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Abstract

Nondominated sorting is a combinatorial algorithm that sorts points in Eu-
clidean space into layers according to a partial order. It was recently shown
that nondominated sorting of random points has a Hamilton-Jacobi equa-
tion continuum limit. The original proof, given in [1], relies on a continuum
variational problem. In this paper, we give a new proof using a direct veri-
fication argument that completely avoids the variational interpretation. We
believe this may be generalized to apply to other stochastic homogenization
problems for which there is no obvious underlying variational principle.
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1. Introduction

Many problems in science and engineering require the sorting, or ordering,
of large amounts of multivariate data. Since there is no canonical linear
criterion for sorting data in dimensions greater than one, many different
methods for sorting have been proposed to address various problems (see, e.g.,
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(a) i.i.d. samples
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(b) n = 104 points

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) n = 106 points

Figure 1: Examples of Pareto fronts corresponding to i.i.d. random variables X1, . . . Xn

drawn from the distribution depicted in (a). In (b) and (c), we show 30 evenly spaced
Pareto fronts for n = 104 and n = 106, respectively.

[2, 3, 4, 5]). Many of these algorithms abandon the idea of a linear ordering,
and instead sort the data into layers according to some set of criteria.

We consider here nondominated sorting, which arranges a set of points
in Euclidean space into layers by repeatedly removing the set of minimal
elements. Let 5 denote the coordinatewise partial order on Rd defined by

x 5 y ⇐⇒ xi ≤ yi for all i.

The first nondominated layer, also called the first Pareto front and denoted
F1, is exactly the set of minimal elements of S with respect to 5, and the
deeper fronts are defined recursively as follows:

Fk = Minimal elements of S \
⋃
i<k

Fi.

This peeling process eventually exhausts the entire set S, and the result is a
partition of S based on Pareto front index, which is often called Pareto depth
or rank. Figure 1 gives an illustration of nondominated sorting of a random
set S.

Nondominated sorting is widely used in multi-objective optimization,
where it is the basis of the popular and effective genetic and evolutionary
algorithms [5, 6, 7, 8, 9]. Of course, multi-objective optimization is ubiqui-
tous in engineering and scientific contexts, such as control theory and path
planning [10, 11, 12], gene selection and ranking [13, 14, 15, 16, 17, 18, 19],
data clustering [20], database systems [21, 22, 23], image processing and com-
puter vision [24, 25], and some recent machine learning problems [23, 26, 27].
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Nondominated sorting is also equivalent to the longest chain problem,
which has a long history in probability and combinatorics [28, 29, 30, 31]. A
chain in Rd is a finite sequence of points that is totally ordered with respect
to 5. Let X1, . . . , Xn be n distinct points in Rd and define

Un(x) = `({X1, . . . , Xn} ∩ [0, x]), (1.1)

where `(O) denotes the length of a longest chain in the finite set O ⊆ Rd.
The notation [0, x] is a special case of the more general interval notation

[x, z] =
{
y ∈ Rd : x 5 y 5 z

}
=

d∏
i=1

[xi, zi]

that we shall use throughout the paper. Let F1,F2,F3, . . . denote the Pareto
fronts obtained by applying nondominated sorting to S := {X1, . . . , Xn}.
Then x ∈ F1 if and only if there are no other points y ∈ S with y 5 x, i.e.,
Un(x) = 1. A point x ∈ S is on the second Pareto front F2 if and only if
all points y ∈ S satisfying y 5 x are on the first front, and one such point
exists. For any such y ∈ F1, {y, x} is a chain of length ` = 2 in S ∩ [0, x],
and we see that x ∈ F2 ⇐⇒ Un(x) = 2. Peeling off successive Pareto fronts
and repeating this argument yields

x ∈ Fk ⇐⇒ Un(x) = k.

Hence, the Pareto fronts F1,F2,F3, . . . are embedded into the level sets (or
jump sets) of the longest chain function Un, as depicted in Figure 1.

In [1], we proved the following continuum limit for nondominated sorting.

Theorem 1. Let X1, X2, X3, . . . be a sequence of i.i.d. random variables in
Rd with density f , and define Un by (1.1). Suppose there exists an open
and bounded set O ⊆ Rd

+ with Lipschitz boundary such that f is uniformly

continuous on O, and f(x) = 0 for x 6∈ O. Then n−
1
dUn −→ u uniformly on

[0,∞)d with probability one, where u is the unique nondecreasing1 viscosity
solution of the Hamilton-Jacobi equation

(P)

{
ux1 · · ·uxd = (cd/d)df in Rd

+,

u = 0 on ∂Rd
+.

and cd > 0 are the universal constants given in [30].

