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Abstract. We show that non-dominated sorting of a sequence X1, . . . ,Xn of i.i.d. random variables in R
d has a

continuum limit that corresponds to solving a Hamilton-Jacobi equation involving the probability density function

f of Xi. Non-dominated sorting is a fundamental problem in multi-objective optimization, and is equivalent to

finding the canonical antichain partition and to problems involving the longest chain among Euclidean points. As

an application of this result, we show that non-dominated sorting is asymptotically stable under bounded random

perturbations in X1, . . . ,Xn. We give a numerical scheme for computing the viscosity solution of this Hamilton-

Jacobi equation and present some numerical simulations for various density functions.
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1. Introduction. Let X1, . . . ,Xn be i.i.d. random variables on R
d with density function

f ∈ L1(Rd). The points form a partially ordered set Xn = {X1, . . . ,Xn} under the partial order

(1.1) x ≦ y ⇐⇒ xi ≤ yi for i = 1, . . . ,d.

Let ℓ(n) denote the length of a longest chain1 in Xn, and for x∈R
d let un(x) denote the length

of a longest chain in Xn consisting of points less than x. We are interested in the asymptotic

properties of un as n → ∞.

When f is a smooth density on [0,1]d , hence ℓ(n) = un(1, . . . ,1), the problem of study-

ing the asymptotics of ℓ(n) has a long history. It begins with Ulam’s famous problem [44] of

finding the length of a longest increasing subsequence of a random permutation. Hammers-

ley [24] made some of the first breakthroughs in understanding Ulam’s problem. He observed

that the distribution of the length of a longest increasing subsequence among n numbers cho-

sen uniformly at random is the same as the distribution of ℓ(n) for uniformly distributed points

on [0,1]2. Using subadditive ergodic theory, Hammersley showed that n−
1
2 ℓ(n) converges al-

most surely to a constant c as n → ∞, and he conjectured that c = 2. In subsequent papers,

Vershik and Kerov [45] and Logan and Shepp [31] showed that c ≤ 2 and c ≥ 2, respectively.

Hammersley’s results were generalized by Bollobás and Winkler [6] to uniformly distributed

points on [0,1]d ; they showed that there exist positive constants cd such that n−
1
d ℓ(n)→ cd

almost surely as n → ∞, and cd 1 e as d → ∞. The only known values of cd are c1 = 1 and

c2 = 2. Deuschel and Zeitouni [15] generalized Hammersley’s results in another direction.

For X1, . . . ,Xn i.i.d. on [0,1]2 with C1 density function f : [0,1]2 → R, bounded away from

zero, they showed that n−
1
2 ℓ(n)→ 2J in probability, where J is the supremum of the energy

J(ϕ) =
∫ 1

0

√
ϕ ′(x) f (x,ϕ(x))dx,

over all ϕ : [0,1]→ [0,1] nondecreasing and right continuous.
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(a) n = 50 points
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(b) n = 106 points

FIG. 1.1. Examples of Pareto fronts for X1, . . .Xn chosen from the uniform distribution on [0,1]2. In (b), 29

equally spaced fronts are depicted.

There is another motivation for studying the asymptotics of un that arises in multi-

objective optimization problems. Such problems are of immense importance in many fields

of science and engineering, including control theory and path planning [34, 30, 33], gene se-

lection and ranking [41, 27, 26, 28, 17, 18, 19], data clustering [25], database systems [29, 37]

and image processing and computer vision [35, 10]. In a discrete multi-objective optimiza-

tion problem, one has several objective functions gi : S → [0,∞), where i = 1, . . . ,d and

S = {x1, . . . ,xn} is a finite set, and is tasked with finding an element x ∈ S that minimizes all

of the functions simultaneously. This is generally an impossible task, and instead, a family

of solutions are obtained based on the notion of Pareto-optimality. A feasible solution x ∈ S

is called Pareto-optimal if for every y ∈ S, we have gi(y)> gi(x) for some i, or gi(y) = gi(x)
for all i; in other words, no other feasible solution is better in every objective. The col-

lection of Pareto-optimal elements is denoted F1 and called the first Pareto front. It is the

most natural notion of solution for a discrete multi-objective optimization problem. If we set

Xi = (g1(x
i), . . . ,gd(x

i)) ∈ R
d for i = 1, . . . ,n, then assuming all Xi are distinct, it is not hard

to see that

xi ∈ F1 ⇐⇒ un(Xi) = 1.

The second Pareto front, F2, consists of the Pareto-optimal elements of S\F1, and in general

Fk = Pareto optimal elements of S\
⋃

j<k

F j.

The Pareto front that a particular feasible solution lies on is useful for ranking feasible solu-

tions. As before, when the Xi are all distinct we have

xi ∈ Fk ⇐⇒ un(Xi) = k.

This observation is essential. It says that studying the asymptotic shapes of the Pareto fronts

F1,F2, . . . is equivalent to studying the longest chain function un. Figure 1.1(a) shows the

Pareto fronts for n = 50 points uniformly distributed on [0,1]2, and Figure 1.1(b) shows the

Pareto fronts for n = 106 points. The points Xi that are on the same Pareto front are connected

by a continuous staircase curve that represents the jump set of un.

In the multi-objective optimization literature, the process of computing the Pareto fronts

for a collection of points is called non-dominated sorting [13]. In the combinatorics literature,
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the partition S = F1 ∪F2 ∪·· · is called the canonical antichain partition [16]. Although we

have described non-dominated sorting in the context of a discrete optimization problem, it

is a fundamental tool in continuous optimization as well. Many state of the art algorithms

for continuous optimization involve a large number of discrete subproblems, each of which

requires non-dominated sorting. The most common examples are the so-called genetic and

evolutionary algorithms for continuous multi-objective optimization [13, 20, 21, 12, 42]. The

applications of non-dominated sorting are not restricted to optimization; indeed, there are

further striking applications in combinatorics [16, 32], molecular biology [38, 1], graph the-

ory [32], Young Tableaux [46, 16] and even in physical layout problems in the design of

integrated circuits [1].

The goal of this paper is to study the asymptotics of un, and hence the asymptotics of

non-dominated sorting. Our main result, Theorem 1.2, states that n−
1
d un converges almost

surely to a continuous function U , which is the viscosity solution of a Hamilton-Jacobi equa-

tion. Our proof is based on linking the asymptotics of un to a variational problem, which is a

generalization of the variational problem discovered by Deuschel and Zeitouni [15] to higher

dimensions. The Hamilton-Jacobi equation satisfied by U is the Hamilton-Jacobi-Bellman

equation [3] for the corresponding variational problem. We describe our main result in Sec-

tion 1.1, and postpone the proofs to Sections 2 and 3. In Section 4, we give a numerical

scheme for computing U , and show simulation results comparing the level sets of U to Pareto

fronts for various density functions.

1.1. Main result. For x,y ∈ R
d , we write x ≤ y if x ≦ y and x 6= y. When xi < yi for

i = 1, . . . ,d, we write x < y, and we set Rd
+ = {x ∈ R

d : x > 0}. We will always assume

d ≥ 2. For s, t ∈ R, s ≤ t and s < t will retain their usual definitions. Let Ω ⊂ R
d and let

f : Rd → [0,∞). We place the following assumptions on f and Ω.

(H1) There exists a continuous nondecreasing function m : [0,∞)→ [0,∞) satisfying m(0)=
0 such that

| f (x)− f (y)| ≤ m(|x− y|),

for x,y ∈ Ω, and f (x) = 0 for x 6∈ Ω,

(H2) Ω ⊂ R
d
+ is open and bounded with Lipschitz boundary.

Set

(1.2) A =
{

γ ∈C1([0,1];Rd) : γ ′(t)≥ 0 for all t ∈ [0,1]
}
.

Recall that γ ′(t)≥ 0 means that γi
′(t)≥ 0 for i= 1, . . . ,d and γ ′(t) 6= 0. Define J : A → [0,∞)

by

(1.3) J(γ) =
∫ 1

0
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt,

and U : Rd → R by

(1.4) U(x) = sup
γ∈A :γ(1)≦x

J(γ).

We make the following definition.

DEFINITION 1.1. Given a domain O ⊂ R
d , we say that a function u : O → R is Pareto-

monotone if x ≦ y =⇒ u(x)≤ u(y) for all x,y ∈ O .
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In Section 2, we show that U is a Pareto-monotone viscosity solution of the Hamilton-

Jacobi partial differential equation (PDE)

(1.5)

{
Ux1

· · ·Uxd
= 1

dd f on R
d
+

U = 0 on ∂Rd
+.

The PDE (1.5) should be interpreted as the Hamilton-Jacobi-Bellman equation for the value

function U . We note that f need only be Borel-measurable, bounded and have compact

support in R
d
+ for U to be a viscosity solution of (1.5). The stronger assumptions (H1) and

(H2) are needed to prove that U is the unique Pareto-monotone viscosity solution of (1.5)

(see Theorem 2.10) under an appropriate boundary condition at infinity. Our main result is

THEOREM 1.2. Let f satisfy (H1), let Ω satisfy (H2), and let X1, . . . ,Xn be i.i.d. with

density f . Then there exists a positive constant cd such that

n−
1
d un −→ cdU in L∞(Rd) almost surely.

The constants cd are the same as those given by Bollobás and Winkler [6]. In particular,

c1 = 1, c2 = 2 and cd 1 e as d → ∞. When f is a product density, i.e., f (x) = f1(x1) · · · fd(xd),
the value function U is given by

(1.6) U(x) =

(∫

0≦y≦x
f (y)dy

) 1
d

=

(∫ xi

0
f1(t)dt

) 1
d

· · ·
(∫ xd

0
fd(t)dt

) 1
d

.

For the case f = 1 and d = 2, Aldous and Diaconis [2, p. 204] provided a non-rigorous

derivation of (1.5) by viewing the problem as an interacting particle process. They used this

to motivate their proof that c = 2 in Ulam’s problem, but make no rigorous statements about

the relationship between (1.5) and the longest chain problem. A similar, though tangentially

related, PDE also appears in growth models in multiple dimensions that are defined through

the height of a random partial order [39, p. 209].

Theorem 1.2 provides a new tool with which to study the asymptotics of non-dominated

sorting and the longest chain problem. As an example of the applicability of this result,

we show in Theorem 3.7 that non-dominated sorting is asymptotically stable under bounded

random perturbations. Evidently, Theorem 1.2 reduces the problem of non-dominated sorting

to solving a Hamilton-Jacobi equation. From an algorithmic perspective, this may be useful

in designing fast approximate algorithms for non-dominated sorting, or finding lengths of

longest chains. We study some of these applications in a subsequent paper [7].

1.2. Motivation. As motivation, let us give an informal derivation of the Hamilton-

Jacobi PDE (1.5). Suppose f : Rd → R is continuous and n−
1
d un → U ∈ C1(Rd) uniformly.

Fix n large enough so that n−
1
d un ≈U . Then the kth Pareto front should be well approximated

by the level set {y : U(y) = n−
1
d k}. It is not hard to see that U should be Pareto-monotone

(recall Definition 1.1), and hence it is reasonable to assume that Uxi
> 0 for all i. Fix x,v ∈R

d

with 〈DU(x),v〉 > 0, where DU(x) denotes the gradient of U at x, and consider the quantity

n
1
d (U(x+ v)−U(x)). This is approximately the number of Pareto fronts passing between x

and x+ v. When counting these fronts, we may restrict ourselves to the region

A = {y : U(y)≥U(x) and y ≦ x+ v}.

