Z, then η j = 1, and if no particle is present, then η j = 0.
The process is exclusionary in the sense that at most one particle can occupy each
site at a given time. The stochastic dynamics proceed as follows: a particle at site
j jumps to site j + 1 after an exponential waiting time, provided the site j + 1 is
empty. The exponential waiting times are independent and begin at the exact moment
the right neighboring site is vacated. These dynamics, along with an initial condition
η(0) : Z→{0,1}, generate the stochastic process η = {ηi(t) : i ∈ Z, t ∈ [0,∞)}.

In the standard TASEP model, the exponential waiting times are independent with
rate c = 1. As in [21], we allow the rates to have a macroscopic spatial (and temporal)
dependence, i.e., the rate at position j ∈Z and time t ∈ [0,∞) is c( jN−1, tN−1), where
c : R× [0,∞)→ (0,∞), and N is a parameter that we will send to ∞. A central object
of study is the macroscopic density ρ(s, t), which is the almost sure limit (assuming
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it exists) of the discrete densities as follows:

lim
N→∞

1
N

bNbc

∑
i=bNac+1

ηi(Nt) =
∫ b

a
ρ(s, t)ds. (14)

Georgiou et al. [21] showed that for

c(s, t) = c(s) =

{
c1, s≤ 0
c2, s > 0,

ρ can be identified as the unique entropy solution of the scalar conservation law

ρt +(c(s)ρ(1−ρ))s = 0, ρ(s,0) = ρ0(s), (15)

where ρ0 denotes the initial macroscopic density. We are using s for the spatial vari-
able in (15) to avoid confusion with the spatial variables in (P). In what follows, we
show formally that the conservation law (15) is equivalent to (P). For simplicity, we
will ignore the initial condition ρ0 and the boundary condition in (P), and restrict
ourselves to showing that the (P) and (15) are equivalent in the bulk. We shall also
assume that ρ ∈C1.

Consider now the exponential DLPP model with macroscopic mean λ : [0,∞)2→
(0,∞), i.e., µ = σ = λ . Let L denote the last passage time given by (10), and let us
write L(m,n) = L(1,1;m,n) for convenience. Let U be the unique monotone viscosity
solution of (P), and let us assume that U ∈C1 and λ > 0 so that Ux1 ,Ux2 > λ > 0. Of
course, the viscosity solution of a Hamilton-Jacobi equation is in general not C1; the
argument we give here is purely formal. By Theorem 1 we have

1
N

L(bNxc)−→U(x) with probability one. (16)

We also note that (P) can be rearranged as follows:

Ux1(x)Ux2(x)
Ux1(x)+Ux2(x)

= λ (x). (17)

Let us now describe in detail the correspondence between TASEP and DLPP,
which can also be found here [4, 31]. We assign to a TASEP configuration η the site
counter

I j(t) = number of particles that have jumped from site j to site j+1 up to time t.
(18)

and the height function

h j(t) =


2I0(t)+∑

j
i=1

(
1−2ηi(t)

)
, j ≥ 1,

2I0(t), j = 0,
2I0(t)+∑

0
i= j+1

(
1−2ηi(t)

)
, j ≤−1.

(19)

Then we have h0(0) = 0, and h j(t)− h j(0) = 2I j(t). The height function h j(t) is a
stochastically growing interface, and is related to the corner growth model described
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Fig. 2 A visual depiction of the correspondence between TASEP and DLPP. On the left, the gray region is
the set A(t)—the t sub-level set of L—and on the right we show the corresponding TASEP height function
h j(t) obtained by rotating the boundary of A(t) by π/4.

in Section 1. Roughly speaking, the dynamical rule for the growth of h j(t) is that
when a particle jumps to the right (from j to j+1), a valley�� turns into a mountain
��, and the height at site j increases by 2. See Figure 2 for reference.

Let us now define the random set

A(t) =
{
(m,n) ∈ Z2

+ : L(m,n)≤ t
}
.

Since L is non-decreasing in both arguments, it implicitly defines its own height func-
tion, h̃ j(t), which describes the boundary of A(t) as follows:

A(t) =
{
(m,n) ∈ Z2

+ : h̃m−n(t)≥ m+n
}
.

The correspondence between TASEP and DLPP is the identification h̃ j(t) = h j(t) in
the sense of joint distributions. This connection is made rigorous by choosing appro-
priate boundary rates for DLPP here [31]. Visually, the correspondence is obtained by
rotating the boundary of A(t) by π/4 to obtain the height function h j(t) (see Figure
2).

The correspondence between TASEP and DLPP says, at least formally, that{
(m,n) ∈ Z2

+ : L(m,n)≤ t
}
=
{
(m,n) ∈ Z2

+ : hm−n(t)≥ m+n
}
. (20)

By (14) and (19), h j(t) has a macroscopic continuum limit, h∞, such that

1
N

hbsNc(btNc)−→ h∞(s, t) = g(t)+ s−2
∫ s

0
ρ(s′, t)ds′, (21)

with probability one, where g(t) := limN→∞ 2N−1I0(tN). It follows from (21) that

h∞
s (s, t) = 1−2ρ(s, t). (22)

Combining (16), (20), and (21) we have that{
x ∈ R2

+ : U(x) = t
}
=
{

x ∈ R2
+ : h∞(x1− x2, t) = x1 + x2

}
. (23)
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It follows from (23) that

h∞
(
x1− x2,U(x)

)
= x1 + x2. (24)

This is in some sense the “master equation” relating the continuum limits of TASEP
and DLPP. Let us illustrate how to use (24) to derive the conservation law (15) from
(P); deriving (P) from (15) follows in a similar fashion.

Differentiating (24) in both x1 and x2 we have

h∞
s (s, t)+h∞

t (s, t)Ux1(x) = 1 (25)
−h∞

s (s, t)+h∞
t (s, t)Ux2(x) = 1. (26)

where t =U(x) and s = x1− x2. Adding (25) and (26) we have

h∞
t (s, t) =

2
Ux1(x)+Ux2(x)

. (27)

Similarly, by rearranging and dividing (25) by (26) we have

Ux1(x)
Ux2(x)

=
1−h∞

s (s, t)
1+h∞

s (s, t)
(22)
=

ρ(s, t)
1−ρ(s, t)

. (28)

This equality can also be obtained by noting that the slope of the level set {U(x) = t}
is given locally by the ratio of ones to zeros in the TASEP configuration.

Solving for ρ in (28) we have ρ =Ux1/(Ux1 +Ux2), which yields

ρ(s, t)
(
1−ρ(s, t)

)
=

Ux1(x)Ux2(x)
(Ux1(x)+Ux2(x))2

(17)
=

λ (x)
Ux1(x)+Ux2(x)

, (29)

where we invoked the Hamilton-Jacobi equation (P) in the second equality above.
Since U is strictly monotone increasing in both x1 and x2, there is a one-to-one cor-
respondence between the coordinates x = (x1,x2) and (s, t) = (x1− x2,U(x)). Let us
write c(s, t) := λ (x)−1. Since λ is the exponential mean, c is the exponential rate for
TASEP. Then combining (29) with (27) we have

h∞
t (s, t) = 2c(s, t)ρ(s, t)

(
1−ρ(s, t)

)
. (30)

Differentiating with respect to s on both sides of (30) and applying (22) we have

−2ρt(s, t) = 2
(
c(s, t)ρ(s, t)(1−ρ(s, t))

)
s, (31)

which is precisely the conservation law (15). Furthermore, by combining (30) and
(22), we have the following Hamilton-Jacobi equation for h∞:

h∞
t (s, t) =

c(s, t)
2

(
1−h∞

s (s, t)
2) . (32)

It seems to us that this formal computation could be made precise when ρ and
U are indeed C1 functions. This is the case, for example, when λ is constant. In the
general case where ρ and U are not C1, it may be possible to make this formal com-
putation precise using the machinery of viscosity solutions, and we plan to investigate
this in a future work.
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2 Variational problem

In this section we give a variational interpretation for U and analyze its relevant prop-
erties. This variational problem first appeared in [33], in a different form, for expo-
nential DLPP with a continuous macroscopic rate λ , and is similar to the well-known
variational problem for the longest chain problem [12, 13, 18].

Let us first introduce some notation. We denote by 5 the coordinatewise partial
order on Rd , i.e., x 5 y if and only if xi ≤ yi for all i, where x = (x1, . . . ,xd),y ∈ Rd .
We write x≤ y if x 5 y and x 6= y, and we write x < y if xi < yi for all i. For x,y ∈ Rd

with x 5 y, we will often use the following interval notation

[x,y] =
{

z ∈ Rd : x 5 z 5 y
}
,

and
(x,y] =

{
z ∈ Rd : x < z≤ y

}
,

with similar definitions for [x,y) and (x,y).
Let A denote the set of C1 monotone curves, given by

A =
{

γ ∈C1([0,1]; [0,∞)2) : γ
′(t)= 0 for all t ∈ [0,1]

}
. (33)

We write γ(t) = (γ1(t),γ2(t)) to denote the components of γ . For µ,σ : [0,∞)2→ R,
let us define `µ,σ : [0,∞)2× [0,∞)2→ [0,∞) by

`µ,σ (x, p) = µ(x)(p1 + p2)+2σ(x)
√

p1 p2, (34)

and for γ ∈A we set

Jµ,σ (γ) =
∫ 1

0
`µ,σ (γ(t),γ ′(t))dt. (35)

Notice that `µ,σ (x,kp) = k`µ,σ (x, p) for any k ≥ 0, hence Jµ,σ (γ) is independent of
the parametrization of γ . We finally define

Uµ,σ (x) = sup
{

Jµ,σ (γ) : γ ∈A , γ(0) = 0, and γ(1) = x
}
, (36)

for x ∈ [0,∞)2. Borrowing language from optimal control theory [6], we will call
Uµ,σ the value function for this variational problem. We will often write J, ` and U
in place of Jµ,σ , `µ,σ and Uµ,σ , respectively, when it is clear from the context what µ

and σ are. Notice that when x ∈ ∂R2
+ with x2 = 0 we have

U(x) =
∫ x1

0
µ(t,0)dt. (37)

A similar formula holds when x ∈ ∂R2
+ with x1 = 0, and in general we can write

U(x) = (x1 + x2)
∫ 1

0
µ(tx)dt, (38)

for x ∈ ∂R2
+.
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We also define

Wµ,σ (x,y) = sup
{

Jµ,σ (γ) : γ ∈A , γ(0) = x, and γ(1) = y
}
, (39)

for x,y ∈ [0,∞)2 with x 5 y. As before, we will often drop the subscripts on Wµ,σ

when convenient. Similar to (37)–(38), when x,y∈ [0,∞)2 with x 5 y and x2 = y2, we
can write

W (x,y) =
∫ y1

x1

µ(t,x2)dt, (40)

with a similar formula holding when x1 = y1. In general, whenever x 5 y but xi = yi
for some i we can write

W (x,y) = (y1− x1 + y2− x2)
∫ 1

0
µ(x+(y− x)t)dt. (41)

The remainder of this section is organized as follows. In Section 2.1 we prove that
U and W are uniformly continuous, under assumptions on µ and σ that are similar
to (F1) and (F3), but slightly weaker. Then in Section 2.2, we show that Uµ+µs,σ is
a viscosity solution of (P), and prove a similar result for Wµ,σ . This result, Theorem
3 in Section 2.2, follows from classical optimal control theory [6], and (P) is exactly
the Hamilton-Jacobi-Bellman equation for the variational (optimal-control) problem
(36). For more information on Hamilton-Jacobi equations and optimal control, we
refer the reader to [6].

2.1 Regularity

Hölder or Lipschitz regularity of the value function in optimal control theory is a
standard classical result [6]. However, it is typically assumed that x 7→ `µ,σ (x, p) is
uniformly continuous, which is not compatible with (F1). We show here that the spe-
cific form of `µ,σ allows us to show that Uµ+µs,σ and Wµ,σ are uniformly continuous,
provided the discontinuities in µ occur along monotone increasing curves.

Since it is useful later, we will slightly weaken the hypothesis (F1), and allow µ to
be “badly behaved” within a narrow tube of the monotone curves Γi. This weakened
hypothesis is specifically designed so that the regularity result applies to inf- and sup-
convolutions of functions satisfying (F1). Inf- and sup-convolutions are commonly
used for regularization in the theory of viscosity solutions [6, 16].

The weakened hypothesis requires the following notation; for θ ≥ 0 define

Γi,θ =
{

x ∈ [0,∞)2 : dist(x,Γi)≤ θ

}
, (42)

Ωi,θ =
{

x ∈Ωi : dist(x,Γi)> θ and dist(x,Γi+1)> θ

}
, (43)

Γθ =
{

x ∈ [0,∞)2 : dist(x,Γ )≤ θ

}
, (44)

Ωθ =
{

x ∈Ω : dist(x,Γ )> θ

}
. (45)

The weakened version of (F1) is the following:
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(F1*) The function µ : [0,∞)2→ [0,∞) is bounded and upper semicontinuous, µ|Ωθ
=

0, and there exists a constant Clip such that for every i ∈ Z, µ|Ωi,θ is Lipschitz
continuous with constant Clip.

We now give the regularity result for W .

Theorem 2 Suppose that µ satisfies (F1*) for θ ≥ 0, and suppose that σ : [0,∞)2→
[0,∞) is bounded and Borel-measurable. Then for every R > 0 there exist a modulus
of continuity ω , and a constant C =C(Clip,‖µ‖∞,‖σ‖∞,R)> 0 such that

|Wµ,σ (z,x)−Wµ,σ (z,y)| ≤C
(√
|x− y|+ω(|x− y|)+ω(θ)

)
, (46)

for all x,y,z ∈ [0,R]2 with x,y = z. Furthermore, ω depends only on Γ ,{Γi}i∈Z and
R > 0.