1We say u is nondecreasing if xi 7→ u(x) is nondecreasing for all i.
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This result shows that nondominated sorting of massive datasets, which
are common in big data applications [32, 33, 34], can be approximated by
solving a partial differential equation (PDE). In [35, 36], we exploited this
idea to propose a fast approximate nondominated sorting algorithm based
on estimating f from the data X1, . . . , Xn and solving (P) numerically.

The proof of Theorem 1, given in [1], is based on the following continuum
variational problem:

u(x) = cd sup

∫ 1

0

f(γ(t))
1
d (γ′1(t) · · · γ′d(t))

1
ddt, (1.2)

where the supremum is over all C1 curves γ : [0, 1] → [0,∞)d that are
monotone nondecreasing in all coordinates and satisfy γ(1) = x. This can be
viewed as a type of stochastic homogenization of the longest chain problem,
where the curves γ are continuum versions of chains. The variational problem
(1.2) first appeared in two dimensions in [31]. The PDE (P) arises as the
Hamilton-Jacobi-Bellman equation associated with (1.2) [37]. We used the
same ideas to prove a similar Hamilton-Jacobi equation continuum limit for
the directed last passage percolation model in statistical physics, which also
has an obvious discrete variational formulation [38].

It is possible to view Theorem 1 in the context of stochastic homoge-
nization of Hamilton-Jacobi equations. Indeed, Un can be interpreted as a
discontinuous viscosity solution of the Hamilton-Jacobi equation

Un,x1 · · ·Un,xd =
n∑
i=1

δXi
in Rd

+,

Un = 0 on ∂Rd
+.

 (1.3)

Since the right hand side of (1.3) is highly singular, it is worth discussing in
what sense we interpret Un to be a solution of (1.3). The obvious approach
is to mollify the right hand side to obtain a sequence U ε

n of approximate
solutions. It is possible so show that as ε → 0, the sequence U ε

n converges
pointwise to CUn, where the constant C > 0 depends on the mollification
kernel used. Intriguing as this observation is, it is unclear whether (1.3) can
be used directly to prove Theorem 1.

There is a growing literature on stochastic homogenization of Hamilton-
Jacobi equations. Many of the proofs are based on applying subadditive
ergodic theory to a representation formula for the solution, like the Hopf-
Lax formula, or more generally, a control theoretic interpretation [39, 40, 41,
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42, 43, 44, 45, 46, 47]. These techniques are similar in spirit to our original
proof of Theorem 1 that was based on the variational representation of u
given in (1.2). Recently, there has been significant interest in stochastic
homogenization techniques that do not require a variational interpretation
[48, 49, 50, 51, 52].

In this paper we give an alternative proof of Theorem 1 that uses a direct
verification argument, and completely avoids using the variational interpre-
tation of (P). The argument is based on a heuristic derivation of (P) that
originally appeared in [1]. We review this argument, which is reminiscent
of dimensional analysis, in Section 2.1. We believe this proof is new in the
stochastic homogenization literature, and it seems to be more robust than
arguments based on variational principles. We present the proof in the sim-
plest setting in this paper, but we believe it can be substantially generalized.
In future work, we plan to apply this proof technique to other stochastic
growth models that do not stem from underlying variational principles.

2. Main result

To simplify the presentation, we model the data here using a Poisson
point process. Given a nonnegative function f ∈ L1

loc(Rd), we denote by
Πf a Poisson point process with intensity function f . This means that Πf

is a random at most countable subset of Rd, and for every bounded Borel
set A ⊆ Rd, the cardinality of Πf ∩ A, denoted N(A), is a Poisson random
variable with mean

∫
A
f dx. Furthermore, for disjoint A and B, the random

variables N(A) and N(B) are independent. It is worthwhile to mention that
in the special case where

∫
Rd f dx = 1, one way to construct Πnf for any

n > 0 is by setting
Πnf := {X1, . . . , XN}, (2.1)

where X1, X2, X3, . . . is an i.i.d. sequence of random variables with density
f and N is a Poisson random variable with mean n. For more details on
Poisson point processes, we refer the reader to Kingman’s book [53].

For nonnegative f ∈ L1
loc(Rd) we define

Un(x) = ` (Πnf ∩ [0, x]) . (2.2)

Let us recall Ishii’s notion of viscosity solution [54] for the Hamilton-Jacobi
equation

H(Du) = f in O, (2.3)
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where f : O → R may be discontinuous. Here, O ⊆ Rd is open and H
is assumed continuous. We recall the upper semicontinuous envelope of f :
O → R is defined by

f ∗(x) := inf
r>0

sup
y∈B(x,r)

f(y),

and the lower semicontinuous envelope is given by

f∗(x) := sup
r>0

inf
y∈B(x,r)

f(y).