This is because any samples in {y : U(y)<U(x)} will be on a previous Pareto front and only

samples that are less than x+ v can influence the Pareto rank of x+ v. See Figure 1.2 for a
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FIG. 1.2. Some quantities from the informal derivation of the Hamilton-Jacobi PDE (1.5).

depiction of this region and some quantities from the derivation. Since Uxi
(x) > 0 for all i,

and U is C1, A is well approximated by a simplex for small |v|, and furthermore, the samples

within A are approximately uniformly distributed. Let m denote the number of samples falling

in A. By scaling the simplex into a standard simplex, without disrupting the Pareto ordering

within A, it is reasonable to conjecture that the number of Pareto fronts within A (or the

length of a longest chain in A) is approximately cm
1
d for some constant c, independent of x.

For simplicity we take c = 1.

By the law of large numbers, we have m ≈ n
∫

A f (y)dy. Hence when |v|> 0 is small we

have

(1.7) n
1
d (U(x+ v)−U(x))≈

(
n

∫

A
f (y)dy

) 1
d

≈ n
1
d |A| 1

d f (x)
1
d ,

where |A| denotes the Lebesgue measure of A. Let ℓ1, . . . , ℓd denote the side lengths of the

simplex A. Then |A| ≈ cℓ1 · · ·ℓd for a constant c which we again take to be 1. Since x+v−ℓiei

lies approximately on the tangent plane to the level set {y : U(y) =U(x)}, we see that

〈DU(x),v− ℓiei〉 ≈ 0.

Rearranging the above we see that ℓi ≈Uxi
(x)−1〈DU(x),v〉, and hence

(1.8) |A| ≈Ux1
(x)−1 · · ·Uxd

(x)−1〈DU(x),v〉d .

For small |v|, we can combine (1.8) and (1.7) to obtain

〈DU(x),v〉 ≈U(x+ v)−U(x)≈ f (x)
1
d Ux1

(x)−
1
d · · ·Uxd

(x)−
1
d 〈DU(x),v〉.

Simplifying, we see that U should satisfy

(1.9) Ux1
· · ·Uxd

= f on R
d ,

up to scaling by a constant.

Although this derivation is informal, it is straightforward and conveys the essence of the

result. It is difficult, however, to construct a rigorous proof based on these heuristics. There
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are two main reasons for this. First, it supposes that n−
1
d un converges to a limit U , which is

not obvious. Second, it is essential that U ∈C1, as we require A to be an approximate simplex.

Solutions of (1.9) are in general not smooth, and can have points of non-differentiability due

to crossing characteristics. This is true even in the case that f is smooth, and is related to the

geometry of Ω.

2. Analysis of variational problem. Before studying the variational problem (1.4), we

recall some aspects of the theory of optimal control [3] that are relevant to our problem. We

will describe the infinite horizon optimal control problem, but the discussion below applies

with minor modifications to other variants of optimal control, such as finite horizon or undis-

counted problems with exit times. The state of the control problem, y(t), is assumed to obey

the dynamics

(2.1)

{
y′(t) = g(y(t),α(t)), t > 0

y(0) = x,

where α : [0,∞)→ A is the control, A is a topological space, and g : Rd ×A → R
d . Given an

initial condition x ∈ R
d , the solution of (2.1) is denoted yx(·). Let

A := {measurable functions [0,∞)→ A}.

The goal in optimal control is to select the control α ∈ A to minimize the cost functional

(2.2) J(x,α) :=
∫ ∞

0
c(yx(t),α(t))e−λ t dt,

where λ > 0 and c : Rd ×A → R. The value function for this problem is

(2.3) v(x) := inf
α∈A

J(x,α).

Under sufficient regularity assumptions on c and g (discussed below), the value function is

a Hölder- (or Lipschitz) continuous viscosity solution of the Hamilton-Jacobi-Bellman equa-

tion

(2.4) λv+H(x,Dv) = 0 on R
d ,

where

(2.5) H(x, p) = sup
a∈A

{−〈g(x,a), p〉− c(x,a)}.

Although the variational problem (1.4) can be cast in this framework, the assumptions on

the running cost c(·, ·) in the existing literature are too restrictive. For our variational problem,

we have λ = 0, g(x,a) = a, A = R
d
+,

(2.6) c(x,a) =− f (x)
1
d (a1 · · ·ad)

1
d ,

and U(x) = −v(x). In the proofs of Theorems 3.5 and 3.6, we require the standard optimal

control theory to hold for f piecewise constant on arbitrarily small grids. In the standard

reference on optimal control [3], it is assumed that x 7→ c(x,a) is uniformly continuous. This

assumption is then used to prove regularity of the value function v. There is relatively little

research devoted to relaxing the regularity condition on c. There are some results for the op-

timal control problem associated with the Eikonal equation [36, 8, 14], which allow c to have
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discontinuities. These results assume that A =R
d and make essential use of either Lipschitz-

ness of v, or uniform continuity and/or coercivity of p 7→ H(x, p), none of which hold for the

variational problem (1.4). Soravia [40] and Garavello and Soravia [22] considered a running

cost of the form c(x,a) = c1(x,a)+c2(x), where c1 is continuous and c2 is Borel-measurable,

and showed that the standard optimal control results hold with minor modifications. This is

incompatible with (2.6) when f is not continuous. A similar program is carried out for dif-

ferential games here [23]. Barles et al. [4] study optimal control on multi-domains, where the

discontinuity in c is assumed to lie in a half-space.

Under the assumption that f is compactly supported, bounded and Borel-measurable,

the standard results on optimal control hold for the variational problem (1.4) with minor

modifications to the proofs. In particular, in Lemma 2.1 we show that U is Hölder-continuous

with exponent 1
d

, and in Theorem 2.5 we show that U is a viscosity solution of (1.5). The

uniqueness of viscosity solutions of (1.5) under the assumption that f satisfies (H1) is a more

delicate problem. This is addressed in Section 2.3.

In our main result, Theorem 1.2, we assume that f satisfies (H1), which is stronger

than Borel-measurability. We assume Borel-measurability in much of this section so that our

results apply to piecewise constant densities, which are used to approximate f in the proofs

of Theorems 3.5 and 3.6. To be more precise, we set

(2.7) B = { f : Rd → R : f is bounded, Borel-measurable, and supp( f )⊂ [0,1]d}.

We note that the assumption supp( f ) ⊂ [0,1]d is not restrictive, as we can make a simple

scaling argument to obtain the case where f has compact support in R
d . We also note that

Borel-measurability of f is necessary, as opposed to Lebesgue-measurability, to guarantee

that the composition t 7→ f (γ(t)) is Lebesgue measurable.

We now introduce some new notation. We will write γ ≦ x whenever γ(t) ≦ x for all

t ∈ [0,1]. We write γ1 ≦ γ2 whenever γ1(1)≦ γ2(0). The same definitions apply to ≤,<,≧,≧
and > with obvious modifications. For y∈R

d and r > 0 we set Br(y) = {x∈R
d : |x−y|< r}.

For x,y ∈ R
d we set

(2.8) w(x,y) =

{
sup{J(γ) : γ ∈ A and x ≦ γ ≦ y} if x ≦ y

0 otherwise.

2.1. Basic properties of U . We establish here some basic properties of U . Namely, in

Lemma 2.1 we establish Hölder-continuity of U , and in Lemma 2.2, we establish a dynamic

programming principle for U .

LEMMA 2.1. Let f ∈ B. Then U is Hölder-continuous with exponent 1
d

and Hölder

seminorm [U ] 1
d
≤ ‖ f‖

1
d

L∞(Rd)
.

Proof. Let x,z ∈R
d and let ε > 0. Choose γ ∈ A with γ ≦ x and J(γ)≥U(x)−ε . Since

f (x) = 0 for x 6∈ [0,1]d , we may assume that γ(t) ∈ [0,1]d for all t ∈ [0,1]. Set

s = sup{t ∈ [0,1] : γ(t)≦ z}.

If for all t ∈ [0,1] we have γ(t) 6≦ z, then set s = 0. We claim that

(2.9) U(z)≥U(x)−
∫ 1

s
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt − ε .
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To see this: In the case that s > 0, we have γ(s)≦ z and hence

U(z)≥
∫ s

0
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt

= J(γ)−
∫ 1

s
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt

≥U(x)−
∫ 1

s
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt − ε .

In the case that s = 0, we have

U(z)≥ 0 = J(γ)−
∫ 1

0
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt

≥U(x)−
∫ 1

0
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt − ε .

Hence (2.9) is established. Suppose s < 1. Then there must exist i such that γi(s) ≥ zi. It

follows that

∫ 1

s
γi
′(t)dt = γi(1)− γi(s)≤ xi − zi = |xi − zi|.

Applying the generalized Hölder inequality we see that

∫ 1

s
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt ≤ ‖ f‖

1
d

L∞(Rd)

(∫ 1

s
γ1
′(t)dt

) 1
d

· · ·
(∫ 1

s
γd
′(t)dt

) 1
d

≤ ‖ f‖
1
d

L∞(Rd)
|xi − zi|

1
d ∏

j 6=i

(γ j(1)− γ j(s))
1
d

≤ ‖ f‖
1
d

L∞(Rd)
|xi − zi|

1
d .

Inserting this into 2.9 we obtain

(2.10) U(x)−U(z)≤ ‖ f‖
1
d

L∞(Rd)
|xi − zi|

1
d + ε ≤ ‖ f‖

1
d

L∞(Rd)
|x− z| 1

d + ε

If s = 1 then inspecting (2.9), we see that U(x)−U(z) ≤ ε , which implies (2.10). Sending

ε → 0 we find that U(x)−U(z) ≤ ‖ f‖
1
d

L∞(Rd)
|x− z| 1

d . We can reverse the roles of x and z in

the preceding argument to obtain the opposite inequality.

REMARK 1. By a similar argument, we can show that w : Rd ×R
d → R is Hölder-

continuous with exponent 1/d and [w] 1
d
≤ ‖ f‖

1
d

L∞(Rd)
.

LEMMA 2.2 (Dynamic Programming Principle). Let f ∈ B. Then for any r > 0 and

y ∈ R
d we have

(2.11) U(y) = max
x∈∂Br(y) :x≤y

{U(x)+w(x,y)}.

Proof. Let us denote the right hand side of (2.11) by v(y). We first show that U(y)≤ v(y).
Let ε > 0 and let γ ∈ A such that γ ≦ y and J(γ) ≥ U(y)− ε . Suppose that |γ(1)− y| ≥ r.

Then there exists x ∈ ∂Br(y) such that γ(1)≦ x ≦ y and hence

U(y)≤ J(γ)+ ε ≤U(x)+ ε ≤ v(y)+ ε .
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If |γ(0)− y| ≤ r then there exists x ∈ ∂Br(y) such that x ≤ γ ≤ y and hence

v(y)≥ w(x,y)≥ J(γ)≥U(y)− ε .

Finally, suppose that |γ(1)− y| < r and |γ(0)− y|> r. Then there exists 0 < s < 1 such that

|γ(s)− y|= r. Set x = γ(s) and define γ1,γ2 ∈ A by

γ1(t) = γ(st) and γ2(t) = γ(s+ t(1− s)) for t ∈ [0,1].