Proof Let R > 0. We will prove the result for z = 0; the case of z 6= 0 is very similar.
For simplicity of notation, let us set V (x) = Wµ,σ (0,x). Notice that we can reduce
the proof to the case where x,y ∈ [0,R]2 with x 5 y. Indeed, let x,y ∈ [0,R]2 and set
x′ = (min(x1,y1),min(x2,y2)). Then we have

|U(x)−U(y)| ≤ |U(x)−U(x′)|+ |U(y)−U(x′)|,

and x′ 5 x and x′ 5 y.
Thus let us assume that x5 y. Let ε > 0 and let γ ∈A such that γ(0)= 0, γ(1)= y,

and V (y)≤ J(γ)+ ε . Define

s1 = sup
{

t > 0 : γ(t)5 x
}

and s2 = inf
{

t > 0 : γ(t)= x
}
.

Without loss of generality, we may assume that γ2(s2) = x2. Define

γ(t) =
(

min
(
x1,γ1(t)

)
,γ2(t)

)
for t ∈ [0,s2].

The proof is split into two steps now.

1. We claim that

|V (x)−V (y)| ≤
∫ s2

s1

|µ(γ(t))−µ(γ(t))|γ ′2(t)dt +C
√
|x− y|+ ε. (47)

where C =C(‖µ‖∞,‖σ‖∞,R).
To see this: First note that γ(s2)= x and γ(1) = y. It follows that∫ 1

s2

`(γ(t),γ ′(t))dt ≤ ‖µ‖∞

∫ 1

s2

γ
′
1(t)+ γ

′
2(t)dt +2‖σ‖∞

∫ 1

s2

√
γ ′1(t)γ

′
2(t)dt

≤ 2‖µ‖∞|x− y|+2‖σ‖∞

(∫ 1

s2

γ
′
1(t)dt

∫ 1

s2

γ
′
2(t)dt

) 1
2

≤ 2‖µ‖∞|x− y|+2‖σ‖∞|x− y|
= 2(‖µ‖∞ +‖σ‖∞)|x− y|, (48)
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where the second line follows from Hölder’s inequality. We claim now that γ1(s1) =
x1. To see this: suppose to the contrary that γ1(s1) < x1, which implies that s1 < s2.
By the definition of s1 we must have γ2(s1) = x2 and γ2(s) > x2 for s > s1. This
contradicts our assumption that γ2(s2) = x2. Hence γ1(s1) = x1.

Now we have∫ s2

s1

γ
′
1(t)dt = γ1(s2)− γ1(s1)≤ y1− x1 ≤ |x− y|. (49)

Since γ = γ on [0,s1] and γ(s2) = x we have

V (y)−V (x)≤ J(γ)+ ε−
∫ s2

0
`(γ(t),γ ′(t))dt

=
∫ s2

s1

`(γ(t),γ ′(t))− `(γ(t),γ ′(t))dt +
∫ 1

s2

`(γ(t),γ ′(t))dt + ε

(48)
≤
∫ s2

s1

`(γ(t),γ ′(t))− `(γ(t),γ ′(t))dt︸ ︷︷ ︸
A

+C|x− y|+ ε, (50)

where C = C(‖µ‖∞,‖σ‖∞). If s1 = s2 then the claim (47) follows from (50). So
suppose that s1 < s2. Since γ

′
1(t) = 0 and γ

′
2(t) = γ ′2(t) for t ∈ (s1,s2), we have

A =
∫ s2

s1

(µ(γ(t))−µ(γ(t)))γ
′
2(t)+µ(γ(t))γ ′1(t)+2σ(γ(t))

√
γ ′1(t)γ

′
2(t)dt

≤
∫ s2

s1

|µ(γ(t))−µ(γ(t))|γ ′2(t)dt +‖µ‖∞

∫ s2

s1

γ
′
1(t)dt

+2‖σ‖∞

(∫ s2

s1

γ
′
1(t)dt

∫ s2

s1

γ
′
2(t)dt

) 1
2

(49)
≤
∫ s2

s1

|µ(γ(t))−µ(γ(t))|γ ′2(t)dt +C(‖µ‖∞,‖σ‖∞,R)
√
|x− y|, (51)

which establishes (47).

2. We claim that∫ s2

s1

|µ(γ(t))−µ(γ(t))|γ ′2(t)dt ≤C
(√
|x− y|+ω(|x− y|)+ω(θ)+θ

)
, (52)

where C = C(Clip,R,‖µ‖∞,‖σ‖∞). Notice that once (52) is established, the proof is
completed by combining (52) with (47) and sending ε → 0.

Since the collection of curves {Γi}∞
i=−∞

is locally finite, we may assume that
Γ1,θ , . . . ,ΓM,θ are the only tubular neighborhoods that have a non-empty intersection
with [0,R]2. Since Γi is continuous and strictly increasing, we can parameterize the
portion of Γi that intersects [0,R]2 as follows:

Γi : t 7→ (t, fi(t)), t ∈ Ii,
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where fi : Ii→ [0,∞) is continuous and strictly increasing, and Ii is a closed interval
in [0,R]. Similarly we can parameterize Γ as

Γ : t 7→ (t, f (t)), t ∈ [0,1],

where f : [0,1]→ [0,1] is continuous and strictly decreasing. Note that the functions
f1, . . . , fM, f share a common modulus of continuity ω , by virtue of their compact
domains. We also note that ω and M depend only on Γ ,{Γi}i∈Z, and R > 0.

To prove (52), first set c = ω(θ)+θ . A simple computation shows that

dist((t, fi(t)+ c),Γi)> θ and dist((t, fi(t)− c),Γi)> θ , (53)

for any t ∈ Ii. A similar statement holds for Γ and f . For each i ∈ {1, . . . ,M}, we
define

m+
i = sup

Ii∩[x1,y1]

fi, and m−i = inf
Ii∩[x1,y1]

fi,

and
Ki =

{
t ∈ (s1,s2) : (x1,m−i − c)5 γ(t)5 (y1,m+

i + c)
}
. (54)

Similarly we set

m+ = sup
[0,1]∩[x1,y1]

f , and m− = inf
[0,1]∩[x1,y1]

f ,

K =
{

t ∈ (s1,s2) : (x1,m−− c)5 γ(t)5 (y1,m++ c)
}
. (55)

and
H = (s1,s2)\ (K∪K1∪·· ·∪KM) (56)

By the definition of m±i and m± we have

m+
i −m−i ≤ ω(y1− x1) and m+−m− ≤ ω(y1− x1). (57)

It follows from (53)–(56), (F1*), and the fact that γ is monotone, that whenever t ∈H
we have either µ(γ(t)) = µ(γ(t)) = 0 or

µ(γ(t))−µ(γ(t)) = µi,θ (γ(t))−µi,θ (γ(t)),

for some i ∈ {0, . . . ,M}. Thus, invoking (F1*), we have

|µ(γ(t))−µ(γ(t))| ≤Clip|γ(t)− γ(t)| ≤Clip|x− y|, (58)

for all t ∈H .
For any i ∈ {1, . . . ,M}, we have∫

Ki

|µ(γ(t))−µ(γ(t))|γ ′2(t)dt ≤ 2‖µ‖∞

∫
Ki

γ
′
2(t)dt

≤ 2‖µ‖∞|m+
i −m−i +2c|

(57)
≤ 2‖µ‖∞ω(|x− y|)+4‖µ‖∞(ω(θ)+θ). (59)
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We have an identical estimate when Ki is replaced by K. Combining (58) with (59)
we have∫ s2

s1

|µ(γ(t))−µ(γ(t))|γ ′2(t)dt

=
∫

H
|µ(γ(t))−µ(γ(t))|γ ′2(t)dt +

∫
K∪K1∪···∪KM

|µ(γ(t))−µ(γ(t))|γ ′2(t)dt

≤Clip|x− y|
∫ s2

s1

γ
′
2(t)dt +

M

∑
i=1

∫
Ki

|µ(γ(t))−µ(γ(t))|γ ′2(t)dt

+
∫

K
|µ(γ(t))−µ(γ(t))|γ ′2(t)dt

≤ClipR|x− y|+2(M+1)‖µ‖∞ω(|x− y|)+4(M+1)‖µ‖∞(ω(θ)+θ), (60)

which establishes (52) and completes the proof. ut

Corollary 1 Suppose that µ satisfies (F1*) for θ ≥ 0, and suppose that σ is bounded
and Borel-measurable. Then for every R > 0 there exist a modulus of continuity ω ,
and a constant C =C(Clip,‖µ‖∞,‖σ‖∞,R)> 0 such that

|Wµ,σ (x,z)−Wµ,σ (y,z)| ≤C
(√
|x− y|+ω(|x− y|)+ω(θ)

)
, (61)

for all x,y,z ∈ [0,R]2 with x,y 5 z. As in Theorem 2, ω depends only on Γ ,{Γi}i∈Z
and R > 0.

Proof The proof follows from Theorem 2 by symmetry. ut

Remark 1 Notice in Theorem 2 that if θ = 0 then we have the estimate

|Wµ,σ (z,x)−Wµ,σ (z,y)| ≤C
(√
|x− y|+ω(|x− y|)

)
, (62)

for all x,y,z ∈ [0,R]2 with x,y ≥ z. Inspecting the proof of Theorem 2, we see that
ω is the modulus of continuity of the curves Γ ,{Γi}i∈Z as functions over both coor-
dinate axes. Thus, the regularity of W is inherited from the regularity of the curves
Γ ,{Γi}i∈Z. For example, if the curves Γ ,{Γi}i∈Z are Hölder-continuous with expo-
nent α ≤ 1/2 as functions over both coordinate axes, then we have that W (z, ·) ∈
C0,α([z1,R]× [z2,R]) for every R> 0 and its Hölder seminorm depends only on ‖µ‖∞,
‖σ‖∞, R, and Clip. The same remark holds for Corollary 1 and (61).

We now plan to use Theorem 2 to prove a similar regularity result for Uµ+µs,σ .
To do this, we relate W and U via the following dynamic programming principle:

Proposition 1 Suppose that µ satisfies (F1*) for θ ≥ 0, µs satisfies (F2), and sup-
pose that σ is bounded and Borel-measurable. Then for any y ∈ [0,∞)2 we have

Uµ+µs,σ (y) = max
x∈∂R2

+ :x5y

{
Uµ+µs,σ (x)+Wµ,σ (x,y)

}
. (63)
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Notice that the boundary source µs is absent in the term Wµ,σ in (63). This allows us
to concentrate much of our analysis on Wµ,σ , which involves only the macroscopic
inhomogeneities in the bulk R2

+, and then extend our results to hold for Uµ+µs,σ via
the dynamic programming principle (63).

Proof We first note that the maximum in (63) is indeed attained, due to the continuity
of Uµ+µs,σ restricted to ∂R2

+ and Corollary 1.
If y ∈ ∂R2

+, then in light of (38), (41) and the fact that µs ≥ 0, the maximum in
(63) is attained at x = y and the validity of (63) is trivial.

Suppose now that y ∈ R2
+ and let v(y) denote the right hand side in (63), and set

U = Uµ+µs,σ . We first show that U ≤ v. Let ε > 0 and γ ∈ A such that γ(0) = 0,
γ(1) = y and Jµ+µs,σ (γ)≥U(y)− ε . Let

s = sup
{

t ∈ [0,1] : γ(t) ∈ ∂R2
+

}
.

Then we have 0≤ s < 1. Set x = γ(s) and

γ
1(t) = γ(st) and γ

2(t) = γ
(
s+ t(1− s)

)
,

for t ∈ [0,1]. Then we have

U(y)≤ Jµ+µs,σ (γ)+ ε = Jµ+µs,σ (γ
1)+ Jµ,σ (γ

2)+ ε ≤U(x)+W (x,y)+ ε.

Sending ε → 0 we have U ≤ v.
We now show that v ≤ U . Let x ∈ ∂R2

+ be a point at which the maximum is
attained in (63) and let ε > 0. Let γ1 ∈A with γ1(0) = 0, γ1(1) = x such that U(x)≤
Jµ+µs,σ (γ

1)+ ε

3 . Let z∈ [x,y] such that z∈R2
+ and W (x,y)≤W (z,y)+ ε

3 . Let γ2 ∈A

with γ2(0) = z, γ2(1) = y such that W (z,y)≤ Jµ,σ (γ
2)+ ε

3 . We can stitch together γ1

and γ2 as follows

γ(t) =


γ1(3t), if 0≤ t < 1

3 ,

x+(3t−1)(z− x), if 1
3 ≤ t < 2

3 ,

γ2(3t−2), if 2
3 ≤ t ≤ 1.