The function f ∗ is the smallest upper semicontinuous function that is point-
wise greater than f , and f∗ is the greatest lower semicontinuous function
that is less than f .

Definition 1 (Viscosity solution). We say a continuous function u : O → R
is a viscosity subsolution of (2.3) if for every x ∈ O and every ϕ ∈ C∞(Rd)
such that u− ϕ has a local maximum at x

H(Dϕ(x)) ≤ f ∗(x).

Similarly, we say a continuous function u : O → R is a viscosity super-
solution of (2.3) if for every x ∈ O and every ϕ ∈ C∞(Rd) such that u− ϕ
has a local minimum at x

H(Dϕ(x)) ≥ f∗(x).

A continuous function u : O → R is a viscosity solution of (2.3) if u is
both a viscosity sub- and supersolution.

Ishii’s notion of viscosity solution reduces to the usual notion when f is
continuous. In the context of this paper, f ∈ L1

loc(Rd) is the intensity function
of a Poisson point process, and Ishii’s notion of viscosity solution depends on
the particular choice of representation of f ∈ L1

loc(Rd). It seems natural to
seek a refinement of Ishii’s notion that is independent of this representation.

Suppose f : O → R is measurable. We define the essential upper semi-
continuous envelope of f by

f e(x) := inf
r>0

ess sup
y∈B(x,r)

f(y),

and the essential lower semicontinuous envelope by

fe(x) := sup
r>0

ess inf
y∈B(x,r)

f(y).
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The function f e is the smallest upper semicontinuous function that is al-
most everywhere greater than f , and fe is the greatest lower semicontinuous
function that is almost everywhere less than f .

We propose the following refinement of Ishii’s notion of viscosity solution.

Definition 2 (Essential viscosity solution). We say a continuous function
u : O → R is an essential viscosity subsolution of (2.3) if for every x ∈ O
and every ϕ ∈ C∞(Rd) such that u− ϕ has a local maximum at x

H(Dϕ(x)) ≤ f e(x).

Similarly, we say a continuous function u : O → R is an essential vis-
cosity supersolution of (2.3) if for every x ∈ O and every ϕ ∈ C∞(Rd) such
that u− ϕ has a local minimum at x

H(Dϕ(x)) ≥ fe(x).

A continuous function u : O → R is an essential viscosity solution of
(2.3) if u is both an essential viscosity sub- and supersolution.

The notion of essential viscosity solution is clearly independent of the
choice of representation of the intensity function f . Since f e ≤ f ∗ and
fe ≥ f∗, an essential viscosity sub- (resp. super-) solution is also an Ishii
viscosity sub- (resp. super) solution for any choice of representation of f .

In this paper, we give a direct proof of the following result.

Theorem 2. Let f ∈ L∞loc(Rd) be nonnegative such that (P) has at most
one nondecreasing essential viscosity solution. Then there exists a unique
nondecreasing essential viscosity solution u ∈ C([0,∞)d) of (P) and with
probability one

n−
1
dUn −→ u locally uniformly on [0,∞)d as n→∞.

Figure 2 gives a visual illustration of Theorem 2.
The proof of Theorem 2 also shows the existence of an essential viscosity

solution of (P) for every nonnegative f ∈ L∞loc(Rd). In [1, 38], we showed
that nondecreasing Ishii viscosity solutions of (P) are unique provided either
(1) f is uniformly continuous on an open and bounded set O ⊆ Rd

+ with
Lipschitz boundary, and f(x) = 0 for x 6∈ O, or (2) f is continuous on
[0,∞)d. The first case allows f to be discontinuous across the Lipschitz

7



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) n = 50 points
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(b) n = 104 points
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(c) n = 106 points

Figure 2: Visualization of the continuum limit given by Theorem 2 applied to the distri-
bution in Figure 1. In (b) and (c), we compare the Pareto fronts to the level sets of the
viscosity solution of (P).

boundary of an open set. In either case, Ishii’s notion of viscosity solution
agrees with our proposed notion of essential viscosity solution, provided we
choose representations of f for which f e = f ∗ and fe = f∗. We leave the
question of uniqueness of essential viscosity solutions in more general settings
to future work.

In the proof of Theorem 2, we assume the family of Poisson point pro-
cesses {Πnf}n∈N is defined on a common probability space and we apply
deterministic PDE arguments to the individual realizations

Uω
n (x) = `(Πω

nf ∩ [0, x]).