Note that γ1 ≦ x and x ≦ γ2 ≦ y. Since J is invariant under a change of parametrization of γ ,

we see that

U(y)≤ J(γ)+ ε = J(γ1)+ J(γ2)+ ε ≤U(x)+w(x,y)+ ε ≤ v(y)+ ε .

Sending ε → 0 we obtain U(y)≤ v(y).
We now show that U(y) ≥ v(y). By Lemma 2.1 and Remark 1, there exists x ∈ ∂Br(y)

with x ≤ y such that

v(y) =U(x)+w(x,y).

Let ε > 0 and let γ1,γ2 ∈ A with γ1 ≦ x and x ≦ γ2 ≦ y such that

J(γ1)≥U(x)− ε

2
and J(γ2)≥ w(x,y)− ε

2
.

Since γ1 ≦ γ2 ≦ y, we can concatenate γ1 and γ2 to find that U(y)≥ J(γ1)+ J(γ2). Thus we

have

U(y)≥U(x)+w(x,y)− ε = v(y)− ε .

Sending ε → 0 yields U(y)≥ v(y).

2.2. Hamilton-Jacobi-Bellman equation for U . We digress momentarily to recall the

definition of viscosity solution of

(2.12) H(Du) = f on O,

where O ⊂ R
d is open, H : Rd → R is continuous, f : O → R is bounded, and u : O → R

is the unknown function. For more information on viscosity solutions of Hamilton-Jacobi

equations, we refer the reader to [3]. The superdifferential of u at x ∈ O , denoted D+u(x), is

the set of all p ∈ R
d satisfying

(2.13) u(y)≤ u(x)+ 〈p,y− x〉+o(|x− y|) as O ∋ y → x.

Similarly, the subdifferential of u at x ∈O , denoted D−u(x), is the set of all p ∈R
d satisfying

(2.14) u(y)≥ u(x)+ 〈p,y− x〉+o(|x− y|) as O ∋ y → x.

Equivalently, we may set

D+u(x) = {Dϕ(x) : ϕ ∈C1(O) and u−ϕ has a local max at x},

and

D−u(x) = {Dϕ(x) : ϕ ∈C1(O) and u−ϕ has a local min at x}.



10 Calder et al.

DEFINITION 2.3. A viscosity subsolution of (2.12) is a continuous function u : O → R

satisfying

(2.15) H(p)≤ f ∗(x) for all x ∈ O and p ∈ D+u(x).

Similarly, a viscosity supersolution of (2.12) is a continuous function u : O → R satisfying

(2.16) H(p)≥ f∗(x) for all x ∈ O and p ∈ D−u(x).

The functions f∗ and f ∗ are the lower and upper semicontinuous envelopes of f , respec-

tively, defined by

f ∗(x) = limsup
r%0

{ f (y) : y ∈ O and |x− y| ≤ r},

and f∗ =−(− f )∗. If u is a viscosity subsolution and supersolution of (2.12), then we say that

u is a viscosity solution of (2.12).

After a basic proposition, we establish in Theorem 2.5 that U is a Pareto-monotone vis-

cosity solution of (1.5).

PROPOSITION 2.4. Let O ⊂ R
d be open and let v : O → R be continuous and Pareto-

monotone. Then

D+v(x)∪D−v(x)⊂ R
d
+ for all x ∈ O.

Proof. Let x ∈ O and p ∈ D+v(x). For any index i and small enough t > 0, we have

x ≦ x+ tei ∈ O . Since v is Pareto-monotone, we have

v(x)≤ v(x+ tei)≤ v(x)+ pit +o(t) as t % 0.

Hence pi ≥ o(t)/t as t % 0 which implies that pi ≥ 0. The proof for D−v(x) is similar.

THEOREM 2.5. Let f ∈ B. Then the value function U defined by (1.4) is a Pareto-

monotone viscosity solution of the Hamilton-Jacobi equation

(2.17) Ux1
· · ·Uxd

=
1

dd
f on R

d .

Furthermore, U satisfies

(i) Whenever supp( f )⊂ {x ∈ R
d : 0 ≦ x ≦ z}, we have

U(x1, . . . ,xd) =U(min(x1,z1), · · ·min(xd ,zd)) for all x ∈ R
d
+,

(ii) U(x) = 0 for every x ∈ R
d \Rd

+.

Proof. It follows from the definition of U (1.4) that U is Pareto-monotone, and (ii)

follows from the fact that supp( f )⊂ [0,1]d .

For (i), let z ∈ R
d such that supp( f ) ⊂ {x ∈ R

d : 0 ≦ x ≦ z} and let x ∈ R
d
+ such that

xi > zi for some i. Set x̂ = (min(x1,z1), . . . ,min(xd ,zd)). Since U is Pareto-monotone we

have U(x̂)≤U(x). Let ε > 0 and γ ∈ A such that γ ≦ x and U(x)≤ J(γ)+ ε . Let

s = sup{t : γ(t)≦ x̂}.

If for all t ∈ [0,1] we have γ(t) 6≦ x̂, then set s = 0. If s = 1, then γ ≦ x̂ and hence U(x) ≤
J(γ)+ ε ≤U(x̂)+ ε . If s = 0 then for every t ∈ [0,1], γ(t) 6∈ supp( f ), and hence J(γ) = 0. It

follows that

U(x)≤ J(γ)+ ε = ε ≤U(x̂)+ ε .
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If 0 < s < 1, then for any t > s, γi(t)> zi for some i, and hence f (γ(t)) = 0. Set γ1(t) = γ(st)
for t ∈ [0,1]. Then γ1 ≦ x̂ and J(γ) = J(γ1), hence U(x)≤ J(γ)+ ε = J(γ1)+ ε ≤U(x̂)+ ε .

Sending ε → 0 we see that U(x)≤U(x̂) and hence U(x) =U(x̂).
We now show that U is a viscosity supersolution of (2.17). Let y ∈ R

d , let a ∈ R
d
+, and

set γ(t) = y−a(1− t). By Lemma 2.2 we have

U(y)≥U(y−a(1− t))+
∫ 1

t
f (y−a(1− s))

1
d (a1 · · ·ad)

1
d ds

≥U(y−a(1− t))+(1− t) f∗(y)(a1 · · ·ad)
1
d +o(1− t) as t 1 1.(2.18)

Let p ∈ D−U(y). Since y−a(1− t)→ y as t 1 1, we have

〈p,(1− t)a〉
(2.14)

≥ U(y)−U(y−a(1− t))+o(1− t)

(2.18)

≥ (1− t) f∗(y)(a1 · · ·ad)
1
d +o(1− t) as t 1 1.

Sending t 1 1 we obtain

〈p,a〉 ≥ f∗(y)
1
d (a1 · · ·ad)

1
d .

Since a > 0 was arbitrary, we obtain

(2.19) sup
a>0

{
−〈p,a〉+ f∗(y)

1
d (a1 · · ·ad)

1
d

}
≤ 0.

Since U is Pareto-monotone, Proposition 2.4 yields p ≥ 0. Hence if f∗(y) = 0 then U is

trivially a viscosity supersolution of (2.17) at y. We may therefore suppose that f∗(y) > 0.

Fix i and set a j = 1 for j 6= i. By (2.19) we have

sup
ai>0

{
−∑

j 6=i

p j +a
1
d
i f∗(y)

1
d −ai pi

}
≤ 0.

Since ai can be arbitrarily large, we must have pi > 0 for the above to hold. Substituting

ai = p−1
i into (2.19) and simplifying we obtain

p1 · · · pd ≥ 1

dd
f∗(y).

Thus U is a viscosity supersolution of (2.17).

We now show that U is a viscosity subsolution of (2.17). Let y ∈ R
d , let ε > 0, and let

p ∈ D+U(y). By Lemmas 2.1 and 2.2 and Remark 1, for every r > 0 there exists x ∈ ∂Br(y)
with x ≤ y such that U(y) = U(x)+w(x,y). Hence there exists γ ∈ A with x ≦ γ ≦ y such

that

U(y)≤
∫ 1

0
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt +U(x)+ εr.

By Hölder’s inequality

U(y)−U(x)≤
∫ 1

0
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt + εr

≤ ( f ∗(y)
1
d +o(1))

(∫ 1

0
γ1
′(t)dt

) 1
d

· · ·
(∫ 1

0
γd
′(t)dt

) 1
d

+ εr

≤ f ∗(y)
1
d |x1 − y1|

1
d · · · |xd − yd |

1
d +o(r)+ εr,
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as r % 0. Since x → y as r % 0, we have

〈p,y− x〉
(2.13)

≤ U(y)−U(x)+o(r)≤ f ∗(y)
1
d |x1 − y1|

1
d · · · |xd − yd |

1
d +o(r)+ εr,

as r % 0. Choose r > 0 small enough so that o(r)/r ≤ ε , and set a = (y− x)/r. Then we have

−〈p,a〉+ f ∗(y)
1
d (a1 · · ·ad)

1
d ≥−2ε.

Since ε > 0 was arbitrary, we see that

sup
a≥0: |a|=1

{
−〈p,a〉+ f ∗(y)

1
d (a1 · · ·ad)

1
d

}
≥ 0.

Since U is Pareto-monotone, we have p ≥ 0. If pi = 0 for some i, then p1 · · · pd ≤ f ∗(y)/dd .

Thus we may assume that pi > 0 for all i. Then the supremum above is attained at some a > 0

with |a|= 1. By scaling a so that a1 · · ·ad = 1, we see that

(2.20) sup
a>0:a1···ad=1

{
−〈p,a〉+ f ∗(y)

1
d

}
≥ 0.

Since pi > 0 for all i, we have that

limsup
|a|→∞, a>0

−〈p,a〉+ f ∗(y)
1
d =−∞.

It follows that the supremum in (2.20) is attained at some a∗ > 0. Introducing a Lagrange

multiplier λ > 0, the necessary conditions for a∗ to be a maximizer of the above constrained

optimization problem are

pi =
λ

a∗i
for all i ∈ {1, . . . ,d} and a∗1 · · ·a∗d = 1.

It follows that λ = (p1 · · · pd)
1
d and a∗i = p−1

i (p1 · · · pd)
1
d . Substituting this into (2.20) we

have

p1 · · · pd ≤ 1

dd
f ∗(y),

which completes the proof.

REMARK 2. We remark that U satisfies an important truncation property. Namely, if we

fix z ∈ R
d and define Ũ , f̂ : Rd → R by

Ũ(x1, . . . ,xd) =U(min(x1,z1), . . . ,min(xd ,zd))

f̂ (x) =

{
f ∗(x) if x ≦ z

0 otherwise,

then we have

Ũx1
· · ·Ũxd

= f̂ on R
d

in the viscosity sense. Indeed, this follows directly from Theorem 2.5 by noting that supp( f̂ )⊂
{x ∈ R

d : 0 ≦ x ≦ z} and

Ũ(x) = sup
γ∈A :γ≦x

∫ 1

0
f̂ (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt.
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2.3. Comparison principle. We aim here to establish that U is the unique viscosity

solution of (1.5) under hypotheses (H1) and (H2) on f and Ω, which in general allow f

to be discontinuous. The standard results on uniqueness of viscosity solutions [3, 11] as-

sume uniformly continuous dependence on spatial variables. There has been some recent

work relaxing this condition, as it is important in many applications. Tourin [43] considered

Hamilton-Jacobi equations of the form H(x,Du) = 0, where x 7→ H(x, p) is allowed to have a

discontinuity along a smooth surface, and proved a comparison principle under the assump-

tion that p 7→ H(x, p) is convex and uniformly continuous. Neither assumption holds for

(1.5), although the non-convexity can be easily remedied. Deckelnick and Elliot [14] prove a

comparison principle for Lipschitz viscosity solutions of Eikonal-type equations of the form

H(Du) = f , where f satisfies a regularity condition similar to (H1), but slightly more general.