Then we have

v(y) =U(x)+W (x,y)≤U(x)+W (z,y)+
ε

3
≤ Jµ+µs,σ (γ

1)+ Jµ,σ (γ
2)+ ε ≤ Jµ+µs,σ (γ)+ ε ≤U(y)+ ε,

where we used the fact that γ2(t) ∈R2
+ for all t, hence Jµ,σ (γ

2) = Jµ+µs,σ (γ
2). Send-

ing ε → 0 we have v≤U . ut

Before continuing with the regularity result for Uµ+µs,σ , let us introduce a bit of
notation. For ξ ∈Rd

+, let πξ :Rd→ [0,ξ ] denote the projection mapping Rd onto the
convex set [0,ξ ]. For x ∈ [0,∞)d , πξ is given explicitly by

πξ (x) =
(

min(x1,ξ1), . . . ,min(xd ,ξd)
)
. (64)
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Corollary 2 Suppose that µ satisfies (F1*) for θ ≥ 0, µs satisfies (F2), and suppose
that σ is bounded and Borel-measurable. Then for every R > 0 there exists a modulus
of continuity ω , and a constant C =C(Clip,‖µ‖∞,‖σ‖∞,‖µs‖∞,R)> 0 such that

|Uµ+µs,σ (x)−Uµ+µs,σ (y)| ≤C
(√
|x− y|+ω(|x− y|)+ω(θ)

)
, (65)

for all x,y ∈ [0,R]2. As in Theorem 2, ω depends only on Γ ,{Γi}i∈Z and R > 0.

Proof Let x,y∈ [0,R]2 and set U =Uµ+µs,σ and W =Wµ,σ . As in Theorem 2 we may
assume that x 5 y. By Proposition 1, there exists y′ ∈ ∂R2

+ with y′ 5 y such that

U(y) =U(y′)+W (y′,y). (66)

Set x′ = πx(y′). Then since x′ ∈ ∂R2
+ and x′ 5 x, we have by Proposition 1 that

U(x)≥U(x′)+W (x′,x). (67)

By subtracting (67) from (66) and recalling (38) we have

|U(x)−U(y)|=U(y)−U(x)

≤U(y′)−U(x′)+W (y′,y)−W (x′,x)

≤ ‖µ +µs‖∞|x′− y′|+ |W (y′,y)−W (x′,y)|+ |W (x′,y)−W (x′,x)|.

The proof is completed by applying Theorem 2 and Corollary 1 and noting that
|x′− y′| ≤ |x− y|. ut

Of course, Remark 1 holds with obvious modifications for U and (65).

Remark 2 The hypothesis that the curves Γi are continuous and strictly increasing
cannot in general be weakened to continuous and non-decreasing. For example, con-
sider the case where µ = σ = 1 on [0.5,1]× [0,1] and µ = σ = 0 on [0,0.5)× [0,1].
Then we have

Uµ,σ (x) =

{
0, if x ∈ [0,0.5)× [0,1],
x1 + x2−0.5+2

√
(x1−0.5)x2, if x ∈ [0.5,1]× [0,1],

which has a discontinuity along the vertical line {x1 = 0.5}, which would correspond
to one of the curves Γi on which µ is discontinuous.

2.2 Hamilton-Jacobi-Bellman equation

In this section we show in Theorem 3 that Uµ+µs,σ is a viscosity solution of (P).
In fact, (P) is the Hamilton-Jacobi-Bellman equation for the simple optimal control
problem [6] defined by Uµ+µs,σ . For more information on the connection between
Hamilton-Jacobi equations and optimal control problems, we refer the reader to [6].

Let us pause momentarily to recall the definition of viscosity solution of

H(x,Du) = 0 on O, (68)
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where O ⊂Rd is open, H : O×Rd→R is locally bounded with p 7→H(x, p) contin-
uous for every x ∈O , and u : O→ R is the unknown function. For more information
on viscosity solutions of Hamilton-Jacobi equations, we refer the reader to [6, 16].

We denote by USC(O) (resp. LSC(O)) the set of upper semicontinuous (resp. lower
semicontinuous) functions on O . For u : O → R, the superdifferential of u at x ∈ O ,
denoted D+u(x), is the set of all p ∈ Rd satisfying

u(y)≤ u(x)+ 〈p,y− x〉+o(|x− y|) as O 3 y→ x. (69)

Similarly, the subdifferential of u at x ∈ O , denoted D−u(x), is the set of all p ∈ Rd

satisfying
u(y)≥ u(x)+ 〈p,y− x〉+o(|x− y|) as O 3 y→ x. (70)

Equivalently, we may set

D+u(x) = {Dϕ(x) : ϕ ∈C1(O) and u−ϕ has a local max at x},

and
D−u(x) = {Dϕ(x) : ϕ ∈C1(O) and u−ϕ has a local min at x}.

Definition 1 A viscosity subsolution of (68) is a function u ∈ USC(O) satisfying

liminf
y→x

H(y, p) =: H∗(x, p)≤ 0 for all x ∈ O and p ∈ D+u(x). (71)

Similarly, a viscosity supersolution of (68) is a function u ∈ LSC(O) satisfying

limsup
y→x

H(y, p) =: H∗(x, p)≥ 0 for all x ∈ O and p ∈ D−u(x). (72)

The functions H∗ and H∗ are the lower and upper semicontinuous envelopes of
H with respect to the spatial variable, respectively. We will often say u is a viscosity
solution of

H(x,Du)≤ 0 (resp. H(x,Du)≥ 0) on O,

to indicate that u is a viscosity subsolution (resp. supersolution) of (68). If u is a vis-
cosity subsolution and supersolution of (68), then we say that u is a viscosity solution
of (68). Notice that viscosity solutions defined in this way are necessarily continuous.

Theorem 3 Suppose that µ,σ : [0,∞)2→ [0,∞) are Borel-measurable and bounded.
Let z ∈ [0,∞)2 and set V (x) = Wµ,σ (z,x) for x ∈ [z,∞). If V is continuous then V
satisfies

(Vx1 −µ)+(Vx2 −µ)+ = σ
2 on (z,∞),

min(Vx1 ,Vx2)≥ µ on (z,∞),

}
(73)

in the viscosity sense.

Recall that [z,∞) = {y ∈ R2 : y = z}, and (z,∞) = {y ∈ R2 : y > z}.
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Proof The proof is based on a standard technique from optimal control theory for
relating variational problems to Hamilton-Jacobi equations [6]. The proof is very
similar to [13, Theorem 2]. We will only sketch parts of the proof here.

The proof is based on the following dynamic programming principle

V (y) = sup
x∈∂Br(y) :x5y

{
V (x)+W (x,y)

}
, (74)

which holds for y ∈ (z,∞) and r > 0 small enough so that Br(y) ⊂ (z,∞). The proof
of (74) is very similar to the proof of Proposition 1.

We now show that V is a viscosity solution of (73). Let y ∈ (z,∞) and let p ∈
D−V (y). As in [13], we can use the dynamic programing principle to obtain

sup
a∈R2

+

{
−
〈

p−µ∗(y)(1,1),a
〉
+2σ∗(y)

√
a1a2

}
≤ 0. (75)

Suppose now that σ∗(y) = 0. Then we automatically have

(p1−µ∗(y))+(p2−µ∗(y))+ ≥ 0 = σ
2
∗ (y).

Furthermore, it follows from (75) that min(p1, p2)≥ µ∗(y), so we are done. Consider
now σ∗(y)> 0. Setting a1 = 1 in (75) we have

sup
a2>0

{
− (p1−µ∗(y))− (p2−µ∗(y))a2 +2σ∗(y)

√
a2

}
≤ 0.

It follows that p2 > µ∗(y). By a similar argument we have p1 > µ∗(y), and hence we
have min(p1, p2)> µ∗(y). This establishes that V is a viscosity solution of

min(Vx1 ,Vx2)≥ µ on (z,∞).

Now set

a1 =

√
p2−µ∗(y)
p1−µ∗(y)

and a2 =

√
p1−µ∗(y)
p2−µ∗(y)

(76)

in (75) and simplify to find that

(p1−µ∗(y))(p2−µ∗(y))≥ σ∗
2(y).

Therefore V is a viscosity solution of

(Vx1 −µ)+(Vx2 −µ)+ ≥ σ
2 on (z,∞).

Let y ∈ (z,∞) and let p ∈ D+V (y). Utilizing the dynamic programing principle
(74) again we have

sup
a∈R2

+ :a1a2=1

{
−
〈

p−µ
∗(y)(1,1),a

〉
+2σ

∗(y)
}
≥ 0. (77)

If min(p1, p2)≤ µ∗(y) then we immediately have

(p1−µ
∗(y))+(p2−µ

∗(y))+ = 0≤ σ
∗(y)2.
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If min(p1, p2)> µ∗(y) then we have that

limsup
|a|→∞ :a∈R2

+

−
〈

p−µ
∗(y)(1,1),a

〉
+2σ

∗(y) =−∞.

It follows that the supremum in (77) is attained at some a∗ ∈ R2
+. Introducing a La-

grange multiplier λ > 0, the necessary conditions for a∗ to be a maximizer of the
constrained maximization problem (77) are

a∗1 = λ (p2−µ
∗(y)), a∗2 = λ (p1−µ

∗(y)), and a∗1a∗2 = 1.

It follows that λ = (p1−µ∗(y))−
1
2 (p2−µ∗(y))

1
2 and a∗ is given by (76). Substituting

this into (77) we find that

(p1−µ
∗(y))(p2−µ

∗(y))≤ σ
∗2(y),

and hence V is a viscosity solution of

(Vx1 −µ)+(Vx2 −µ)+ ≤ σ
2 on (z,∞),

which completes the proof. ut

Remark 3 It follows from Theorem 3 that U =Uµ+µs,σ is a viscosity solution of (P)
and satisfies

min(Ux1 ,Ux2)≥ µ on R2
+ (78)

in the viscosity sense. Indeed, we can simply apply Theorem 3 with µ + µs in place
of µ and z = 0, in which case we have U(x) =Wµ+µs,σ (0,x).

3 Comparison Principle

We study here the general Hamilton-Jacobi equation

H(x,Du) = 0 on (z,∞),

u = ϕ on ∂ (z,∞).

}
(79)

Here, z ∈ [0,∞)d , ϕ : ∂ (z,∞)→ R is continuous and monotone, H : Rd
+×Rd → R

is the Hamiltonian, and u : [z,∞)→ R is the unknown function. For simplicity of
notation, we will set z = 0 throughout much of this section. The case where z 6= 0
follows by a simple translation argument.

We place the following assumptions on H:

(H1) For every x ∈ Rd
+, the mapping H(x, ·) : Rd → R is monotone non-decreasing.

(H2) There exists a modulus of continuity m such that

H(x, p)−H(y, p)≤ m(|p||x− y|+ |x− y|) (80)

for all p ∈ [0,∞)d and x,y ∈ Rd
+.
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The assumption (H1) is clearly satisfied by (P), and generalizes the comparison re-
sults in our previous work [13], which was focused on the special case of H(x, p) =
p1 · · · pd − f (x). The assumption (H2) is standard in the theory of viscosity solu-
tions [16].

We now give a comparison principle for Hamiltonians H satisfying (H1) and
(H2).

Theorem 4 Suppose that H satisfies (H1) and (H2). Let u ∈ USC([0,∞)d) be a vis-
cosity solution of

H(x,Du)≤ 0 in Rd
+, (81)

let v ∈ LSC([0,∞)d) be a monotone viscosity solution of

H(x,Dv)≥ a in Rd
+, (82)

where a > 0, and suppose that u≤ v on ∂Rd
+. Then u≤ v on Rd

+.

The proof of Theorem 4 is based on the auxiliary function technique, which is stan-
dard in the theory of viscosity solutions [6,16], with modifications to incorporate the
lack of compactness resulting from the unbounded domain Rd

+. A standard technique
for dealing with unbounded domains is to assume the Hamiltonian H is uniformly
continuous in the gradient p and modify the auxiliary function (see, for example [6,
Theorem 3.5]). Since (P) is not uniformly continuous in the gradient, we cannot use
this technique. In our previous work [13], we included an additional boundary con-
dition at infinity to induce compactness. It turns out that this is not necessary, and in
the proof of Theorem 4, we instead heavily exploit the structure of the Hamiltonian,
namely (H1), to produce the required compactness.

Proof Since v is monotone (i.e., non-decreasing), it is bounded below by v(0). With-
out loss of generality we may assume that v(0) = 0. Let h > 0 and set vh(x) =
v(x)+h(x1 +x2). It follows from (H1) that vh is a viscosity solution of (82). Assume
by way of contradiction that supRd

+
(u− vh) > 0. Let Ψ : R→ R be a C1 function

satisfying
Ψ(t) = t for all t ≤ 1,
Ψ(t)≤ 2 for all t ∈ R,

0 <Ψ
′(t)≤ 1 for all t ∈ R.

 (83)

For c > 0 set u(x) = cΨ(c−1u(x)), and choose c large enough so that

δ := sup
Rd
+

(u− vh)> 0.

Since Ψ is C1 and Ψ ′ > 0, it is a standard application of the chain rule [6] to show
that u is a viscosity solution of

H
(
x,Ψ ′(c−1u(x))−1Du

)
≤ 0 on Rd

+. (84)

Since Ψ ′(t)∈ (0,1] for all t ≥ 0, we can apply (H1) to (84) to find that u is a viscosity
solution of (81).
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For α > 0 we define

Φα(x,y) = u(x)− vh(y)−
α

2
|x− y|2, (85)

and Mα = supRd
+×Rd

+
Φα . Since u≤ 2c and vh ≥ 0, we have by (85) that

|x− y| ≤ 2
√

c√
α

whenever Φα(x,y)≥ 0. (86)

Since vh(y)≥ h(y1 + y2) we have

Φα(x,y)≤ 2c−h(y1 + y2). (87)

Since Φα is upper semicontinuous and Mα ≥ δ > 0, it follows from (86) and (87)
that for every α > 0 there exist xα ,yα ∈ [0,∞)d such that

Φα(xα ,yα) = Mα ≥ δ > 0, (88)

and
yα,1 + yα,2 ≤

2c
h
. (89)

Furthermore, by (86) and (89) we see that, upon passing to a subsequence if neces-
sary, we have xα ,yα→ x0 as α→∞ for some x0 ∈ [0,∞)d . Since (x,y) 7→ u(x)−vh(y)
is upper semicontinuous we have

limsup
α→∞

Mα ≤ limsup
α→∞

u(xα)− vh(yα)≤ u(x0)− vh(x0).