As exhibited by the solution U(x) = (x1 · · ·xd)
1
d of (1.5) for f = 1, solutions of (1.5) are not

in general Lipschitz continuous. Camilli and Siconolfi [9] proposed a new notion of viscosity

solution for Hamilton-Jacobi equations in which H has measurable dependence on the spatial

variable x. They obtain general uniqueness results under the assumption that p 7→ H(x, p) is

quasiconvex and coercive. Their results do not apply to (1.5) due to the coercivity assumption.

The main result in this section, Theorem 2.10, establishes uniqueness for (1.5) under

hypotheses (H1) and (H2), and a boundary condition at infinity. Let us give a sketch of the

proof now. Let u be a Pareto-monotone viscosity solution of (1.5). We first prove a standard

comparison principle, in Theorem 2.6, for uniformly continuous f . We can then define the

regularized value functions Uε and Uε by replacing f by its inf and sup convolutions fε and

f ε , respectively, in (1.4). Since f ε and fε are Lipschitz continuous, the comparison principle

from Theorem 2.6 yields Uε ≤ u ≤Uε . The proof is completed by showing that Uε ,U
ε →U

as ε → 0, where U is the value function defined by (1.4). We establish a more general result

in Lemma 2.9, the proof of which relies on the second comparison principle, Theorem 2.8.

This comparison principle holds for f and Ω satisfying (H1) and (H2) under the additional

assumption that the subsolution is truncatable, as per Definition 2.7. As pointed out in Remark

2, the value function U is truncatable, so Theorem 2.8 is applicable in the proof of Lemma

2.9.

THEOREM 2.6. Suppose f : Rd
+ →R is uniformly continuous with supp( f )⊂ [0,1]d . Let

u and v be viscosity sub- and supersolutions, respectively, of

(2.21) ux1
· · ·uxd

= f on R
d
+,

and suppose that

(2.22) u(x) = u(min(x1,1), . . . ,min(xd ,1)) for x ∈ R
d
+,

and v is Pareto-monotone. If u ≤ v on ∂Rd
+ then u ≤ v on R

d
+.

The proof of Theorem 2.6 utilizes the method of doubling the variables, which is stan-

dard in the theory of viscosity solutions [3], with appropriate modifications for the boundary

condition (2.22).

Proof. For θ > 0, set vθ (x) = v(x)+θ
1
d 〈x,1d〉, where 1d = (1, . . . ,1) ∈ R

d . Fix x ∈ R
d
+

and p ∈ D−vθ (x). It is easy to see that p−θ
1
d 1d ∈ D−v(x). Hence we have

(p1 −θ
1
d ) · · ·(pd −θ

1
d )− f (x)≥ 0.

Since v is Pareto-monotone, we have pi −θ
1
d ≥ 0 for all i, and therefore

p1 · · · pd = (p1 −θ
1
d +θ

1
d ) · · ·(pd −θ

1
d +θ

1
d )≥ (p1 −θ

1
d ) · · ·(pd −θ

1
d )+θ

≥ f (x)+θ .
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Hence vθ is a viscosity supersolution of

vθ ,x1
· · ·vθ ,xd

= f +θ on R
d
+,

and u ≤ vθ on ∂Rd
+.

Suppose that δ := sup
R

d
+
(u− vθ )> 0. For x,y ∈ R

d
+ and α > 0, set

Φα(x,y) = u(x)− vθ (y)−α|x− y|2,

and Mα = sup
R

d
+×R

d
+

Φα . Setting x = y in Φα(x,y) we see that Mα ≥ δ > 0 for all α . Let

x̂ = (min(x1,1), . . . ,min(xd ,1)) and ŷ = (min(y1,1), · · · ,min(yd ,1)).

Note that |x̂ − ŷ| ≤ |x − y|, u(x̂) = u(x) (by (2.22)) and vθ (ŷ) ≤ vθ (y) for all x,y ∈ R
d
+.

It follows that Φα(x̂, ŷ) ≥ Φα(x,y), and hence Φα attains a maximum at some (xα ,yα) ∈
[0,1]d × [0,1]d . Since Mα ≥ δ , we have

(2.23) u(xα)− vθ (yα)≥ δ +α|xα − yα |2.

It follows that

(2.24) |xα − yα | ≤
1√
α

(
‖u‖L∞((0,1)d)− vθ (0)

) 1
2
.

Since u≤ vθ on ∂Rd
+ and (x,y) 7→ u(x)−vθ (y) is continuous, it follows from (2.23) and (2.24)

that (xα ,yα) ∈ (0,1]d × (0,1]d for α large enough. For such α we have p := 2α(xα − yα) ∈
D+u(xα)∩D−vθ (yα), and hence

p1 · · · pd ≤ f (xα) and p1 · · · pd ≥ f (yα)+θ .

Subtracting the above equations yields f (xα)− f (yα)≥ θ > 0, which contradicts the uniform

continuity of f and (2.24) as α → ∞. Therefore u ≤ vθ on R
d
+. Sending θ → 0 completes the

proof.

We can prove a comparison principle for discontinuous f by assuming that the subsolu-

tion satisfies the truncation property described in Remark 2. For this, we make the following

definition.

DEFINITION 2.7. Let u be a viscosity subsolution of

(2.25) ux1
· · ·uxd

= f on R
d
+.

We say that u is truncatable if for every z ∈ R
d
+, ũ is a viscosity subsolution of

ũx1
· · · ũxd

= f̂ on R
d
+,

where ũ and f̂ are defined in Remark 2.

We note that that truncatability is well-defined, i.e., it depends only on f ∗. By Remark 2,

the value function U is truncatable. It is easy to see that every C1 Pareto-monotone subsolu-

tion of (2.25) is truncatable. It turns out, thanks to Theorem 2.10, that every Pareto-monotone

viscosity solution of (2.25) satisfying (2.22) is truncatable.

We place the following assumptions on f : Rd
+ → [0,∞) and Ω.

(H1) There exists a continuous nondecreasing function m : [0,∞)→ [0,∞) satisfying m(0)=
0 such that

| f (x)− f (y)| ≤ m(|x− y|),

for x,y ∈ Ω, and f (x) = 0 for x 6∈ Ω.
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(H2) Ω ⊂ R
d
+ is open and bounded with Lipschitz boundary.

In particular, since Ω is open (H1) implies that f = f∗ on R
d
+. The assumptions on Ω imply

that the following cone condition is satisfied.

(H2∗) For every x∈ ∂Ω, there exists a cone Kx with nonempty interior and a neighborhood

Vx of x such that

y ∈Vx \Ω =⇒ (y+Kx)∩Ω∩Vx ⊂ {y}.

To see this: For any x ∈ ∂Ω there exists, by Lipchitzness of ∂Ω, a real number r > 0 and a

Lipschitz continuous function Ψ : Rd−1 → R such that, upon relabelling and reorienting the

coordinate axes if necessary, we have

Ω∩Br(x) = {y ∈ Br(x) : yd < Ψ(y1, . . . ,yd−1)}.

One can check that the cone

Kx =

{
y ∈ R

d : yd ≥ 2Lip(Ψ)
√

y2
1 + · · ·y2

d−1

}

satisfies (H2∗). As it is more useful in the comparison principle proof, we will assume that

(H2∗) holds instead of Lipschitzness of the boundary. We note that the cone condition (H2∗)

is similar to the one used by Deckelnick and Elliot [14, p. 331].

THEOREM 2.8. Suppose that Ω satisfies (H2∗) and f satisfies (H1). Let u and v be

viscosity sub- and supersolutions, respectively, of

(2.26) ux1
· · ·uxd

= f on R
d
+,

and assume that u is truncatable and v is Pareto-monotone. Then u ≤ v on ∂Rd
+ implies that

u ≤ v on R
d
+.

As in the proof of Theorem 2.6, the proof below is based on the standard technique of

doubling the variables [11]. The proof is similar to [14, Theorem 2.3] in the way that (H2∗)

is used, however, we cannot assume Lipschitzness of v. The truncatability condition on u in

a sense replaces the Lipschitz condition on v in [14, Theorem 2.3].

Proof. For θ > 0, set vθ (x) = v(x)+ θ
1
d 〈x,1d〉+ θ . Then u < vθ on ∂Rd

+. As in the

proof of Theorem 2.6, vθ is a viscosity supersolution of

(2.27) vθ ,x1
· · ·vθ ,xd

= f +θ on R
d
+.

Now suppose that sup
R

d
+
(u− vθ )> 0 and let

R = sup
{

r > 0 : u ≤ vθ on R
d
+∩Br(0)

}
.

Since u < vθ on ∂Rd
+ and u−vθ is continuous, we see that 0 < R < ∞. By the definition of R,

there exists z0 ∈ ∂BR(0)∩R
d
+ such that u(z0) = vθ (z0) and every neighborhood of z0 contains

a point y such that u(y)> vθ (y). For r > 0 set

H = {x ∈ R
d : z0 − r1d < x < z0 + r21d}.

and note that supH(u− vθ )> 0 for any r > 0.

Notice that we may assume (H2∗) holds at any x ∈ R
d
+. Indeed, if x 6∈ ∂Ω then we may

set Vx = Bσ (x) and choose σ > 0 small enough so that ∂Ω∩Vx =∅. Then any cone Kx will
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suffice as either Vx \Ω =∅ or Vx∩Ω =∅. Let η ∈ Sd−1 be in the interior of Kz0
. For x ∈R

d
+

set

ũ(x1, . . . ,xd) = u(min(x1,z0,1 + r2), . . . ,min(xd ,z0,d + r2)).

For α > 0 and (x,y) ∈ R
d
+×R

d
+, set

(2.28) Φα(x,y) = ũ(x)− vθ (y)−α

∣∣∣∣x− y− 1√
α

η

∣∣∣∣
2

,

and Mα = sup
R

d
+×R

d
+

Φα . By continuity of ũ and vθ we have

(2.29) ε := liminf
α→∞

Mα ≥ sup
R

d
+

(ũ− vθ )> 0.

Set

D = {x ∈ R
d
+ : xi ≤ z0,i − r for some i}.

Let x ∈ D such that x ≦ z0 + r21d . Then there exists i such that xi ≤ z0,i − r and we have

|x|2 ≤ (z0,i − r)2 +∑
j 6=i

(z0, j + r2)2 = |z|2 −2z0,ir+O(r2).

Since |z|= R and z0,i > 0, we can choose r > 0 small enough so that x ∈ BR(0). Fixing such

an r > 0 we have

(2.30) ũ ≤ vθ on D∩{x ∈ R
d
+ : x ≦ z0 + r21d}.

Since ũ and vθ are uniformly continuous on compact sets, it follows from (2.30) that

there exists δ > 0 such that

D ∋ x ≦ z0 + r21d and |x− y| ≤ δ =⇒ ũ(x)− vθ (y)≤
ε

2
,

for every x,y ∈ R
d
+. Now let x ∈ D and y ∈ R

d
+ with |x− y| ≤ δ , and set

x̂ = (min(x1,z0,1 + r2), . . . ,min(xd ,z0,d + r2))

ŷ = (min(y1,z0,1 + r2), . . . ,min(yd ,z0,d + r2)).

Then x̂ ∈ D, x̂ ≦ z0 + r21d , |x̂− ŷ| ≤ |x−y| ≤ δ , ũ(x) = ũ(x̂) and vθ (y)≥ vθ (ŷ). We conclude

that

ũ(x)− vθ (y)≤ ũ(x̂)− vθ (ŷ)≤
ε

2
.

Hence we have shown that for any x,y ∈ R
d
+

(2.31) x ∈ D and |x− y| ≤ δ =⇒ ũ(x)− vθ (y)≤
ε

2
.

Fix α > 0 large enough so that Mα > ε/2 and let (x,y) ∈ R
d
+×R

d
+ such that Φα(x,y)>

ε/2. Then we have

ũ(x)− v(y)−α

∣∣∣∣x− y− 1√
α

η

∣∣∣∣
2

>
ε

2
.
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In particular, we have ũ(x)− vθ (y)>
ε
2
, and

|x− y| ≤ 1√
α

(∣∣∣‖ũ‖
L∞(Rd

+)
− vθ (0)

∣∣∣
1
2
+1

)
.

Taking α large enough so that |x− y| ≤ δ , we see from (2.31) that x ≧ z0 − r1d . Now set

x̂ = (min(x1,z0,1 + r2), . . . ,min(xd ,z0,d + r2)),

and ŷ= y+ x̂−x. Then we have x̂∈H, x̂− ŷ= x−y, ũ(x̂)= ũ(x), and vθ (ŷ)≤ vθ (y). It follows

that Φα(x̂, ŷ) ≥ Φα(x,y). Hence for α > 0 large enough, Φα attains a global maximum at

(xα ,yα) ∈ R
d
+×R

d
+ satisfying xα ∈ H and |xα − yα | ≤C/

√
α .

Sending α → ∞ and extracting a subsequence, if necessary, we may assume that

xα → x0 and yα → x0 as α → ∞,

for some x0 ∈ H. Since

ũ(x0)− vθ

(
x0 −

1√
α

η

)
≤ Mα ≤ ũ(xα)− vθ (yα),

we see, by the continuity of ũ and vθ , that

lim
α→∞

Mα = ũ(x0)− vθ (x0).

It follows that

(2.32) α

∣∣∣∣xα − yα − 1√
α

η

∣∣∣∣
2

→ 0 as α → ∞.

Let

p = 2α

(
xα − yα − 1√

α
η

)
.

Since (xα ,yα) ∈ R
d
+×R

d
+ is a local max of Φα , we have p ∈ D+ũ(xα)∩D−vθ (yα). Since ũ

is a truncatable, we have

p1 · · · pd ≤ ( f̂ )∗(xα)≤ f ∗(xα),

where f̂ (x) = f ∗(x) for x ≦ z0 + r21d and f̂ (x) = 0 otherwise. By (2.27) we have

p1 · · · pd ≥ f∗(yα)+θ .

Combining these we see that

(2.33) f ∗(xα)− f∗(yα)≥ θ .

If x0 6∈ ∂Ω, then for α large enough we have either xα ,yα ∈ Ω or xα ,yα ∈R
d
+ \Ω. Hence

by (H1) we have

(2.34) f ∗(xα)− f∗(yα)≤ m(|xα − yα |).

Suppose now that x0 ∈ ∂Ω. We have two cases; either (1) yα ∈ Ω or (2) yα ∈ R
d
+ \Ω.
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Case 1. In this case we have f∗(yα) = f (yα). If xα ∈ Ω then f ∗(xα) = f (xα) and hence

(2.34) holds. If xα ∈ R
d
+ \Ω then f ∗(xα) = 0 and (2.34) holds trivially.

Case 2. Set wα = xα − yα − 1√
α

η and note that

xα = yα +
1√
α
(η +

√
αwα).

By (2.32) we have
√

αwα → 0 as α → ∞. Since η is in the interior of Kz0
, we see that

η +
√

αwα ∈ Kz0
for α large enough, and hence xα ∈ yα +Kz0

. We can take r > 0 smaller,

if necessary, so that H ∈ Vz0
. Since xα ∈ H, we can choose α large enough so that yα ∈ Vz0

.

Since xα 6= yα for α large enough, we have by (H2∗) that xα ∈R
d
+ \Ω and hence f ∗(xα) = 0

and (2.34) holds. Sending α → 0 in (2.34) contradicts (2.33), hence u ≤ vθ on R
d
+. Sending

θ → 0 we find that u ≤ v on R
d
+.

In order to prove a general uniqueness result, Theorem 2.10, we require a perturbation

result for the value function U with respect to sup and inf convolutions of the density f .

Since a similar result, for a different type of perturbation, is required in the proof of our

main result, Theorem 1.2, we state a more general result in Lemma 2.9. We first recall some

notation standard in the theory of viscosity solutions. For a sequence of bounded functions

fn : Rd
+ → R, the upper and lower limits are defined by

limsup∗
n→∞

fn(x) := lim
j→∞

sup

{
fn(y) : n ≥ j, y ∈ R

d , and |x− y| ≤ 1

j

}
,

and

liminf∗
n→∞

fn(x) := lim
j→∞

inf

{
fn(y) : n ≥ j, y ∈ R

d , and |x− y| ≤ 1

j

}
.

LEMMA 2.9. Let { fn}∞
n=1 ⊂ B and suppose that Ω satisfies (H2∗), f satisfies (H1), and

(2.35) f∗ ≤ liminf∗
n→∞

fn and limsup∗
n→∞

fn ≤ f ∗.

For each n, set

vn(x) = sup
γ∈A :γ≦x

∫ 1

0
fn(γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt.

Then vn →U uniformly where U is the value function given by (1.4).

Proof. We claim that { fn}∞
n=1 is a uniformly bounded sequence. To see this, suppose

to the contrary that there exists a sequence xn in [0,1]d such that fn(xn)→ ∞ as n → ∞. By

passing to a subsequence, if necessary, we may assume that xn → x0 ∈ [0,1]2 as n → ∞. By

the definition of the upper limit and (2.35), we have

f ∗(x0)≥ limsup∗
n→∞

fn(x0) = ∞,

which contradicts the assumption that f satisfies (H1) and establishes the claim.

Since { fn}∞
n=1 is uniformly bounded, there exists (by Lemma 2.1) a constant C such

that [vn] 1
d
≤ C for all n. The sequence vn is therefore bounded and equicontinuous, and by

the Arzela-Ascoli theorem there exists a subsequence vnk
and a Hölder-continuous function

v : Rd → R such that vnk
→ v uniformly on compact sets in R

d as k → ∞. By Theorem 2.5
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(i), (ii), we conclude that the convergence is actually uniform on R
d . By Theorem 2.5, each

vn is a Pareto-montone truncatable viscosity solution of

vn,x1
· · ·vn,xd

=
1

dd
fn on R

d
+.

By standard results on viscosity solutions (see [11, Remark 6.3]) and (2.35), we have that v

is a Pareto-monotone viscosity solution of

vx1
· · ·vxd

=
1

dd
f on R

d
+.

By the assumption that supp( fn) ⊂ [0,1]d , we have that vn(x) = 0 for all x 6∈ R
d
+, hence

v(x) = 0 for all x 6∈ R
d
+.

We claim that v is truncatable. To see this, fix z ∈ R
d
+ and define ṽ, ṽn, f̂ and f̂n as in

Remark 2. Since vn is truncatable, ṽn is a viscosity solution of

ṽn,x1
· · · ṽn,xd

=
1

dd
f̂n on R

d
+.

By the definition of f̂n, we have f̂n ≤ f ∗n , with f̂n(x) = f ∗n (x) for x ≦ z. It follows that

limsup∗
n→∞

f̂n(x)≤ limsup∗
n→∞

f ∗n (x)≤ f ∗(x) = f̂ (x) = ( f̂ )∗(x) for x ≦ z.

For x 6≦ z, there exists a neighborhood V of x on which f̂n is identically zero for all n. It

follows that

limsup∗
n→∞

f̂n(x) = 0 = ( f̂ )∗(x),

and therefore limsup∗
n→∞

f̂n ≤ ( f̂ )∗. Since ṽnk
→ ṽ uniformly, we can again apply standard

results on viscosity solutions [11] to find that ṽ is a viscosity subsolution of

ṽx1
· · · ṽxd

=
1

dd
f̂ on R

d
+,

which proves the claim.

By Theorem 2.8 we have v = U on R
d
+. Since U(x) = v(x) = 0 for x 6∈ R

d
+ we have

v =U on R
d . The above argument can be used to show that every subsequence of vn contains

a uniformly convergent subsequence converging to U . It follows that vn → U uniformly in

R
d as n → ∞.

We now establish uniqueness of viscosity solutions of (1.5).

THEOREM 2.10. Suppose that Ω satisfies (H2∗) and f satisfies (H1). Then there exists

a unique Pareto-monotone viscosity solution u of

(2.36)

{
ux1

· · ·uxd
= f on R

d
+

u = 0 on ∂Rd
+,

satisfying the additional boundary condition

(2.37) u(x) = u(min(x1,1), . . . ,min(xd ,1)) for x ∈ R
d
+.
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Proof. By Theorem 2.5 there exists a Hölder-continuous Pareto-monotone viscosity so-

lution u of (2.36). To prove uniqueness, we will show that u = d ·U , where U is the value

function defined by (1.4). Let ε > 0 and consider the inf and sup convolutions of f , defined

for x ∈ R
d
+ by

fε(x) = inf
y∈Rd

+

{
f (y)+

1

ε
|x− y|

}
and f ε(x) = sup

y∈Rd
+

{
f (y)− 1

ε
|x− y|

}
.

Recall that fε and f ε are Lipschitz continuous with constant 1/ε and fε ≤ f ≤ f ε . Without

loss of generality, we may assume that Ω ⊂ (0,1)d , and hence for ε > 0 small enough, we

have supp( fε),supp( f ε)⊂ [0,1]d . For x ∈ R
d
+, set

Uε(x) = sup
γ∈A :γ≦x

∫ 1

0
f ε(γ(t))

1
d (γ ′1(t) · · ·γ ′d(t))

1
d dt,

and

Uε(x) = sup
γ∈A :γ≦x

∫ 1

0
fε(γ(t))

1
d (γ ′1(t) · · ·γ ′d(t))

1
d dt.

By Theorem 2.5, d ·Uε is a viscosity solution of

(2.38) vx1
· · ·vxd

= f ε on R
d
+,

and satisfies the boundary condition (2.37). Since f ≤ f ε and u is a viscosity solution of

(2.36), we see that u is a viscosity subsolution of (2.38). Since u = U = 0 on ∂Rd
+ and u

satisfies (2.37), we can apply Theorem 2.6 to find that u ≤ d ·Uε . By a similar argument,

we have that u ≥ d ·Uε . Since fε , f ε ∈ B and (2.35) is satisfied for the sequences { f ε}ε>0

and { fε}ε>0, we have by Lemma 2.9 that Uε ,U
ε →U uniformly in R

d as ε → 0, and hence

u = d ·U .

3. Large sample asymptotics of un. The proof of Theorem 1.2 is split into several steps.

In Section 3.1, we prove a basic convergence result for piecewise constant density functions,

which is a generalization of the results of Deuschel and Zeitouni [15]. In Section 3.2, we

extend the convergence result to densities that are continuous on Ω and vanish on R
d \Ω by

considering a sequence of piecewise constant approximations to f , applying the results from

Section 3.1, and passing to the limit. This requires a perturbation result for the energy J,

which we obtained from the comparison principle for the associated Hamilton-Jacobi PDE

(1.5) in Lemma 2.9.