Since Mα ≥ u(x0)− vh(x0) for all α we have that Mα → u(x0)− v(x0) = δ > 0 as
α → ∞ and hence

α|xα − yα |2 −→ 0. (90)

Since u ≤ vh on ∂Rd
+ we must have x0 ∈ Rd

+, and therefore xα ,yα ∈ Rd
+ for α large

enough.
Set p = α(xα − yα). By (88) we have that

p ∈ D+u(xα)∩D−vh(yα).

Therefore we have
H(xα , p)≤ 0 and H(yα , p)≥ a.

Subtracting the above inequalities and invoking (H2) we have

0< a≤H(yα , p)−H(xα , p)≤m(|p||xα−yα |+|xα−yα |)≤m(α|xα−yα |2+|xα−yα |).

Sending α → ∞ we arrive at a contradiction. Therefore u ≤ vh, and sending h→ 0+

completes the proof. ut

We now aim to extend this comparison principle to Hamiltonians with discon-
tinuous spatial dependence. The techniques we use here are a generalization of our
previous work on the longest chain problem [13]. We make the following definitions.
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Definition 2 Given a function u : [z,∞)→R and ξ ∈ [z,∞), we define the ξ -truncation
of u by uξ := u ◦ πξ , where πξ is the projection mapping Rd onto [0,ξ ] defined in
(64).

Definition 3 Let u be a viscosity solution of

H(x,Du)≤ 0 on (z,∞). (91)

We say that u is truncatable if for every ξ ∈ (z,∞), the ξ -truncation uξ is a viscosity
solution of (91).

This notion of truncatability is in spirit the same as [13, Definition 2.7], though the
exact definition is slightly different for notational convenience. We first show that the
value function W is truncatable.

Proposition 2 Suppose that µ,σ : [0,∞)2→ [0,∞) are Borel-measurable and bounded.
Let z ∈ [0,∞)2 and define V (x) =Wµ,σ (z,x) for x ∈ [z,∞). If V is continuous then V
is a truncatable viscosity solution of

(Vx1 −µ)+(Vx2 −µ)+ = σ
2 on (z,∞). (92)

Proof It follows from Theorem 3 that V is a viscosity solution of (92). We need
only show that V is truncatable. Let ξ ∈ (z,∞), let χ : [0,∞)2 → {0,1} denote the
characteristic function of [z,ξ ], and set V =Wχ·µ,χ·σ (z, ·). By the definition of V and
χ we have V (x) = V (x) = V ξ (x) for any x ∈ [z,ξ ]. Let x ∈ [z,∞) \ [z,ξ ], ε > 0, and
let γ ∈A with γ(0) = z, γ(1) = x such that V (x)≤ Jχ·µ,χ·σ (γ)+ε . Let γ1 denote the
portion of γ inside [z,ξ ], let γ2 denote the remaining portion of γ , and reparametrize
γ1 and γ2 so that γ1,γ2 : [0,1]→ R2. Letting y = γ1(1) ∈ [z,ξ ] we have

V (x)≤ Jχ·µ,χ·σ (γ
1)+ Jχ·µ,χ·σ (γ

2)+ ε = Jµ,σ (γ
1)+ ε ≤V (y)+ ε.

Since y 5 x and y ∈ [z,ξ ], we also have V (x)≥V (y) =V (y). It follows that

V (x) = sup
y∈[z,ξ ] :y5x

V (y).

By continuity of V , the supremum above is attained, and the maximizing argument
of y is exactly y = πξ (x)—the projection of x onto [0,ξ ]. Therefore we have V (x) =
V (πξ (x)). Since x is arbitrary, we see that V =V ◦πξ =V ξ , the ξ -truncation of V .

Since V ξ =V ◦πξ is continuous, it follows from Theorem 3 that V ξ is a viscosity
solution of

(Vx1 −χµ)+(Vx2 −χµ)+ ≤ χσ
2 on (z,∞).

Since 0≤ χ ≤ 1 and t 7→ (p1− t)+(p2− t)+ is monotone decreasing, it follows that
V ξ is viscosity subsolution of (92), which completes the proof. ut

We now show that truncatability enjoys a useful L∞-stability property.
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Proposition 3 Let z ∈ R2
+ and for each k ≥ 1 suppose that uk ∈C([z,∞)) is a trun-

catable viscosity solution of

Hk(x,Duk)≤ 0 on (z,∞). (93)

If uk → u locally uniformly, for some u ∈C([z,∞)), then u is a truncatable viscosity
solution of

H(x,Du)≤ 0 on (z,∞), (94)

where
H(x, p) := liminf

k→∞
y→x

Hk(y, p).

We should note that the liminf operation defining H is taken jointly as k→∞ and y→
x. This is a standard operation in the theory of viscosity solutions (see [16, Section
6]), and it can be written more precisely for a function f : O → R as

liminf
k→∞
y→x

fk(y) = lim
j→∞

inf
{

fk(x) : k ≥ j,x ∈ O and |y− x| ≤ 1
j

}
.

Proof It is a standard result (see [16, Remark 6.3]) that u is a viscosity solution of
(94). To see that u is truncatable: Fix ξ ∈ (z,∞), let uξ be the ξ -truncation of u, and
let uξ

k be the ξ -truncation of uk. Since uk is truncatable, we have that uξ

k is a viscosity

solution of (93) for every k. Furthermore, we have uξ

k → uξ locally uniformly, and
therefore uξ is a viscosity solution of (94). Thus u is truncatable. ut

We now relax (H2) and allow H to have discontinuous spatial dependence. Given a
set O ⊂ Rd

+ we assume H satisfies

(H3)O There exists a modulus of continuity m such that for all ξ ∈O there exists εξ > 0
and vξ ∈ Sd−1 such that

H(y, p)−H(y+ εv, p)≤ m(|p|ε + ε) (95)

for all p ∈ Rd , y ∈ Bεξ
(ξ ), ε ∈ (0,εξ ), and v ∈ Sd−1 with |v−vξ |< εξ .

This hypothesis is similar to one used by Deckelnick and Elliott [17] to prove unique-
ness of viscosity solutions to Eikonal-type Hamilton-Jacobi equations with discon-
tinuous spatial dependence. It is also a generalization of the cone condition used in
our previous work [13].

If we assume the subsolution is truncatable, then we can prove the following
comparison principle, which holds for Hamiltonians H with discontinuous spatial
dependence.

Theorem 5 Suppose that H satisfies (H3)O for some O ⊂ Rd
+. Let u ∈C([0,∞)d) be

a truncatable viscosity solution of (81) and let v∈C([0,∞)d) be a monotone viscosity
solution of (82). Suppose that u≤ v on [0,∞)d \O . Then u≤ v on Rd

+.
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The proof of Theorem 5 is similar to [13, Theorem 2.8], so we postpone it to the
appendix.

For the remainder of the section we set

H(x, p) = (p1−µ(x))+(p2−µ(x))+−σ
2(x). (96)

Our aim now is to apply the comparison principles from Theorems 4 and 5 to obtain
a comparison principle, and a perturbation result, for the Hamilton-Jacobi equation
(P). First we need to show that (H2) and (H3)O are satisfied by H given in (96).

Proposition 4 Suppose that µ,σ : [0,∞)2→ [0,∞), and let H be given by (96). Then
for any x,y ∈ R2

+

H(y, p)−H(x, p)≤ 2|p|(µ(x)−µ(y))++σ
2(x)−σ

2(y). (97)

Proof Let p ∈ [0,∞)2, and set h(t) = (p1− t)+(p2− t)+ so that

H(x, p) = h(µ(x))−σ
2(x).

Suppose first that µ(y)< min(p1, p2). Since h is convex, we have

h(µ(x))−h(µ(y))≥ h′(µ(y))(µ(x)−µ(y)) =−(p1 + p2−2µ(y))(µ(x)−µ(y)).

Since p1 + p2−2µ(y)≥ 0 we have

h(µ(y))−h(µ(x))≤ (p1 + p2−2µ(y))(µ(x)−µ(y))

≤ (p1 + p2−2µ(y))(µ(x)−µ(y))+
≤ (p1 + p2)(µ(x)−µ(y))+.

Therefore we have

h(µ(y))−h(µ(x))≤ 2|p|(µ(x)−µ(y))+. (98)

If µ(y)≥min(p1, p2) then we have h(µ(y)) = 0≤ h(µ(x)), and hence (98) holds.
ut

Remark 4 It follows from Proposition 4 that H satisfies (H2) if µ and σ2 are globally
Lipschitz continuous on R2

+.

Corollary 3 Suppose that µ and σ2 are non-negative and globally Lipschitz contin-
uous on R2

+. Let u ∈ USC([0,∞)2) be a viscosity solution of

(ux1 −µ)+(ux2 −µ)+ ≤ σ
2 on R2

+, (99)

and let v ∈ LSC([0,∞)2) be a monotone viscosity solution of

(vx1 −µ)+(vx2 −µ)+ ≥ σ
2 on R2

+. (100)

Furthermore, suppose that{
x ∈ R2

+ : µ(x) = 0
}
⊃
{

x ∈ R2
+ : σ(x) = 0

}
. (101)

Then u≤ v on ∂R2
+ implies u≤ v on R2

+.
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Proof We claim that

min(vx1 ,vx2)≥ µ on R2
+, (102)

in the viscosity sense. To see this, let x ∈ R2
+ and let p ∈ D−v(x). Then we have

(p1−µ(x))+(p2−µ(x))+ ≥ σ(x)2.

If σ(x) > 0, then we must have min(p1, p2) ≥ µ(x) as desired. If σ(x) = 0, then
by (101) we have µ(x) = 0, and we have min(p1, p2) ≥ 0 = µ(x) by virtue of the
monotonicity of v.

Let a > 0 and set v(x) = v(x)+
√

a(x1 + x2). By (100) and (102) we see that v is
a viscosity solution of

(vx1 −µ)+(vx2 −µ)+ ≥ σ
2 +a on R2

+.

By Proposition 4 and Remark 4 we see that (H1) and (H2) are satisfied. Therefore we
can apply Theorem 4 to find that u≤ v. Sending a→ 0 completes the proof. ut

Recall that µ and σ2 are not independent functions in the DLPP problem, even
though we have treated them as such for much of the analysis. From this point on, we
will need to recall their relationship, as it is important for proving uniqueness in (P).
Specifically, we need to assume that µ and σ2 satisfy (F3) for the same choice of ζ at
each x ∈Γi. When this holds, we say that µ and σ2 simultaneously satisfy (F3). Since
σ = µ for exponential DLPP and σ =

√
µ(1+µ) for geometric DLPP, σ is always a

monotone increasing function of µ , and hence µ and σ2 simultaneously satisfy (F3)
in both cases. We recall that Ω , Ωi, Γi, and (F1)–(F3) are defined in Section 1.1, and
that µ ≡ 0 on Ω .

Proposition 5 Let µ and σ2 simultaneously satisfy (F1) and (F3). Then H given by
(96) satisfies (H3)O with O = R2

+ \Ω .

Proof Let ξ ∈ O . If ξ ∈ Ωi, then we can choose εξ small enough so that B2εξ
(ξ )⊂

Ωi. By Proposition 4 we see that any choice for vξ will suffice since µ and σ2 are
Lipschitz with constant Clip when restricted to Ωi.

If ξ ∈ Γi for some i, then let ζ be as given in (F3). Assume for now that ζ =−1,
and set vξ = (1,−1)/

√
2. Let εξ > 0 be less than half the value of ε from (F3), and

then choose εξ > 0 smaller, if necessary, so that B2εξ
(ξ ) has an empty intersection

with Γ and all other Γj, and εξ ≤ 1/2. Let µi and σ2
i denote the Lipschitz extensions

of µ|Ωi and σ2|Ωi to Ωi, respectively, and make the same definitions for µi−1 and
σ2

i−1. Then (F3) implies that µi ≥ µi−1 and σ2
i ≥ σ2

i−1 on B2εξ
(ξ )∩Γi. Furthermore,

since µ and σ2 are upper semicontinuous, we have µ = µi and σ =σi on B2εξ
(ξ )∩Γi.

Let y ∈ Bεξ
(ξ ), ε < εξ , p ∈ R2, and v ∈ Sd−1 with |v−vξ |< εξ . If y+ εv ∈Ωi,

then since Γi is monotone, |v−vξ | ≤ 1
2 , and y ∈ B2εξ

(ξ ), we must have that y ∈ Ωi.
Since µi and σ2

i are Lipschitz on Ωi∩B2εξ
(ξ ), we can invoke Proposition 4 to show

that (H3)O holds.
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Now suppose that y+ εv ∈ Ωi−1. If y ∈ Ωi−1, then (H3)O holds as before, so
assume that y ∈Ωi. Let ε ′ > 0 such that y+ ε ′v ∈ Γi. Then we have

µ(y+ εv)−µ(y) = µi−1(y+ εv)−µi(y+ ε
′v)+µi(y+ ε

′v)−µi(y)

≤ µi−1(y+ εv)−µi−1(y+ ε
′v)+µi(y+ ε

′v)−µi(y)

≤ 2Clipε,

where we used the fact that µi ≥ µi−1 on Γi∩B2εξ
(ξ ). We have an identical estimate

for σ2, and the proof is completed by invoking Proposition 4. ut

Corollary 4 Let µ and σ2 simultaneously satisfy (F1) and (F3). Let u ∈C([0,∞)2)
be a truncatable viscosity solution of (99), let v ∈C([0,∞)2) be a monotone viscosity
solution of (100), and suppose that (101) holds. Then u ≤ v on Ω ∪ ∂R2

+ implies
u≤ v on R2

+.

The proof of Corollary 4 is similar to Corollary 3.
We now prove an important perturbation result. Roughly speaking, it says that if

we smooth out the macroscopic mean µ and variance σ (i.e., remove the discontinu-
ities), then the resulting change in the value function W is uniformly small. This result
is used in the proof of our main result, Theorem 1. The proof relies on the uniqueness
of truncatable viscosity solutions of (P) (Theorem 5 and Corollary 4), and the result
can then be used to prove a comparison principle for (P) without the truncatability
assumption (see Theorem 7).

Theorem 6 Let µ and σ2 satisfy (101) and simultaneously satisfy (F1), (F3). Let
µk,σ

2
k ∈C0,1([0,∞)2) satisfy (F1*) with θ = 1

k . Furthermore suppose that

µ∗(x)≤ liminf
k→∞
y→x

µk(y), µ
∗(x)≥ limsup

k→∞
y→x

µk(y), (103)

and
σ∗(x)≤ liminf

k→∞
y→x

σk(y), σ
∗(x)≥ limsup

k→∞
y→x

σk(y), (104)

for all x ∈ R2
+. Then for every z ∈ [0,∞)2 we have

Wµk,σk(z, ·)−→Wµ,σ (z, ·) locally uniformly on [z,∞).

Proof For simplicity, let us set Vk(x) = Wµk,σk(z,x) and V (x) = Wµ,σ (z,x) for x ∈
[z,∞). Since µk,σ

2
k ∈C0,1([0,∞)2), we can apply Theorem 2 with θ = 0 to find that

Vk is continuous on [z,∞). We can apply Theorem 2 again with θ = 1/k to show that
for every R > max(z1,z2), there exists C =C(Clip,‖µ‖∞,‖σ‖∞,R) and a modulus of
continuity ω such that

|Vk(x)−Vk(y)| ≤C(
√
|x− y|+ω(|x− y|)+ω(k−1)) (105)

for all x,y ∈ [z1,R]× [z2,R]. This approximate Hölder estimate is sufficient to apply a
slightly modified version of the Arzelà-Ascoli theorem (see, for instance, [12, Theo-
rem 2]). Therefore, by passing to a subsequence if necessary, there exists v∈C([z,∞))
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such that Vk→ v locally uniformly on [z,∞). By Proposition 2, Vk is a monotone trun-
catable viscosity solution of

(Vk,x1 −µk)+(Vk,x2 −µk)+ = σk
2 on (z,∞). (106)

Since Vk → v locally uniformly and (103)-(104) hold, we can apply Proposition 3,
and classical results from the theory of viscosity solutions [16], to find that v is a
monotone truncatable viscosity solution of

(vx1 −µ)+(vx2 −µ)+ = σ
2 on (z,∞). (107)

We claim that v = V on ∂ (z,∞). To see this: Let x ∈ ∂ (z,∞), hence xi = zi for
some i. Without loss of generality, assume that x1 = z1. Then by (40) and Fatou’s
lemma we have

v(x) = lim
k→∞

Vk(x) = lim
k→∞

∫ x2

z2

µk(z1, t)dt

≤
∫ x2

z2

limsup
k→∞

µk(z1, t)dt

≤
∫ x2

z2

µ(z1, t)dt =V (x),

where the last line follows from (103) and the fact that µ is upper semicontinuous.
By a similar argument with Fatou’s lemma we have

v(x)≥
∫ x2

z2

µ∗(z1, t)dt. (108)

Notice that (F1) implies that µ∗ = µ on Ωi for all i and on Ω . Hence, all the points
x ∈ [0,∞)2 for which µ∗(x) 6= µ(x) are contained in ∪i∈ZΓi ∪Γ . Since the curves Γi
are strictly increasing and Γ is strictly decreasing, the curve t 7→ (z1, t) for t ∈ [z2,x2]
has a finite number of intersections with ∪i∈ZΓi∪Γ . It follows that

v(x)
(108)
≥
∫ x2

z2

µ∗(z1, t)dt =
∫ x2

z2

µ(z1, t)dt =V (x),

and hence v(x) =V (x), which establishes the claim.
By Proposition 5, H given by (96) satisfies (H3)O for O = R2

+ \Ω . By (F1*)
and (39) we have Vk(x) = 0 for x ∈Ωθ ∩ [z,∞), and hence v(x) = 0 for x ∈Ω ∩ [z,∞).
Similarly, we have that V (x) = 0 for x∈Ω ∩ [z,∞). It follows that v =V on [z,∞)\O ,
and by applying a translated form of Corollary 4 to find that v =V on [z,∞)2. ut

Remark 5 Sequences generated by inf- and sup-convolutions of µ and σ2 satisfy
the hypotheses of Theorem 6. Recall that the sup-convolution of µ : [0,∞)2 → R is
defined by

µ
k(x) = sup

y∈[0,∞)2

{
µ(y)− k|x− y|

}
, (109)

and the inf-convolution by µk :=−(−µ)k.
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Corollary 5 Let µ and σ2 simultaneously satisfy (F1), (F3) and (101), let µk,σ
2
k ∈

C0,1([0,∞)2) satisfy (F1*) with θ = 1
k , and let µs satisfy (F2). If (103)–(104) hold for

all x ∈ R2
+ then

Uµk+µs,σk −→Uµ+µs,σ locally uniformly on [0,∞)2.

Proof Fix y ∈ [0,∞)2. By Proposition 1 we have

Uµk+µs,σk(y) = max
x∈∂R2

+ :x5y

{
Uµk+µs,σk(x)+Wµk,σk(x,y)

}
, (110)

and
Uµ+µs,σ (y) = max

x∈∂R2
+ :x5y

{
Uµ+µs,σ (x)+Wµ,σ (x,y)

}
. (111)

Arguing by symmetry, it follows from Theorem 6 that

Wµk,σk(·,y)−→W (·,y) uniformly on [0,y]. (112)

It follows from (37) and a similar argument as in Theorem 6 that Uµk+µs,σk(x)→
Uµ+µs,σ (x) for any x ∈ ∂R2

+. By the Arzelà-Ascoli Theorem we find that

Uµk+µs,σk −→Uµ+µs,σ uniformly on [0,y]∩∂R2
+. (113)

Combining (110)–(113), we have that Uµk+µs,σk(y)→Uµ+µs,σ (y). Locally uniform
convergence follows again from the Arzelà-Ascoli Theorem. ut

Theorem 7 Let µ and σ2 simultaneously satisfy (F1), (F3) and (101), and let µs
satisfy (F2). Let u ∈C([0,∞)2) be a viscosity solution of (99) and let v ∈C([0,∞)2)
be a monotone viscosity solution of (100). Then if u ≤ ϕ ≤ v on ∂R2

+, where ϕ is
given in the statement of Theorem 1, then u≤ v on R2

+.

Proof Let µk,σ2,k and µk,σ
2
k be the sup- and inf-convolutions of µ and σ2 as de-

fined in (109) (see Remark 5), respectively. To simplify notation, let us write Uk :=
U

µk+µs,σ k , Uk :=Uµk+µs,σk , and U :=Uµ+µs,σ . By definition we have Uk ≤U ≤Uk,
and by Corollary 5 and Remark 5 we have Uk,Uk →U locally uniformly on [0,∞)2

as k→ ∞.
Since µk ≤ µ and σk ≤ σ we have that v is a viscosity solution of

(vx1 −µk)+(vx2 −µk)+ ≥ σk
2 on R2

+.

By Theorem 3, Uk is a viscosity solution of

(Uk,x1 −µk)+(Uk,x2 −µk)+ = σk
2 on R2

+.

Furthermore, we have Uk = ϕk ≤ ϕ ≤ v on ∂R2
+ where ϕk(x) = (x1 +x2)

∫ 1
0 µk(tx)+

µs(tx)dt. Since µk and σ2
k are globally Lipschitz we can apply Corollary 3 to obtain

Uk ≤ v. Sending k→ ∞ we have U ≤ v. By a similar argument we can prove that
u≤U , which completes the proof. ut
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4 Proof of main result

In this section we give the proof of our main result, Theorem 1. We first have a pre-
liminary convergence result on the interior (0,∞)2, which we later adapt to account
for the boundary source µs. For N ≥ 1 we define

wN(x,y) := L
(
bNxc+1x;bNyc

)
, (114)

where
1x =

(
1{x1=0},1{x2=0}

)
, (115)

and L is defined in (10).

Lemma 1 Assume µ satisfies (F1) and (F3). Suppose that the weights X(i, j) satisfy
(11) and are either all exponential, or all geometric random variables, consructed
as in Section 1.1. In the exponential case, set σ = µ , and in the geometric case, set
σ =

√
µ(1+µ). Then for every y ∈ (0,∞)2 we have

1
N

wN(·,y)−→Wµ,σ (·,y) uniformly on [0,y],

with probability one.

Proof Let y ∈ (0,∞)2. Let µk and µk be the sup- and inf-convolutions of µ , defined
in (109) (see Remark 5). In the exponential case, set σ k = µk and σk = µk, and
in the geometric case, set σ k =

√
µk(1+µk) and σk =

√
µk(1+µk). To simplify

notation, let us also set W k := W
µk,σ k , Wk := Wµk,σk , and W := Wµ,σ , and note that

Wk ≤W ≤W k. Notice that by the definition of σ , we have that (101) holds for both
the exponential and geometric cases. We can therefore invoke Theorem 6 to find that

Wk(x,y)−→W (x,y) and W k(x,y)−→W (x,y) for all x ∈ [0,y]. (116)

Let N ≥ 1. In the exponential case, for (i, j) ∈ N2 let Xk(i, j) be independent
and exponentially distributed with parameter λ = µk(iN−1, jN−1), and let Xk(i, j)
be independent and exponentially distributed with parameter λ = µk(iN−1, jN−1). In
the geometric case, for (i, j) ∈ N2 let Xk(i, j) be independent and geometrically dis-
tributed with parameter q = (1+µk(iN−1, jN−1))−1, and let Xk(i, j) be independent
and geometrically distributed with parameter q = (1+ µk(iN−1, jN−1))−1. In either
case, set

Lk(M,N;Q,P) = max
p∈Π(M,N),(Q,P)

∑
(i, j)∈p

Xk(i, j), (117)

Lk(M,N;Q,P) = max
p∈Π(M,N),(Q,P)

∑
(i, j)∈p

Xk(i, j), (118)

and set

wk,N(x,y) := Lk

(
bNxc+1x;bNyc

)
, and wk

N(x,y) := Lk
(
bNxc+1x;bNyc

)
. (119)

We can define Xk(i, j) and Xk(i, j) on the same probability space as X(i, j) in such
a way that Xk(i, j) ≤ X(i, j) ≤ Xk(i, j) for all (i, j) ∈ N2 with probability one. We
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therefore have wk,N ≤ wN ≤ wk
N with probability one. Since µk,σk,µ

k, and σ k are
continuous on [0,∞)2, we can invoke Theorem [33, Theorem 1] to find that

1
N

wk,N(x,y)−→Wk(x,y) and
1
N

wk
N(x,y)−→W k(x,y),

with probability one, for fixed x∈ [0,y]. We should note that [33, Theorem 1] as stated
applies only to exponential DLPP. The proof for geometric DLPP (with weights con-
structed as in Section 1.1) is very similar, with only minor modifications. It follows
that for every k ≥ 1 we have

Wk(x,y)≤ liminf
N→∞

1
N

wN(x,y)≤ limsup
N→∞

1
N

wN(x,y)≤W k(x,y),

with probability one. Sending k→ ∞ and recalling (116) we have for every x ∈ [0,y]
that

1
N

wN(x,y)−→W (x,y) with probability one. (120)

Uniform convergence follows from the fact that x 7→ wN(x,y) and x 7→W (x,y) are
monotone decreasing and x 7→W (x,y) is uniformly continuous on [0,y]; the proof is
similar to [13, Theorem 1]. ut

To incorporate the boundary source µs we need the following lemma, which fol-
lows from the law of large numbers.

Lemma 2 Let Y1, . . . ,Yn, . . . be a sequence of i.i.d. exponential random variables
with mean λ = 1. Let ν : [0,∞)→ [0,∞) be bounded with a locally finite set of dis-
continuities, and let f : [0,∞)→ [0,∞) be non-decreasing with at most polynomial
growth. Then we have with probability one that

1
n

n

∑
i=1

f (ν(n−1i)Yi)−→
∫ 1

0
E( f (ν(t)Y ))dt as n→ ∞, (121)

where Y is a random variable with the exponential distribution with mean λ = 1.

Note that Lemma 2 mimics the constructions of the weights X(i, j) given in Section
1.1. When X(i, j) are exponential random variables, we have f (t) = t, and ν = µ +
µs, and when X(i, j) are geometric random variables, f (t) = btc and ν is defined
according to the construction in Section 1.1.