3.1. Piecewise constant densities. We aim to prove a basic convergence result for

piecewise constant densities here. The proof is split into a lower bound, Theorem 3.1, and

an upper bound, Theorem 3.4. We should note that the techniques used here are similar to

those used by Deuschel and Zeitouni [15], who showed the same convergence result for C1

densities on the unit hypercube in dimension d = 2.

Let us introduce some notation. For a finite set S ⊂ R
d , let ℓ(S) denote the length of a

longest increasing chain in S. The set function ℓ has an important invariance. If Ψ : Rd →R
d

is a mapping that preserves the partial order ≦, i.e., x ≦ y ⇐⇒ Ψ(x)≤ Ψ(y), then

(3.1) ℓ(S) = ℓ(Ψ(S)) for any S ⊂ R
d .

For A ⊂ R
d we denote by χA : Rd → R the characteristic function of the set A, which takes

the value 1 on A and 0 on R
d \A. When A is Lebesgue measurable, we denote by |A| the
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FIG. 3.1. An illustration of some quantities from the proof of Theorem 3.1.

Lebesgue measure of A. We set 0d = (0, . . . ,0) ∈ R
d and 1d = (1, . . . ,1) ∈ R

d . Given an

integer L, we partition [0,1)d into Ld hypercubes of side length 1/L. More precisely, for a

multiindex α ∈ N
L with ‖α‖∞ ≤ L, where ‖α‖∞ = max(α1, . . . ,αL), we set

(3.2) QL,α = {x ∈ [0,1)d : α −1d ≦ Lx < α}.

We say that f : [0,1)d → [0,∞) is L-piecewise constant if f is constant on QL,α for all α . If

f is L-piecewise constant then f is kL-piecewise constant for all k ∈ N. For convenience, we

also set

J = sup
γ∈A

J(γ) = sup
γ∈A

∫ 1

0
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt.

We now establish an asymptotic lower bound on ℓ({X1, . . . ,Xn}).
THEOREM 3.1. Let f : [0,1)d → [0,∞) be L-piecewise constant, and let X1, . . . ,Xn be

i.i.d. with density f . Then

liminf
n→∞

n−
1
d ℓ({X1, . . . ,Xn})≥ cdJ a.s.

Proof. Let ε > 0 and select γ ∈ A with J(γ) ≥ J − ε
cd

. Without loss of generality, we

may assume that γ ′(t)> 0 for all t ∈ [0,1]. Let s1, . . . ,sk denote the k ≤ dL times at which γ
intersects the set

⋃

α

∂QL,α ∩ (0,1)d .

Set s0 = 0 and sk+1 = 1. For j = 0, . . . ,k set I j = [s j,s j+1) and

(3.3) R j = {x ∈ [0,1)d : γ(s j)≦ x < γ(s j+1)}.

For every j we have R j ⊂ QL,α for some α . Recalling the definition of J (1.3) we have

(3.4) J(γ) =
k

∑
j=0

∫

I j

f (γ(t))
1
d (γ1

′(t) · · ·γd
′(t))

1
d dt =

k

∑
j=0

f (γ(s j))
1
d

∫

I j

(γ1
′(t) · · ·γd

′(t))
1
d dt,
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where the second equality follows from the fact that f is constant on R j ⊂ QL,α . Applying

the generalized Hölder inequality to (3.4) we have

J(γ)≤
k

∑
j=0

f (γ(s j))
1
d

d

∏
i=1

(∫

I j

γi
′(t)dt

) 1
d

=
k

∑
j=0

f (γ(s j))
1
d |R j|

1
d .

Setting p j =
∫

R j
f (x)dx = f (γ(s j))|R j| we have

(3.5) J ≤ J(γ)+
ε

cd

≤
k

∑
j=0

p
1
d
j +

ε

cd

.

Fix j ∈ {0, . . . ,k}. Let n j denote the number of points from X1, . . . ,Xn falling in R j and

set

(3.6) ℓ j(n) = ℓ({X1, . . . ,Xn}∩R j) .

Then n j is Binomially distributed with parameters n and p j. If f is identically zero on R j then

ℓ j(n) = 0 with probability one for all n, and p j = 0, hence

(3.7) n−
1
d ℓ j(n) = cd p

1
d
j a.s.

If f is not identically zero on R j, then since γ ′(t) > 0 for all t, we have |R j| > 0 and hence

p j > 0. The conditional law ρ j := p−1
j · f · χR j

is then uniform on R j. Let i1, . . . , in j
be the

indices of the n j random variables out of X1, . . . ,Xn that belong to R j. Let Ψ : R j → [0,1)d

be the injective affine transformation mapping R j onto [0,1)d . Then Ψ(Xi1), . . . ,Ψ(Xin j
) are

independent and uniformly distributed on [0,1)d . By [6, Remark 1], we have

n
− 1

d
j ℓ

(
{Ψ(Xi1), . . . ,Ψ(Xin j

)}
)
→ cd a.s.

Since Ψ preserves the partial order ≦, we have by (3.1) that

ℓ j(n) = ℓ
(
{Xi1 , . . . ,Xin j

}
)
= ℓ
(
{Ψ(Xi1), . . . ,Ψ(Xin j

)}
)
.

Since n−1n j → p j almost surely we have

(3.8) n−
1
d ℓ j(n) = n

− 1
d

j (n−1n j)
1
d ℓ j(n)→ cd p

1
d
j a.s.

Combining this (3.5), (3.7) and (3.8), we see that

(3.9) n−
1
d

k

∑
j=0

ℓ j(n)→ cd

k

∑
j=0

p
1
d
j ≥ cdJ− ε a.s.

Since γ is a monotone curve (i.e., γ ′(t) ≥ 0), we can connect longest chains from each rect-

angle R j together to form a chain in [0,1)d . It follows that

(3.10) ℓ({X1, . . . ,Xn})≥
k

∑
j=0

ℓ j(n).
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Combining this with (3.9) we have

liminf
n→∞

n−
1
d ℓ({X1, . . . ,Xn})≥ cdJ− ε a.s.,

which completes the proof.

For the proof of the upper bound, we need to introduce some new notation. Let k1 be an

integer and set ∆x = 1/k1. Let k2 be another integer and set ∆y = ∆x/k2. For given k1,k2,

we say that a sequence of multiindices b = (b j)
k1
j=1 ⊂ N

d−1 is admissible if b1 ≦ · · · ≦ bk1

and ‖b j‖∞ ≤ k1k2 for all j. We denote the set of admissible multiindices by Φ(k1,k2). For

b ∈ Φ(k1,k2), define zb,0,zb,1, . . . ,zb,k1
in [0,1]d by zb,0 = 0d and zb, j = (b j∆y, j∆x) for j ≥ 1.

Since b is admissible, zb,0, . . . ,zb,k1
defines a chain in [0,1]d . Define γb : [0,1]→ [0,1]d to be

the polygonal curve connecting the points zb,0, . . . ,zb,k1
, i.e.,

γb(t) = zb, j−1 +
1

∆x
(zb, j − zb, j−1)(t − ( j−1)∆x)

for t ∈ [( j−1)∆x, j∆x]. For b ∈ Φ(k1,k2) and 1 ≤ j ≤ k1, set

Rb, j =
{

x ∈ [0,1)d : zb, j−1 − (1d−1,0)∆y ≦ x < zb, j

}
.

For each rectangle Rb, j, we set pb, j =
∫

Rb, j
f (x)dx. We say that a chain x1 ≦ x2 ≦ · · ·≦ xm in

[0,1)d is b-increasing if

{x1, . . . ,xm} ⊂
k1⋃

j=1

Rb, j.

It is not hard to see that for any k1,k2, every chain in [0,1)d is b-increasing for some b ∈
Φ(k1,k2). See Figure 3.1 for an illustration of the above definitions.

We first need a preliminary lemma which bounds the length of a longest chain within the

narrow strip

(3.11) Tj := [0,1]d−1 × [( j−1)∆x, j∆x),

for any j ∈ {1, . . . ,k1}. We note that the following lemma is a generalization of [15, Lemma

7]. The proof is based on the same idea of using a mixing process to embed X1, . . . ,Xn into

another set of i.i.d. random variables that are uniform when restricted to the strip Tj.

LEMMA 3.2. Let f : [0,1)d → [0,∞) be L-piecewise constant, and let X1, . . . ,Xn be

i.i.d. with density f . Fix an integer j ∈ {1, . . . ,k1} and let 0 < ∆x ≤ ‖ f‖−1

L∞((0,1)d)
. Then

(3.12) limsup
n→∞

n−
1
d ℓ({X1, . . . ,Xn}∩Tj)≤ cd

(
2∆x‖ f‖L∞((0,1)d)

) 1
d

a.s.

Proof. Set M = ‖ f‖L∞((0,1)d) and let g = f +(M− f ) ·χTj
. Let Y1, . . . ,Yn be i.i.d. accord-

ing to the conditional density β−1(M− f ) ·χTj
where β =

∫
Tj

M− f (x)dx. Let m1, . . . ,mn be

Bernoulli zero-one random variables with parameter (1+β )−1 and set

(3.13) ik = m1 + · · ·+mk.

Define Z1, . . . ,Zn through the mixture process

Zk = mkXik +(1−mk)Yk.
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FIG. 3.2. An illustration of the quantities Rb, j , zb, j , QL,α and γb in two dimensions with b = (b1,b2,b3,b4) =
(7,7,10,11). In this case, the unit square is partitioned into four squares, QL,(1,1), QL,(1,2), QL,(2,1) and QL,(2,2),

which are separated by dotted lines in the figure.

Then Z1, . . . ,Zn are i.i.d. with density (1 + β )−1g. Let W denote the cardinality of the

set {Z1, . . . ,Zn} ∩ Tj. Then W is binomially distributed with parameters n and p := (1+
β )−1∆xM. Since g is constant on Tj, we can use a similar argument to that in Theorem 3.1 to

show that

(3.14) n−
1
d ℓ({Z1, . . . ,Zn}∩Tj)→ cd p

1
d a.s.

Let m = in and note that

ℓ({X1, . . . ,Xm}) = ℓ({Zk : mk = 1}∩Tj)≤ ℓ({Z1, . . . ,Zn}∩Tj) ,

and that p ≤ ∆xM. Combining this with (3.14) we have

(3.15) limsup
n→∞

n−
1
d ℓ({X1, . . . ,Xm})≤ cd(∆xM)

1
d a.s.

Since m is Binomially distributed with parameters n and (1+β )−1, we have nm−1 → 1+β
almost surely and hence

limsup
n→∞

m− 1
d ℓ({X1, . . . ,Xm}) = limsup

n→∞
(nm−1)

1
d n−

1
d ℓ({X1, . . . ,Xm})

≤ (1+β )
1
d cd(∆xM)

1
d a.s.

Since β ≤ ∆xM ≤ 1 we have

limsup
n→∞

m− 1
d ℓ({X1, . . . ,Xm})≤ cd(2∆xM)

1
d a.s.