Proof Let K be a positive integer. Consider the partition of [0,1] given by 0 = t0 <
t1 < · · ·< tK−1 < tK = 1, where t j = j/K, and let k j = bnt jc. Set m j = inf(t j−1,t j ] ν and
M j = sup(t j−1,t j ]

ν . Then we have that

1
n

n

∑
i=1

f (ν(n−1i)Yi) =
1
n

K

∑
j=1

k j

∑
i=k j−1+1

f (ν(n−1i)Yi)≤
K

∑
j=1

1
n

k j

∑
i=k j−1+1

f (M jYi), (122)

where the last inequality follows from the monotonicity of f . Fix j and let Zi =
f (M jYi). Then Z1, . . . ,Zn, . . . are i.i.d., and the polynomial growth restriction on f
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guarantees that the moments of Zi are finite. We therefore have by the law of large
numbers that

1
n

k j

∑
i=1

Zi =

(
bnt jc

n

)
1
bnt jc

bnt jc

∑
i=1

Zi −→ t jE( f (M jY )),

with probability one as n→ ∞. Similarly, we have

1
n

k j−1

∑
i=1

Zi −→ t j−1E( f (M jY )),

with probability one as n→ ∞. It follows that

1
n

k j

∑
i=k j−1+1

f (M jYi) =
1
n

k j

∑
i=1

Zi−
1
n

k j−1

∑
i=1

Zi −→ (t j− t j−1)E( f (M jY )),

with probability one as n→∞. Since the above holds for every j = 1, . . . ,K, we have
from (122) that

limsup
n→∞

1
n

n

∑
i=1

f (ν(n−1i)Yi)≤
K

∑
j=1

(t j− t j−1)E( f (M jY )),

with probability one. By the assumptions on f and ν , t 7→ E( f (ν(t)Y )) is continuous
except possibly at points of discontinuity of ν , which are locally finite. Thus t 7→
E( f (ν(t)Y )) is Riemann integrable, and taking K→ ∞ we have

limsup
n→∞

1
n

n

∑
i=1

f (ν(n−1i)Yi)≤
∫ 1

0
E( f (ν(t)Y ))dt,

with probability one. The proof of the analogous liminf inequality is similar. ut

We now have the proof of Theorem 1.

Proof Let x∈ ∂R2
+, and suppose that x2 = 0. If x1 = 0, then N−1L(0;0)=N−1X(0,0)→

0 = ϕ(0) with probability one as N→ ∞. If x1 > 0 then we have

1
N

L(0;bNxc) = 1
N

bNx1c

∑
i=0

X(i,0).

It follows from Lemma 2 and the construction of the weights X(i, j) in Section 1.1
that

1
N

L(0;bNxc)−→ x1

∫ 1

0
µ(x1t,0)+µs(x1t,0)dt = ϕ(x),

with probability one as N → ∞. The case where x1 = 0 and x2 > 0 is similar. As in
Lemma 1, we can use the fact that L and ϕ are monotone non-decreasing, and ϕ is
uniformly continuous, to show that we actually have

1
N

L(0;bN·c)−→U = ϕ (123)
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locally uniformly on ∂R2
+ with probability one.

Let y∈R2
+. From the definition of L we have the following dynamic programming

principle

L(0;bNyc) = max
x∈∂R2

+ :x5y

{
L(0;bNxc)+wN(x,y)

}
. (124)

Combining Lemma 1, Proposition 1, and (123), we can pass to the limit in (124) to
obtain

1
N

L(0;bNyc)−→ max
x∈∂R2

+ :x5y

{
U(x)+W (x,y)

}
=U(y),

with probability one. As in Lemma 1, locally uniform convergence follows from the
monotonicity of U and x 7→ N−1L(0;bNxc), along with the uniform continuity given
by Theorem 2. ut

5 Numerical scheme

We present here a fast numerical scheme for computing the viscosity solution U of
(P). The scheme is a minor modification of the scheme used in [12, 13]. Since infor-
mation propagates along coordinate axes in the definition of the variational problem
(39) for U , it is natural to consider using backward difference quotients to approxi-
mate (P). Letting Uh

i, j denote the numerical solution on the grid hN2
0 of spacing h, we

have (
Uh

i, j−Uh
i−1, j−hµi, j

)
+

(
Uh

i, j−Uh
i, j−1−hµi, j

)
+
= h2

σ
2
i, j, (125)

where µi, j = µ(hi,h j)+ µs(hi,h j) and σi, j = σ(hi,h j). Given Uh
i−1, j and Uh

i, j−1, we
can solve (125) for Uh

i, j ≥max(Uh
i−1, j+hµi, j,Uh

i, j−1+hµi, j) via the quadratic formula
to obtain

Uh
i, j =

1
2

(
Uh

i−1, j +Uh
i, j−1

)
+hµi, j +

1
2

√(
Uh

i−1, j−Uh
i, j−1

)2
+4h2σ2

i, j, (126)

for i, j ≥ 1. The choice of the positive root in (126) reflects the monotonicity of the
scheme, and ensures that it captures the viscosity solution of (P). When i= 0 or j = 0,
we recall the boundary condition (37) to obtain

Uh
0, j =Uh

0, j−1 +hµ0, j and Uh
i,0 =Uh

i−1,0 +hµi,0. (127)

Notice that when i = 0, if we set Uh
−1, j = 0 and σi, j = 0 in (126), then (126) and

(127) are equivalent. In fact, even when σi, j 6= 0, (126) and (127) are asymptotically
equivalent as h→ 0 provided Uh

0, j� h. The same observations hold when j = 0 if we
set Uh

i,−1 = 0. Thus, to account for the boundary condition in (P), we can simply set

Uh
i, j = 0 for (i, j) 6∈ N2

0, (128)
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and compute Uh
i, j via (126) for all (i, j) ∈ N2

0 ∩ [0,R]2, for any R > 0. In summary,
we propose the following numerical scheme for approximating viscosity solutions of
(P):

(S)

Uh
i,j =

1
2
(
Uh

i–1,j +Uh
i,j–1

)
+hµi,j +

1
2

√(
Uh

i–1,j−Uh
i,j–1

)2
+4h2σ2

i,j, if (i, j) ∈ N2
0

Uh
i,j = 0, otherwise.

Note that we can visit the grid points in any sweeping pattern that visits (i− 1, j)
and (i, j− 1) before (i, j), which reflects the cone of influence in the percolation
problem. This scheme requires visiting each grid point exactly once and hence has
linear complexity.

Our first result guarantees that the simple boundary condition in (S) agrees with
the boundary condition in (P) as h→ 0.

Lemma 3 Let Uh
i, j satisfy the scheme (S) and suppose that σi, j is bounded by M for

all (i, j) ∈ N2
0∩∂R2

+. If i, j ≤ h−1R then there exists a constant C > 0 such that∣∣∣∣∣Uh
i,0−h

i

∑
k=0

µk,0

∣∣∣∣∣ ,
∣∣∣∣∣Uh

0, j−h
j

∑
k=0

µ0,k

∣∣∣∣∣≤C(1+RM2)
√

h. (129)

Proof Let us give the proof for i = 0. The case of j = 0 is similar. Define

J := sup
{

j ≥ 0 : Uh
0, j ≤

√
h
}
.

For j ≥ J it follows from the scheme (S) and a Taylor expansion that

Uh
0, j =

1
2

Uh
0, j−1 +hµ0, j +

1
2

Uh
0, j−1 +O

(
h

3
2 M2

)
=Uh

0, j−1 +hµ0, j +O
(

h
3
2 M2

)
.

Iterating we have

Uh
0, j = h

(
j

∑
k=J+1

µ0,k

)
+Uh

0,J +O
(

h
3
2 jM2

)
= h

(
j

∑
k=J+1

µ0,k

)
+O

(√
h+ jh

3
2 M2

)
.

Since j ≤ h−1R we have

Uh
0, j ≤ h

(
j

∑
k=0

µ0,k

)
+O

((
1+RM2)√h

)
. (130)

Noting the equivalence of (126) and (127) when σ0, j = 0, we can set σ0, j = 0 in (126)
and iterate as before to obtain

Uh
0, j ≥ h

(
j

∑
k=0

µ0,k

)
.

Combining this with (130) completes the proof. ut
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Theorem 8 Suppose that µ and σ2 are non-negative, globally Lipschitz continu-
ous on [0,∞)2 and satisfy (101), and let µs satisfy (F2). For h > 0 let Uh(x) =
Ubh−1x1c,bh−1x2c denote the extension of the numerical solution Uh

i, j of (S) to [0,∞)2.
Then we have

Uh −→U locally uniformly on [0,∞)2, (131)

where U is the unique monotone viscosity solution of (P).

Proof The proof follows the standard framework outlined by Barles and Sougani-
dis [7]. This general theory guarantees convergence of any scheme that is monotone,
stable, and consistent, provided the PDE enjoys strong uniqueness—a comparison
principle for semicontinuous sub- and supersolutions. Corollary 3 is the required
strong uniqueness result, and it is easy to see that the scheme (125) is both mono-
tone and consistent. Indeed, for any ψ ∈C1([0,∞)2) we have

1
h2

(
ψ(x)−ψ(x−he1)−hµ(x)

)
+

(
ψ(x)−ψ(x−he2)−hµ(x)

)
+

−→
(

ψx1(x)−µ(x)
)
+

(
ψx2(x)−µ(x)

)
+
,

as h→ 0, which is the required consistency. To show monotonicity, let u,v : [0,∞)2

such that u(x) = v(x) and u≤ v. Then we have(
v(x)− v(x−he1)−hµ(x)

)
+

(
v(x)− v(x−he2)−hµ(x)

)
+

=
(

u(x)− v(x−he1)−hµ(x)
)
+

(
u(x)− v(x−he2)−hµ(x)

)
+

≤
(

u(x)−u(x−he1)−hµ(x)
)
+

(
u(x)−u(x−he2)−hµ(x)

)
+
,

where the last line follows from the monotonicity of t 7→ (p1− t)+(p2− t)+.
Therefore, to complete the proof, we need to show that the scheme is stable, and

that the boundary condition is satisfied. Stability refers to a bound on Uh, independent
of h. By Lemma 3, (F2), and the continuity of µ , we have that

Uh −→ ϕ locally uniformly on ∂R2
+ as h→ 0, (132)

where ϕ(x) = (x1 + x2)
∫ 1

0 µ(tx)+µs(tx)dt, which verifies the boundary condition.
Stability follows from a comparison principle for (S), and is similar to [12, Lemma

3.3]. We give the argument here for completeness. Let

V (x) = ‖µ +µs‖∞(x1 + x2)+2‖σ‖∞

√
x1x2 +1.

We claim that Uh(x) ≤ V (x). To see this, suppose to the contrary that Uh(x) > V (x)
for some x ∈ [0,R]2, R > 0. First note that

ϕ(x)≤ (x1 + x2)‖µ +µs‖∞ =V (x)−1,

for x ∈ ∂R2
+. Therefore, by (132), we have that Uh ≤ V − 1

2 on [0,R]2 ∩ ∂R2
+ for h

small enough. Therefore, there exists z ∈ [h,R]2 such that

Uh(z)>V (z) and Uh(z−hei)≤V (z−hei) for i = 1,2. (133)
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Note that by the concavity of t 7→
√

t we have that

V (z)−V (z−hei)≥ h‖µ +µs‖∞ +h‖σ‖∞

√
z1z2

zi
.

It follows that(
V (z)−V (z−he1)−h‖µ +µs‖∞

)(
V (z)−V (z−he2)−h‖µ +µs‖∞

)
≥ h2‖σ‖2

∞.

By monotonicity of t 7→ (p1− t)+(p2− t)+ we therefore have(
V (z)−V (z−he1)−hµ(z)

)(
V (z)−V (z−he2)−hµ(z)

)
≥ h2‖σ‖2

∞

≥
(

Uh(z)−Uh(z−he1)−hµ(z)
)(

Uh(z)−Uh(z−he2)−hµ(z)
)
. (134)

This contradicts (133), hence Uh ≤V . The proof is completed by invoking [7, Theo-
rem 2.1]. ut

We now extend the numerical convergence result to µ σ2 satisfying (F1) and (F3).

Corollary 6 Suppose that µ and σ2 simultaneously satisfy (F1), (F3) and (101), and
let µs satisfy (F2). Define Uh as in Theorem 8. Then we have

Uh −→U locally uniformly on [0,∞)2, (135)

where U is the unique monotone viscosity solution of (P).

Proof Define µk,σ k,µk,σk,Uk and Uk as in the proof of Theorem 7. By definition
we have Uk ≤U ≤Uk, and by Corollary 5 and Remark 5 we have Uk,Uk→U locally
uniformly on [0,∞)2 as k→ ∞.

Let Uh
k and Uk,h denote the numerical solutions defined by (S) for µk +µs,σk and

µk +µs,σ
k, respectively, extended to [0,∞)2 as in Theorem 8. Since µk,σ2,k,µk, and

σ2
k are Lipschitz continuous and µs satisfies (F2), we can apply Theorem 8 to show

that
Uh

k −→Uk and Uk,h −→Uk, (136)

locally uniformly on [0,∞)2 as h→ 0. Since µk ≤ µ ≤ µk and σk ≤ σ ≤ σ k, we can
make an argument, as in Theorem 8, based on a comparison principle for (S), to show
that Uh

k ≤Uh ≤Uk,h for all h,k. The proof is completed by combining this with (136)
and the locally uniform convergence Uk,Uk→U . ut

5.1 Numerical simulations

We present here some numerical simulations comparing the numerical solutions of
(P), computed by (S), to realizations of directed last passage percolation (DLPP).
We restrict our attention to the box [0,1]2 for simplicity. For the case of exponential
DLPP, we consider three macroscopic means, λ1,λ2, and λ3 given by

λ1(x) =

{
1, if x1 ≥ 0.5 or x2 ≥ 0.5,
0, otherwise,

(137)
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(a) Exponential DLPP with mean λ1
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(b) Geometric DLPP with parameter q
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(c) Exponential DLPP with mean λ2
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(d) Exponential DLPP with mean λ3

Fig. 3 Comparisons of the level sets of numerical solutions of (P), computed via (S), and the level sets
of exponential/geometric DLPP simulations on a 1000× 1000 grid. The smooth lines correspond to the
numerical solutions of (P), while the rough lines correspond to the DLPP simulations.