The desired result (3.12) follows from noting that n 7→m(n) is monotone nondecreasing along

every sample path and m → ∞ as n → ∞ with probability one.
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The following short technical lemma is essential in the proof of Theorem 3.4

LEMMA 3.3. Let f : [0,1)d → [0,∞) be L-piecewise constant. For every ε > 0 and k1 ≥ L

we have

(3.16) ∑
j∈Hb

p
1
d
b, j ≤ J+ ε .

for all b ∈ Φ(k1,k2), the admissible multiindices, and k2 ≥C‖ f‖L∞((0,1)d)k
d−1
1 /εd , where

(3.17) Hb = { j : Rb, j ⊂ QL,α for some α}.

Proof. Let k1,k2,ε > 0, and b∈Φ(k1,k2). Set I j = [( j−1)∆x, j∆x) and fix j ∈{1, . . . ,k1}
and t ∈ I j. Note that

|Rb, j|=
{

∆yd−1∆x∏d−1
i=1 (b j,i −b j−1,i +1) if j ≥ 2

∆yd−1∆x∏d−1
i=1 (b j,i −b j−1,i) if j = 1,

and

∆xdγb,1
′ (t) · · ·γb,d

′ (t) = ∆yd−1∆x
d−1

∏
i=1

(b j,i −b j−1,i),

where we set b0 = 0 for convenience. A short computation shows that

(3.18) |∆x(γb,1
′ (t) · · ·γb,d

′ (t))
1
d −|Rb, j|

1
d | ≤C∆x

1
d ∆y

1
d ,

where C = (d −1)
1
d . Since f is L-piecewise constant we have

(3.19) f (γb(t)) = f (zb, j−1) =
pb, j

|Rb, j|
,

for all j ∈ Hb and t ∈ I j. Noting that ∆x = |I j| and recalling the definition of J (1.3) we have

J ≥ J(γb)
(3.18)

≥ ∑
j∈Hb

1

|I j|

∫

I j

f (γb(t))
1
d (|Rb, j|

1
d −C∆x

1
d ∆y

1
d )dt

= ∑
j∈Hb

|Rb, j|
1
d

|I j|

∫

I j

f (γb(t))
1
d dt −C ∑

j∈Hb

1

|I j|

∫

I j

f (γb(t))
1
d ∆x

1
d ∆y

1
d dt

(3.19)

≥ ∑
j∈Hb

p
1
d
b, j −‖ f‖

1
d

L∞((0,1)d)
k

d−1
d

1 k
− 1

d
2 .(3.20)

Taking k2 ≥ (C/ε)d‖ f‖L∞((0,1)d)k
d−1
1 completes the proof.

We now establish an asymptotic upper bound on ℓ({X1, . . . ,Xn}).
THEOREM 3.4. Let f : [0,1)d → [0,∞) be L-piecewise constant, and let X1, . . . ,Xn be

i.i.d. with density f . Then

limsup
n→∞

n−
1
d ℓ({X1, . . . ,Xn})≤ cdJ a.s.
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Proof. Let k2 > 0,k1 ≥ L,ε > 0, and b ∈ Φ(k1,k2). We suppose that k1 ≥ L is a multiple

of L so that f is k1-piecewise constant. Let ℓb(n) denote the length of a longest b-increasing

chain. Let n j denote the number of X1, . . . ,Xn that belong Rb, j and set

(3.21) ℓb, j(n) = ℓ
(
{X1, . . . ,Xn}∩Rb, j

)
.

Due to the monotonicity of zb,0, . . . ,zb,k1
, at most (d −1)L of Rb,1, . . . ,Rb,k1

can have a non-

empty intersection with more than one hypercube QL,α . It follows that |H c
b | ≤ (d − 1)L,

where H c
b = {1, . . . ,k1}\Hb.

Since each b-increasing chain is the union of chains in Rb,1, . . . ,Rb,k1
, we have

(3.22) ℓb(n)≤
k1

∑
j=1

ℓb, j(n) = ∑
j∈H c

b

ℓb, j(n)+ ∑
j∈Hb

ℓb, j(n).

We will deal with each of the above sums separately. For the first term, set M = ‖ f‖L∞((0,1)d)

and let k1 be large enough so that ∆x ≤ 1/M. Since Rb, j ⊂ Tj for each j, we have by Lemma

3.2 that

limsup
n→∞

n−
1
d ∑

j∈H c
b

ℓb, j(n)≤ cd |H c
b |(2∆xM)

1
d ≤ cd(d −1)L(2M)

1
d k

− 1
d

1 a.s.

Choose k1 large enough so that

(3.23) limsup
n→∞

n−
1
d ∑

j∈H c
b

ℓb, j(n)≤
ε

2
a.s.

We now bound the second sum in (3.22). By Lemma 3.3, choose k2 = k(M,k1,ε) so that

(3.24) ∑
j∈Hb

p
1
d
b, j ≤ J+

ε

2cd

,

for all b ∈ Φ(k1,k2). For any j ∈ Hb, the conditional density ρ j on Rb, j is uniform. By a

similar argument as in the proof of Theorem 3.1, we have that

n−
1
d ℓb, j(n)→ cd p

1
d
b, j a.s.

Combining this with (3.22), (3.23), and (3.24) we have

(3.25) limsup
n→∞

n−
1
d ℓb(n)≤ cdJ+ ε a.s.

Since every chain in X1, . . . ,Xn is b-increasing for some b ∈ Φ(k1,k2), we have

ℓ({X1, . . . ,Xn})≤ max
b∈Φ(k1,k2)

ℓb(n),

for every n. It follows that

limsup
n→∞

ℓ({X1, . . . ,Xn})≤ cdJ+ ε a.s.,

which completes the proof.



Hamilton-Jacobi equation for non-dominated sorting 27

3.2. Continuous densities on Ω. We now generalize the convergence results on piece-

wise constant densities, Theorems 3.1 and 3.4, to continuous densities on Ω. Our main result,

Theorem 1.2, is proved at the end of the section. The idea of our approach is to divide [0,1)d

into a large number of hypercubes, and to flatten f on each sub-cube. We can then apply the

results from Section 3.1 and take the limit as the size of the sub-cubes tends to zero. In order

to pass to the limit, we apply the perturbation result given in Lemma 2.9.

Let X1, . . . ,Xn be i.i.d. with density f . We recall that un(x) denotes the length of a longest

chain among X1, . . . ,Xn consisting of points less than or equal to x under the partial order ≦.

In other words

un(x) = ℓ({Xi : Xi ≦ x}) .

We also recall the definition of the value function U , defined in (1.4) by

U(x) = sup
γ∈A :γ≦x

∫ 1

0
f (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt.

We now establish pointwise asymptotic upper and lower bounds on un.

THEOREM 3.5. Let f : Rd →R satisfy (H1) and let Ω ⊂R
d
+ satisfy (H2). Then for every

z ∈ R
d we have

(3.26) limsup
n→∞

n−
1
d un(z)≤ cdU(z) a.s.

Proof. Set D = {x ∈ R
d : 0 ≦ x < z} and p =

∫
D f (x)dx. Suppose that p = 0. It follows

from (H1) that f is lower semicontinuous, and hence f (x) = 0 for x ≦ z. Thus un(z) = 0 =
U(z) almost surely.

Suppose that p > 0 and let ε > 0. Let k ∈ N and partition D into kd hypercubes Qk,α for

multiindices α with ‖α‖∞ ≤ k. Define fk : Rd → [0,∞) by

(3.27) fk(x) = ∑
α

(
sup
Qk,α

f
)

χQk,α
(x)+ f (x)χ

Rd\D(x),

and set pk =
∫

D fk(x)dx. For every integer k, fk is k-piecewise constant on D and f ≤ fk.

Define vk : Rd → R by

(3.28) vk(x) = sup
γ∈A :γ≦x

∫ 1

0
fk(γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt.

Note that the sequence fk is uniformly bounded, Borel-measurable, and has compact support

in [0,1]d . Furthermore, it follows from (3.27) that (2.35) holds for the sequence fk. Hence by

Lemma 2.9 we have that vk →U uniformly as k → ∞. Now fix k large enough so that

(3.29) |vk(z)−U(z)| ≤ ε

cd

.

Set

(3.30) λ =

(∫

Rd
fk(x)dx

)−1

,

and define g = λ fk. Then λ f ≤ g and we can write g as a convex combination of two

distributions as follows:

g = λ f +(g−λ f ).
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Let Y1, . . . ,Yn be i.i.d. with density (1− λ )−1(g− λ f ), let m1, . . . ,mn be Bernoulli random

variables with parameter λ , and set

i j = m1 + · · ·+m j.

Define

Z j = m jXi j
+(1−m j)Yj.

Then a simple computation shows that Z1, . . . ,Zn are i.i.d. with density g. Let W denote the

cardinality of {Z1, . . . ,Zn}∩D. Since g is k-piecewise constant on D, we can apply Theorems

3.1 and 3.4 to obtain

(3.31) lim
n→∞

W− 1
d ℓ({Z1, . . . ,Zn}∩D}) = cd p

− 1
d

k vk(z) a.s.

Note that W is Binomially distributed with parameters n and λ pk, hence n−1W → λ pk almost

surely. Applying this to (3.31) we have

lim
n→∞

n−
1
d ℓ({Z1, . . . ,Zn}∩D) = lim

n→∞
(n−1W )

1
d W− 1

d ℓ({Z1, . . . ,Zn}∩D)

= cdλ
1
d vk(z) a.s.(3.32)

Set m = in. Note that m is Binomially distributed with parameters n and λ , and

(3.33) um(z) = ℓ({X1, . . . ,Xm}∩D)≤ ℓ({Z1, . . . ,Zn}∩D) .

Combining (3.33) with (3.32) and the fact that n−1m → λ as n → ∞ we have

limsup
n→∞

m− 1
d um(z)

(3.33)

≤ lim
n→∞

(m−1n)
1
d n−

1
d ℓ({Z1, . . . ,Zn}∩D)

(3.32)
= cdvk(z) a.s.(3.34)

Recalling (3.29) we have

limsup
n→∞

m− 1
d um(z)≤ cdU(z)+ ε a.s.

As in the proof of Lemma 3.2, the proof is completed by noting that n 7→ m(n) is monotone

nondecreasing along every sample path and m → ∞ as n → ∞ with probability one.

THEOREM 3.6. Let f : Rd →R satisfy (H1) and let Ω ⊂R
d
+ satisfy (H2). Then for every

z ∈ R
d we have

(3.35) liminf
n→∞

n−
1
d un(z)≥ cdU(z) a.s.

Proof. Let ε > 0. As in the proof of Theorem 3.5, we set D := {x ∈ R
d : 0 ≦ x < z}

and we may suppose that p :=
∫

D f (x)dx > 0. As before, let k ∈ N and partition D into kd

hypercubes Qk,α for multiindices α with ‖α‖∞ ≤ k. Define fk : Rd → [0,∞) by

(3.36) fk(x) = ∑
α

(
inf
Qk,α

f
)

χQk,α
(x)+ f (x)χ

Rd\D(x),
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and set pk =
∫

D fk(x)dx. Define

(3.37) q(x) =

{
fk(x)
f (x) , if f (x)> 0

0, otherwise.

For any α such that Qk,α ⊂ Ω, we have by (H1) and (3.36) that

fk(x)≥ f (x)−m

(√
d

k

)
for x ∈ Qk,α .

It follows that ‖q‖L∞(Rd) 1 1 as k → ∞. As in the proof of Theorem 3.5, we have that vk →U

uniformly as k → ∞, where vk is defined by (3.28). We can therefore fix k large enough so

that

(3.38) cd‖q‖−
1
d

L∞(Rd)
vk(z)≥ cdU(z)− ε .