λ2(x) = exp
(
−10 |x− (0.25,0.75)|2

)
+ exp

(
−10 |x− (0.75,0.25)|2

)
, (138)

and

λ3(x) =

{
0.5, if |x− (1,0)|2 ≤ 0.49 or |x− (0,1)|2 ≤ 0.49,
1, otherwise.

(139)

Since the results are very similar for geometric DLPP, we consider only one macro-
scopic parameter q given by

q(x) =

{
0.5, if x1 ≥ 0.5 or x2 ≥ 0.5,
1, otherwise.

(140)

Figure 3 compares the level sets of the numerical solutions of (P) with simu-
lations of exponential/geometric DLPP on a 1000× 1000 grid. The smooth curves
correspond to the level sets of the numerical solution of (P) while the rough curves
correspond to the level sets of the last passage time from the DLPP simulation. Figure
4 shows the same comparison, except for DLPP simulations on a 5000× 5000 grid.
In both cases, the numerical solutions of (P) were computed on a 1000× 1000 grid.
To give an idea of the computational complexity, it takes approximately a quarter of a
second to numerically solve the PDE on this grid in MATLAB on an average laptop.
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(a) Exponential DLPP with mean λ1
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(b) Geometric DLPP with parameter q
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(c) Exponential DLPP with mean λ2
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(d) Exponential DLPP with mean λ3

Fig. 4 Comparisons of the level sets of numerical solutions of (P), computed via (S), and the level sets of
exponential/geometric DLPP simulations on a 5000×5000 grid.

5.2 Finding maximal curves

We now propose an algorithm based on dynamic programming for finding maximiz-
ing curves, and we prove in Theorem 9 and Corollary 7 that the curve produced by
our algorithm is approximately optimal for the variational problem (36) defining U .
Other approaches to finding maximizing curves, such as the method of characteris-
tics [19], or solving the Euler-Lagrange equations [33], are not guaranteed to produce
optimal curves, due to crossing characteristics, and the possibility of local minima.
Our method is related to the method of synthesis in optimal control theory for com-
puting optimal controls from solutions of Hamilton-Jacobi-Bellman equations [6].

Our algorithm has a parameter ε > 0 and a starting point x ∈R2
+, and computes a

curve γε with γε(0) = 0 and γε(1) = x that nearly maximizes J. The algorithm works
by starting at x and tracing our way back to the origin by solving a series of dynamic
programming problems. We set x0 = x, and generate x1, . . . ,xk, . . . as follows: Given
we are at step k≥ 0, we use a dynamic programming principle (similar to Proposition
1) to write

U(xk) = max
s∈[0,1]

{
U(y(s))+W (y(s),xk)

}
, (141)

where y(s) = xk− (1− s,s)ε . An application of Hölder’s inequality yields

J(γ)≤ µ
∗(xk)ε +2σ

∗(xk)ε
√

s(1− s)+o(ε), (142)
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for any γ ∈ A with γ(0) = y(s) and γ(1) = xk. When µ and σ are continuous, this
upper bound can be attained (in the limit as ε → 0) by the diagonal curve γ(t) =
(1− t)y(s)+ xkt. Thus we are justified in making the following approximation

W (y(s),xk) = sup
γ∈A :γ(0)=y(s),γ(1)=xk

J(γ)≈ µ(xk)ε +2σ(xk)ε
√

s(1− s). (143)

Substituting (143) into (141) we find that

U(xk)≈ µ(xk)ε + max
s∈[0,1]

{
U(y(s))+2σ(xk)ε

√
s(1− s)

}
. (144)

We then define
xk+1 := y(s∗k)+ = (xk− (1− s∗k ,s

∗
k)ε)+, (145)

where s∗k ∈ [0,1] is the maximizing argument in (144) and x+=(max(x1,0),max(x2,0)).
The algorithm is terminated as soon as xk ∈ ∂R2

+ and we append the final terminal
point xk+1 = 0. In (144), we set U(y(s)) = 0 whenever y(s) 6∈ [0,∞)2. The algorithm
is summarized in Algorithm 1.

Algorithm 1: Find ε-optimal curve

Given a step size ε > 0 and x0 ∈ R2
+, we generate x1, . . . ,xk, . . . as follows:

k = 0;
while xk ∈ R2

+ do
s∗k = argmaxs∈[0,1]

{
U(xk− (1− s,s)ε)+2σ(xk)ε

√
s(1− s)

}
;

xk+1 = (xk− (1− s∗k ,s
∗
k)ε)+;

end
xk+1 = 0;

Notice that the boundary source µs does not appear explicitly in Algorithm 1,
though it does appear implicitly through the solution U of (P). Each step of the
algorithm moves a distance of at least ε/2 in the direction (−1,0) or (0,−1). If
x0 ∈ [0,R]2, then the algorithm will terminate in at most 4R/ε steps. Furthermore,
when µ and σ2 are Lipschitz, we can show that the polygonal curve γε generated by
Algorithm 1 has energy within O(ε) of the maximizing curve. This is summarized in
the following result.

Theorem 9 Let R > 0, suppose that µ and σ2 are non-negative, globally Lipschitz
continuous on [0,R]2 with constant Clip > 0, and suppose that µs satisfies (F2). Let
ε > 0, x0 ∈ (0,R]2, and let x1, . . . ,xK be the points generated by Algorithm 1. Let γε :
[0,1]→ [0,∞)2 be the monotone polygonal curve passing through xK ,xK−1, . . . ,x1,x0.
Then there exists a constant C =C(‖µ‖∞,‖σ‖∞)> 0 such that

Uµ+µs,σ (x0)≤ Jµ+µs,σ (γε)+C(1+ClipR)ε. (146)



42 Jeff Calder

Proof For convenience, we set U = Uµ+µs,σ , J = Jµ+µs,σ , and we extend µ , σ and
U to functions on R2 by setting µ(x) = σ(x) = U(x) = 0 for x 6∈ [0,∞)2. Writing
∆ t = 1/K and t j = j∆ t for j = 0, . . . ,K, we can parameterize γε so that

γ
′
ε(t) =

1
∆ t

(xK− j− xK− j+1) =
ε

∆ t
(1− s∗K− j,s

∗
K− j), (147)

for t ∈ (t j−1, t j) and j ≥ 3. It follows that∫ 1

t2
`(γε(t),γ ′ε(t))dt (148)

=
K

∑
j=3

∫ t j

t j−1

`(γε(t),γ ′ε(t))dt

= ε

K

∑
j=3

1
∆ t

∫ t j

t j−1

µ(γε(t))+2σ(γε(t))
√
(1− s∗K− j)s

∗
K− j dt

≥ ε

K

∑
j=3

(
1

∆ t

∫ t j

t j−1

µ(xK− j)+2σ(xK− j)
√

(1− s∗K− j)s
∗
K− j dt−3Clipε

)

=

(
K

∑
j=3

µ(xK− j)+2σ(xK− j)
√

(1− s∗K− j)s
∗
K− j

)
ε−3KClipε

2. (149)

An application of Hölder’s inequality gives

J(γ)≤
(

µ(xK− j)+2σ(xK− j)
√

s(1− s)
)

ε +3Clipε
2, (150)

for j ≥ 2 and any γ ∈A with γ(0) = y(s) and γ(1) = xK− j. Combining this with the
dynamic programming principle (141) we have

U(xK− j)≤ µ(xK− j)ε + max
s∈[0,1]

{
U(y(s))+2σ(xK− j)ε

√
s(1− s))

}
+3Clipε

2, (151)

for all j ≥ 2. By the definition of s∗K− j we have

U(xK− j)≤U(xK− j+1)+ε

(
µ(xK− j)+2σ(xK− j)

√
(1− s∗K− j)s

∗
K− j

)
+3Clipε

2, (152)

for j ≥ 3. By iterating this inequality for j = K, . . . ,3 we have

U(x0)≤U(xK−2)+

(
K

∑
j=3

µ(xK− j)+2σ(xK− j)
√
(1− s∗K− j)s

∗
K− j

)
ε +3KClipε

2

(148)
≤ U(xK−2)+

∫ 1

t2
`(γε(t),γ ′ε(t))dt +6KClipε

2. (153)

We have two cases now. Suppose first that y(s∗K−2) 6∈ [0,∞)2. Then U(y(s∗K−2)) =
0 and by (151) we have that U(xK−2)≤Cε . Combining this with (153) we have

U(x0)≤ J(γε)+Cε +6KClipε
2. (154)
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The proof is completed by noting that K ≤ 4R/ε .
Suppose now that y(s∗K−2) ∈ [0,∞)2. Then (152) holds for j = 2 and combining

this with (153) we have

U(x0)≤U(xK−1)+
∫ 1

t2
`(γε(t),γ ′ε(t))dt +6(K +1)Clipε

2. (155)

Since xK = 0 we must have xK−1 ∈ ∂R2
+. It follows that∫ t1

0
`(γε(t),γ ′ε(t))dt =U(xK−1).

Inserting this into (155) we see that

U(x0)≤ J(γε)+6(K +1)Clipε
2. ut

If µ and σ2 are not globally Lipschitz continuous, then Algorithm 1 is not guaran-
teed to yield optimal curves. However, it can be easily modified to give an algorithm
that does.

Corollary 7 Suppose that µ and σ2 simultaneously satisfy (F1), (F3) and (101),
and let µs satisfy (F2). Let µk and σk be sequences of functions such that µk and σ2

k
are Lipschitz with constant k, µk ≤ µ , σk ≤ σ and Uµk+µs,σk →Uµ+µs,σ locally uni-
formly. Let x0 ∈ (0,R]2 and let γk : [0,1]→ [0,∞)2 be the monotone polygonal curve
generated by applying Algorithm 1 to x0,µk,σk and Uk with ε = k−1(Uµ+µs,σ (x0)−
Uµk+µs,σk(x0)). Then we have

U(x0)≤ J(γk)+o(1) as k→ ∞. (156)

Proof Let us set Jk = Jµk+µs,σk , J = Jµ+µs,σ , Uk = Uµk+µs,σk , and U = Uµ+µs,σ . By
Theorem 9 there exists a constant C =C(‖µ‖∞,‖σ‖∞)> 0 such that

Uk(x0)≤ Jk(γk)+C(1+kR)k−1(U(x0)−Uk(x0))≤ J(γk)+C(1+R)(U(x0)−Uk(x0)).

It follows that
U(x0)≤ J(γk)+C(2+R)(U(x0)−Uk(x0)). ut

We now show some simulation results using Algorithm 1 to compute approxi-
mately optimal curves for the exponential/geometric DLPP simulations presented in
Section 5.1. Figure 5 shows the curves generated by Algorithm 1 along with optimal
paths for 10 realizations of DLPP on a 1000×1000 grid. We also show the level sets
of the numerical solutions of (P) to give points of reference. In all cases, we used a
step size of ε = 0.01 and computed s∗k in Algorithm 1 by an exhaustive search with
a grid size of 0.01. With these choices of parameters, Algorithm 1 runs in approxi-
mately a quarter of a second, assuming the numerical solution U is already available.
Note also that we implemented Algorithm 1 exactly as written, even when µ and σ

are discontinuous, and do not substitute continuous versions as in Corollary 7.
As in [33], it is expected that the optimal paths for DLPP will asymptotically

concentrate around optimal curves for the variational problem, and this is clearly re-
flected in the simulations in Figure 5. Notice that for exponential DLPP with means
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(a) Exponential DLPP with mean λ1
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(b) Geometric DLPP with parameter q
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(c) Exponential DLPP with mean λ2
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(d) Exponential DLPP with mean λ3

Fig. 5 Comparisons of the curve γε (ε = 0.01) generated by Algorithm 1 to the optimal paths from 10
realizations of DLPP for the macroscopic weights considered in Section 5.1. In each experiment, we show
the curve γε and optimal paths for several different terminal points x0 ∈ (0,1)2. Notice that in a), b) and c),
there are multiple optimizing curves, and Algorithm 1 finds only one curve, depending on the choice one
makes when there are multiple maximizing arguments for s∗k . The DLPP simulations were performed on a
1000×1000 grid, s∗k was computed via an exhaustive search with a grid size of 0.01.

λ1,λ2 and geometric DLPP with parameter q, there are multiple maximizing curves
for any terminal point x along the diagonal {x1 = x2}. We see that some of the DLPP
realizations concentrate around one optimal path, while the remaining realizations
concentrate around the other. Algorithm 1 will of course only find one of the maxi-
mizing curves, depending on the choice one makes when there are multiple maximiz-
ing arguments in the definition of s∗k .

We now show some simulations with a source term µs. Here we consider expo-
nential DLPP with mean λ = 1 on [0,1]×(0,1] and λ = 3 on [0,1]×{0}. Figure 6(a)
shows the optimal curve generated by Algorithm 1, along with the level sets of the
numerical solution of (P) and the optimal paths from 10 realizations of exponential
DLPP on a 1000×1000 grid.

Although our assumptions only allow sources on the boundary ∂R2
+, many of the

results in the paper can be shown to hold for sources along horizontal or vertical lines
in R2

+. The idea is to find the appropriate dynamic programming principle that plays
the role of Proposition 1, so that the effect of the weights in the bulk is separated
from the source. In the case of a source along the line {x2 = α} for α ∈ (0,1), and
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(a) Source at {x2 = 0}
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(b) Source at {x2 = 0.25}
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(c) Source at {x2 = 0.5}
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(d) Source at {x2 = 0.75}

Fig. 6 Comparisons of the optimal curve γε (ε = 0.01) generated by Algorithm 1 to the optimal paths from
10 realizations of exponential DLPP. The macroscopic weight functions are constant µ = 1 on [0,1]2 plus
a source term µs = 2 concentrated on a horizontal line. The simulations were performed on a 1000×1000
grid.

assuming no boundary sources, the dynamic programming principle would be

U(y) = max
0≤x1≤x′1≤y1

{
W (0,(x1,α))+

∫ x′1

x1

µ(t,α)+µs(t,α)dt +W ((x′1,α),y)
}
,

where U =Uµ+µs,σ , W =Wµ,σ , µ and σ2 are, say, Lipschitz on [0,∞)2, and µs rep-
resents the source, which is nonzero only on the line {x2 = α}. We can then use
this dynamic programming principle and its discrete version (similar to (124)) in the
proof of Theorem 1. The one caveat is that U is in general discontinuous along the
line containing the source, though U remains locally uniformly continuous on each
of the components of R2

+ obtained by removing the source line. Thus, U can only be
identified via the variational problem (39), since we have not proven uniqueness of
discontinuous viscosity solutions of (P). However, our numerical results suggest that
either uniqueness holds for (P) in some special cases where U is discontinuous, or
at the very least our numerical scheme for (P) selects the “correct” viscosity solution
for the percolation problem.

Figure 6(b), 6(c), and 6(d) show the optimal curve generated by Algorithm 1,
along with DLPP simulations for sources on the horizontal lines {x2 = 0.25}, {x2 =
0.5}, and {x2 = 0.75}, respectively.
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5.3 TASEP with slow bond rate

Finally, we consider the totally asymmetric simple exclusion process (TASEP) with a
slow bond rate at the origin. This model was originally introduced by Janowsky and
Lebowitz [25], and some partial results were obtained more recently by Seppäläinen
[36]. The process of interest is the usual TASEP with exponential rates of 1 at all
locations in Z except for the origin, which has a slower rate of r ∈ (0,1]. One can
think of this as modeling traffic flow on a road with a single toll both that every car
must pass through.

Through the correspondence with DLPP, the slow bond rate corresponds to a
source on the diagonal {x1 = x2}. In the context of our paper, we would have

µ(x) =

{
1/r, if x1 = x2,

1, otherwise.
(157)

Notice that µ does not satisfy the assumptions of Theorem 1, and we do not expect
the continuum limit (P) to hold in this case.

A quantity of interest is

κ(r) := lim
N→∞

1
N

L(N,N) for r ≤ 1,

which corresponds to the reciprocal of the maximum TASEP current [36]. It is known
that κ(1) = 4 and Seppäläinen [36] proved the following bounds:

max
{

4,
r2 +2(1+ r)

2r(1+ r)

}
≤ κ(r)≤ 3+

1
r
. (158)

It is an open problem to determine κ(r) for r < 1. In particular, one is interested in
whether κ(r) > 4 for all r < 1, or if there are some values of r close to r = 1 for
which the inverse current κ(r) remains unchanged.

Even though we do not expect our continuum limit Hamilton-Jacobi equation to
hold for the slow bond rate problem, it is nevertheless interesting to see what our
results would say about this open problem were they to hold. It is easy to see that
Uµ,σ (1,1) = 4/r for µ = σ given by (157). Indeed, one can see that the optimal
curve in the variational problem (36) must lie on the diagonal {x1 = x2}, which gives
the energy 4/r. This would suggest that

κ(r) = lim
N→∞

1
N

L(N,N) =Uµ,σ (1,1) =
4
r
.

Notice that this violates the bounds in (158), which indicates that the Hamilton-Jacobi
equation continuum limit (Theorem 1) does not hold for sources along diagonal lines.

It has recently come to our attention that the slow bond rate problem has been
setteled by Basu, Sidoravicius, and Sly [8]. They show that the inverse current is
always affected when r < 1, but do not give an explicit formula for κ(r).
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6 Discussion and future work

In this work, we identified a Hamilton-Jacobi equation for the continuum limit of a
macroscopic two-sided directed last passage percolation (DLPP) problem. We rigor-
ously proved the continuum limit when the macroscopic rates are discontinuous. Fur-
thermore, we presented a numerical scheme for solving the Hamilton-Jacobi equa-
tion, and an algorithm for finding optimal curves based on a dynamic programming
principle. Below we make some remarks, discuss simple extensions of this work, and
ideas for future work.

– Regularity of µ,σ : There are many simple modifications of (F1) under which
one can prove Theorem 1. For example, the existence of the set Ω bounded by
the strictly decreasing curve Γ and ∂R2

+ on which µ = σ = 0 is not necessary,
and one can check that the proofs hold without this assumption. This would cor-
respond to a TASEP model with step initial condition. The curves Γi on which
µ and σ may admit discontinuities can all be chosen to be strictly decreasing
instead of increasing, with appropriate modifications in the proofs. In fact, we
can even allow the curves to switch from strictly increasing to strictly decreasing,
provided the critical point is isolated, and we make an additional cone condition
assumption at this point. However, the curves Γi cannot have any positive measure
flat regions, as this can induce discontinuities in U , as shown in Remark 2.

– Discontinuous viscosity solutions: The regularity assumption (F1) was chosen
to ensure that U is locally uniformly continuous. This is essential for invoking the
Arzelà-Ascoli Theorem in the proof of Theorem 6, and in the proof of the com-
parison principle for (P) (Theorem 5). We believe that Theorem 1 holds under far
more general assumptions on µ , allowing U to be discontinuous. Presently, we do
not know how to prove this. The largest obstacle seems to be proving uniqueness
of viscosity solutions of (P) when the solutions U and the macroscopic weights µ

are discontinuous. Our numerical results seem to support this conjecture, as the
numerical scheme is able to very accurately capture discontinuities in U .

– Hydrodynamic limit of TASEP: As we showed in Section 1.2, the Hamilton-
Jacobi equation (P) is formally equivalent to the conservation law governing the
hydrodynamic limit of TASEP [21, 35]. It would be very interesting to make this
connection rigorous.

– Higher dimensions: The main obstacle in generalizing the Hamilton-Jacobi equa-
tion (P), and the results in this paper, to dimensions d ≥ 3, is the fact that the exact
form of the time constant (5) for i.i.d. random variables X(i, j) is unknown. If an
exact form for the time constant U were to be discovered for d ≥ 3, then we
anticipate no problems in generalizing the results in this paper to higher dimen-
sions. We should note that although the exact form of U is unknown for d ≥ 3,
it is known that U is continuous, 1-homogeneous, symmetric in all variables, and
superadditive, under fairly broad assumptions on the distribution of X(i, j) [30].
This is enough to show that U is the viscosity solution of some Hamilton-Jacobi
equation, but the explicit form of the equation is unknown.



48 Jeff Calder

Acknowledgements The author would like to thank Jinho Baik for suggesting the problem and for stim-
ulating discussions. The author would also like to thank the anonymous referee whose comments and
suggestions have greatly improved this manuscript.

A Proof of Theorem 5

For completeness we give the proof of Theorem 5 here. The proof is similar to [13, Theorem 2.8].

Proof Suppose that
λ := sup

Rd
+

(u− v)> 0.

Let

R = sup
{

r > 0 : u≤ v+
λ

2
on Dr

}
, (159)

where
Dr = {x ∈ Rd

+ : x1 + · · ·+ xd < r}. (160)

Since O ∈Rd
+, we have by hypothesis that u≤ v on ∂Rd

+. Therefore, since u and v are continuous we have
R ∈ (0,∞). By (159) there exists ξ0 ∈ Rd

+ ∩∂DR such that

u(ξ0) = v(ξ0)+
λ

2
and

every neighborhood of ξ0 contains some y ∈ Rd
+ with u(y)> v(y)+

λ

2
. (161)

For t > 0 set ξ = ξ0 +(t, . . . , t) and

G = {x ∈ [0,∞)d : x 5 ξ}. (162)

Let uξ denote the ξ -truncation of u. By (161) and (159) we see that

δ := sup
Rd
+

(uξ − v)>
λ

2
> 0 (163)

By (161) we have u(ξ0) > v(ξ0), and hence ξ0 ∈ O . Let εξ0
and vξ0

∈ S1 be as given in (H3)O . Choose
t > 0 small enough, and εξ0

> 0 smaller if necessary, so that G \DR ∈ Bεξ0
(ξ0)⊂ Rd

+. For α > 0 define

Φα (x,y) = uξ (x)− v(y)− α

2

∣∣∣∣x− y− 1√
α

vξ0

∣∣∣∣2 . (164)

We claim that for α large enough, there exists xα ,yα ∈ Bεξ0
(ξ0) such that

Mα := sup
Rd
+×Rd

+

Φα = Φα (xα ,yα ). (165)

To see this, first substitute y = x− 1√
α

vξ0
into (165) to find

Mα ≥ uξ (x)− v
(

x− 1√
α

vξ0

)
,

for any x ∈ Rd
+ such that x− 1√

α
∈ Rd

+. Since uξ and v are continuous, it follows from (163) that

liminf
α→∞

Mα ≥ sup
Rd
+

(uξ − v) = δ >
λ

2
> 0. (166)
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Since uξ is bounded, and v is monotone, we have by (164) that

|x− y| ≤ C√
α

whenever Φα (x,y)≥ 0. (167)

Let x,y ∈ Rd
+ such that Φα (x,y)≥ 0. Set w = πx(y) = πy(x) and ŵ = πξ (w), and define

x̂ = x+ ŵ−w and ŷ = y+ ŵ−w. (168)

A short calculation shows that πξ (x) = πξ (x̂). Since uξ = u◦πξ we have

uξ (x̂) = uξ (πξ (x̂)) = uξ (πξ (x)) = uξ (x). (169)

Since v is Pareto-monotone and ŷ 5 y we have by (169) that

uξ (x̂)− v(ŷ)≥ uξ (x)− v(y) (170)

Since x̂− ŷ = x− y, we see from (170) and (164) that

Φα (x̂, ŷ)≥Φα (x,y). (171)

Furthermore, by (167) we have

|x̂− ŵ|= |x−w| ≤ |x− y| ≤ C√
α
.

Similarly we have |ŷ− ŵ| ≤ C√
α

. Since ŵ 5 ξ we have

x̂, ŷ ∈ Gα :=
{

x′ ∈ [0,∞)d : x′ 5 ξ +
C√
α
(1, . . . ,1)

}
.

It follows from this and (171) that for every α > 0 there exists xα ,yα ∈ Gα such that Mα = Φα (xα ,yα ).
By (167) we may pass to a subsequence if necessary to find x0 ∈ G such that xα ,yα → x0 as α→∞. Then
we have

limsup
α→∞

Mα ≤ lim
α→∞

uξ (xα )− v(yα )≤ δ .

Combining this with (166) we have Mα → δ = uξ (x0)− v(x0) and

α

2

∣∣∣∣xα − yα −
1√
α

vξ0

∣∣∣∣2 −→ 0. (172)

Since δ > λ/2, it follows from the definition of R (159) that x0 ∈ G \DR ⊂ Bεξ0
(ξ0). Therefore, for α > 0

large enough we have xα ,yα ∈ Bεξ0
(ξ0), which establishes the claim.

Letting p = α

(
xα − yα − 1√

α

)
we have by (165) that p ∈ D+uξ (xα )∩D−v(yα ). By hypothesis we

have
H∗(yα , p)≥ a. (173)

Since u is truncatable, uξ is a viscosity solution of (81) and therefore

H∗(xα , p)≤ 0. (174)

Subtracting (174) from (173) we have

a≤ H∗(yα , p)−H∗(xα , p). (175)

Let wα = xα − yα − 1√
α

vξ0
and note that

xα = yα + εv,
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where

ε =
1√
α
|vξ0

+
√

αwα |= |xα − yα | and v =
vξ0

+
√

αwα

|vξ0
+
√

αwα |
.

By (172) we have
√

αwα → 0. Therefore, for α large enough we have |vξ0
−v|< εξ0

and ε < εξ0
. Since

yα ∈ Bεξ0
(ξ0) we can invoke (H3)O to find that

H∗(yα , p)−H∗(xα , p) = H∗(yα , p)−H∗(yα + εv, p)≤ m(|p||xα − yα |+ |xα − yα |). (176)

Note that

|p||xα − yα |= α

∣∣∣∣xα − yα −
1√
α

vξ0

∣∣∣∣ |xα − yα |

= α

∣∣∣∣xα − yα −
1√
α

vξ0

∣∣∣∣ ∣∣∣∣xα − yα −
1√
α

vξ0
+

1√
α

vξ0

∣∣∣∣
≤ αw2

α +
√

αwα .

Combining this with (176) and (175) we have

0 < a≤ m(αw2
α +
√

αwα + |xα − yα |).

Sending α → ∞ yields a contradiction. ut
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