For i= 1, . . . ,n, let mi be a Bernoulli zero-one random variable with parameter ‖q‖−1

L∞(Rd)
q(Xi).

Let m = m1 + · · ·+mn and let i1, . . . , im denote the indices for which mi = 1. We claim that

Xi1 , . . . ,Xim are i.i.d. with density g := λ fk where λ is defined in (3.30). To see this, first note

since f (x) = 0 implies fk(x) = 0, we have q(x) f (x) = fk(x) for all x ∈ R
d . Thus

(3.39) P(mi = 1) =
∫

Rd
P(mi = 1 |Xi = x) f (x)dx =

∫

Rd

q(x)

‖q‖ f (x)dx =
1

λ‖q‖ ,

where ‖q‖= ‖q‖L∞(Rd). Let j ≥ 1 and let A ⊂ R
d be measurable. We have

P(Xi j
∈ A) = P(Xi ∈ A |mi = 1)

=
P(Xi ∈ A and mi = 1)

P(mi = 1)

(3.39)
= λ‖q‖

∫

A
P(mi = 1 |Xi = x) f (x)dx

= λ‖q‖
∫

A

q(x)

‖q‖ f (x)dx

=
∫

A
λ fk(x)dx.

By the construction of Xi1 , . . . ,Xim , they are independent random variables, hence the claim is

established.

Let W denote the cardinality of {Xi1 , . . . ,Xim}∩D. By Theorems 3.1 and 3.4, we have

(3.40) lim
n→∞

W− 1
d ℓ({Xi1 , . . . ,Xim}∩D) = cd p

− 1
d

k vk(z) a.s.

Define

wi =

{
1, if mi = 1 and Xi ∈ D

0, otherwise.

Then W = w1 + · · ·wn. Each wi is a Bernoulli zero-one random variable with parameter

P(wi = 1) = P(mi = 1 and Xi ∈ D) =
∫

D
P(mi = 1 |Xi = x) f (x)dx =

pk

‖q‖ .
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It follows that W is Binomially distributed with parameters n and ‖q‖−1 pk, and hence n−1W →
‖q‖−1 pk almost surely. Combining this with (3.40) yields

lim
n→∞

n−
1
d ℓ({Xi1 , . . . ,Xim}∩D) = lim

n→∞
(n−1W )

1
d W− 1

d ℓ({Xi1 , . . . ,Xim}∩D)

= cd‖q‖− 1
d vk(z) a.s.(3.41)

Noting that

un(z) = ℓ({X1, . . . ,Xn}∩D)≥ ℓ({Xi1 , . . . ,Xim}∩D) ,

we have

liminf
n→∞

n−
1
d un(z)≥ lim

n→∞
n−

1
d ℓ({Xi1 , . . . ,Xim}∩D)

(3.41)
= cd‖q‖− 1

d vk(z) a.s.(3.42)

Recalling (3.38) we have

liminf
n→∞

n−
1
d un(z)≥ cdU(z)− ε a.s.,

which completes the proof.

We now have the proof of Theorem 1.2.

Proof. Let ε > 0. Let k ∈ N and for a multiindex α ∈ Z
d , set xα = α/k. Since U is

uniformly continuous (by Lemma 2.1) we can choose k large enough so that

(3.43) |U(xα+1d
)−U(xα)| ≤

ε

cd

for all α ∈ Z
d . Let I be the set of multiindices α for which xα ∈ [0,1]d . Note that the

cardinality of I is (k+1)d . Since I is finite with cardinality independent of n, Theorems 3.5

and 3.6 yield

(3.44) lim
n→∞

sup
α∈I

|n− 1
d un(xα)− cdU(xα)|= 0 a.s.

Let z ∈ (0,1]d . Then there exists α ∈ I such that xα < z ≦ xα+1d
. By the Pareto-monotonicity

of un and (3.43) we have

n−
1
d un(z)− cdU(z)≤ n−

1
d un(xα+1d

)− cdU(z)
(3.43)

≤ n−
1
d un(xα+1d

)− cdU(xα+1d
)+ ε .

By a similar argument, we have

n−
1
d un(z)− cdU(z)≥ n−

1
d un(xα)− cdU(xα)− ε ,

and hence

(3.45) ‖n−
1
d un − cdU‖L∞((0,1)d) ≤ sup

α∈I

|n− 1
d un(xα)− cdU(xα)|+ ε .

Combining (3.44) and (3.45) we have

limsup
n→∞

‖n−
1
d un − cdU‖L∞((0,1)d) ≤ ε a.s.,
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and hence limn→∞ ‖n−
1
d un−cdU‖L∞((0,1)d) = 0 almost surely. The desired result now follows

immediately from the boundary conditions on U proved in Theorem 2.5 (i), (ii) and the fact

that there are almost surely no samples in R
d \ (0,1)d .

As a straightforward application of Theorem 1.2, we can show that non-dominated sort-

ing is stable under bounded random perturbations in the samples X1, . . . ,Xn. For δ > 0, we

set

Zi = Xi +Yiδ for i = 1, . . . ,n,

where Y1, . . . ,Yn are i.i.d. with a continuous compactly supported density function g :Rd →R.

For x ∈ R
d , set

uδ
n (x) = ℓ({Zi : Zi ≦ x}) .

THEOREM 3.7 (Stability of non-dominated sorting). Let f : Rd →R satisfy (H1) and let

Ω ⊂ R
d
+ satisfy (H2). There exist constants Cδ , depending only on δ , f , and g, such that

limsup
n→∞

n−
1
d ‖uδ

n −un‖L∞(Rd) ≤Cδ a.s.

and Cδ → 0 as δ → 0.

Proof. Set gδ (x) =
1

δ d g
(

x
δ

)
. Then Z1, . . . ,Zn are i.i.d. with density fδ := gδ ∗ f . Set

Uδ (x) = sup
γ∈A :γ≦x

∫ 1

0
fδ (γ(t))

1
d (γ1

′(t) · · ·γd
′(t))

1
d dt.

Without loss of generality, we may suppose that Ω ⊂ (0,1)d . Since supp( f ) ⊂ Ω and g has

compact support, we can take δ > 0 small enough so that supp( fδ ) ⊂ [0,1]d . It is not hard

to see that (2.35) holds for the sequence fδ . Since each fδ is continuous and bounded with

compact support in [0,1]d , it follows from Lemma 2.9 that Uδ → U uniformly on R
d . Note

that

n−
1
d ‖uδ

n −un‖L∞(Rd) ≤ ‖n−
1
d uδ

n − cdUδ‖L∞(Rd)+‖n−
1
d un − cdU‖L∞(Rd)

+ cd‖Uδ −U‖L∞(Rd),

for every n. Since fδ is continuous on (0,1)d and fδ (x) = 0 for x 6∈ (0,1)d , (H1) is satisfied

for fδ by taking Ω′ = (0,1)d . We can therefore apply Theorem 1.2 to obtain

‖n−
1
d uδ

n − cdUδ‖L∞(Rd)+‖n−
1
d un − cdU‖L∞(Rd) → 0 a.s.

The proof is completed by setting Cδ = cd‖Uδ −U‖L∞(Rd).

4. Numerical demonstrations. Theorem 1.2 guarantees that the level sets of cdU will

provide good approximations to the Pareto fronts for large n. In this section, we present

a numerical scheme for computing U and show examples comparing the level sets of cdU

to the Pareto fronts for various density functions. To compute U , we need to compute the

Pareto-monotone viscosity solution of

(4.1) Ux1
· · ·Uxd

=
1

dd
f on R

d
+,

that satisfies U = 0 on ∂Rd
+. Let Uα and fα denote the values of U and f on a grid with

spacing ∆x, where α is a multi-index. For a given grid point α , the domain of dependence
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for (4.1) is {β : β ≦ α}. Hence an upwind scheme will use backward difference quotients.

Now consider substituting backward difference quotients into (4.1). We have

(4.2)
d

∏
i=1

(Uα −Uα−ei
) =

∆xd

dd
fα .

We intend to solve the above equation for Uα in terms of Uα−ei
. Since we intend to compute

the Pareto-monotone solution of (4.1), we should look for a solution with Uα ≥Uα−ei
for all

i. Consider the mapping

p 7→
d

∏
i=1

(p−ai)−a0,

where ai ≥ 0 for all i. Note that this mapping is strictly increasing for p > max(a1, . . . ,ad)
and ∏d

i=1(p−ai) = 0 for p = max(a1, . . . ,ad). Hence, for any non-negative a0, . . . ,ad , there

exists a unique p ≥ max(a1, . . . ,ad) satisfying

d

∏
i=1

(p−ai) = a0.

We denote this solution p by P(a0, . . . ,ad) and define our numerical scheme by

(4.3) Uα = P(∆xd fα/dd ,Uα−e1
, . . . ,Uα−ed

)

with the boundary condition Uα = 0 for α with min(α1, . . . ,αd) = 0. The numerical solution

can be computed by any sweeping pattern respecting the partial order ≦. This requires visit-

ing each grid point exactly once, and hence has linear complexity. The value of P(a0, . . . ,ad)
can be computed numerically by either a binary search and/or Newton’s method restricted to

the interval [max(a1, . . . ,ad),max(a1, . . . ,ad)+a
1/d

0 ]. In the case of d = 2, we have a closed

form expression for P

P(a0,a1,a2) =
1

2
(a1 +a2)+

1

2

√
(a1 −a2)2 +4a0.

Note that we have chosen the positive square root to obtain the Pareto-monotone solution.

We prove in a subsequent paper [7], that the numerical solutions, defined as above, converge

to the unique Pareto-monotone viscosity solution of (4.1) as ∆x → 0.

For d = 2, we have c2 = 2, hence the level sets of U will approximate the Pareto fronts,

where UxUy = f . We now show examples of Pareto fronts alongside the level sets of U

for X1, . . . ,Xn sampled according to different density functions. In Figure 4.1, we consider a

uniform density on a portion of the unit square and show the Pareto fronts for n= 104, n= 105

and n = 106 independent samples alongside the corresponding level sets of U . Observing the

Figure, we see that the Pareto fronts are well approximated by the level sets of U for large n.

We also notice that the level sets of U appear to yield a consistent underestimate of the Pareto

fronts. Bollobás and Brightwell [5] showed that the normalized expectation of the longest

increasing subsequence among n points chosen independently from the uniform distribution

on [0,1]d is always bounded above by cd , which is the limit of these normalized expectations

as n → ∞. In light of this result, our observation is not surprising and merely confirms the

results in [5]. We also observe that although the boundary of Ω is smooth, the solution U

develops shocks, or kinks, which are visible in the level sets of U . In Figure 4.2, we show

the same comparison for a multi-modal density function on [0,1]2. The density function is

depicted by the plot in Figure 4.2 and we have the same expected underestimation present

here as well.
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FIG. 4.1. Comparison of the Pareto fronts and the level sets of U, where UxUy = f and f is the uniform density

on the gray region in the top left. The plots correspond to the Pareto fronts computed with n = 104, n = 105 and

n = 106 independent samples from f . In each case, we show 15 equally spaced Pareto fronts and the corresponding

level sets of U.
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[5] BÉLA BOLLOBÁS AND GRAHAM BRIGHTWELL, The height of a random partial order: concentration of

measure, The Annals of Applied Probability, 2 (1992), pp. 1009–1018.
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