In the literature on the longest chain problem, it is common to take a con-
struction for which n 7→ Uω

n is monotone nondecreasing for all realizations
ω. Indeed, this was necessary to obtain almost sure convergence in some
early works (see [30, 55]). Due to the sharp concentration of measure results
established by Frieze [56], Bollobás and Brightwell [57], and more recently
by Talagrand [58], the monotonicity property is no longer required for al-
most sure convergence. Thus, our proof of Theorem 2 does not assume any
particular construction of {Πnf}n∈N (see Theorem 3).

We should mention, however, that if we do construct a family of Poisson
point processes {Πtf}t∈R+ on a common probability space in such a way that

Πsf ⊆ Πtf whenever s ≤ t, (2.4)

then the function Ut(x) = `(Πtf∩[0, x]) is monotone nondecreasing as a func-
tion of t ∈ R+ for every realization. It then follows directly from Theorem 2
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that
t−

1
dUt −→ u locally uniformly on [0,∞)d

with probability one as t → ∞. One way to ensure that (2.4) is satisfied is
to construct Πtf via a generalization of (2.1) [53].

2.1. Informal derivation

As motivation, let us give an informal derivation of the Hamilton-Jacobi
PDE continuum limit (P). This derivation was originally given in a slightly
different form in [1], and our proof of Theorem 2 is based on these heuristics.
Suppose f : Rd → [0,∞) is continuous and that n−αUn −→ u ∈ C1(Rd)
uniformly with probability one for some α ∈ (0, 1]. The argument below not
only derives (P), but also suggests the order of growth α = 1

d
.

Let x ∈ (0,∞)d. Since Un is nondecreasing, the uniform limit u must
be nondecreasing and so uxi(x) ≥ 0 for all i. Let us assume that uxi(x) >
0 for all i. Fix v ∈ Rd with 〈Du(x), v〉 > 0 and consider the quantity
nα(u(x + v) − u(x)). This is approximately the number of Pareto fronts
passing between x and x + v when n is large. When counting these fronts,
we may restrict ourselves to Poisson points falling in the set

A =
{
y ∈ Rd : y 5 x+ v and u(y) ≥ u(x)

}
. (2.5)

This is because any points in {y ∈ Rd : u(y) < u(x)} will be on previous
Pareto fronts and only points that are coordinatewise less than x + v can
influence the Pareto rank of x+ v. See Figure 3 for a depiction of this region
and some quantities from the derivation. Since uxi(x) > 0 for all i, and u
is C1, A is well approximated for small |v| by a simplex with orthogonal
corner, and the points within A are approximately uniformly distributed.
Let N = N(A) denote the number of Poisson points falling in A. Since we
can scale the simplex into a standard simplex while preserving the Pareto
fronts within A, it is reasonable to conjecture that the number of Pareto
fronts within A (or the length of a longest chain in A) is asymptotic to c1N

α

for some constant c1 > 0, independent of x.
By the law of large numbers, we have N ≈ n

∫
A
f(y) dy. Hence when

|v| > 0 is small

nα(u(x+ v)− u(x)) ≈ c

(
n

∫
A

f(y) dy

)α
≈ c1n

α|A|αf(x)α, (2.6)
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Figure 3: Some quantities from the informal derivation of the Hamilton-Jacobi PDE (P).

where |A| denotes the Lebesgue measure of A. Let `1, . . . , `d denote the
side lengths of the simplex A. Then |A| ≈ c2 `1 · · · `d for a constant c2.
Since x + v − `iei lies approximately on the tangent plane to the level set
{y : u(y) = u(x)}, we see that

〈Du(x), v − `iei〉 ≈ 0.

This gives `i ≈ uxi(x)−1〈Du(x), v〉, and hence

|A| ≈ c2(ux1(x)−1 · · ·uxd(x)−1)〈Du(x), v〉d. (2.7)

For small |v|, we can combine (2.6) and (2.7) to obtain

〈Du(x), v〉 ≈ u(x+v)−u(x) ≈ c1c
α
2f(x)α(ux1(x)−α · · ·uxd(x)−α)〈Du(x), v〉αd.

Therefore
ux1(x)α · · ·uxd(x)α ≈ Cf(x)α〈Du(x), v〉αd−1,

where C = c1c
α
2 . Since the left hand side is independent of v, this suggests

that α = 1
d

and

ux1 · · ·uxd = Cdf on Rd.

Although this derivation is informal, it is straightforward and conveys
the essence of the result. Inspecting the argument, we see that the main
ingredients are an invariance with respect to scaling along coordinate axes,
and some basic properties of the coordinatewise partial order. It is intriguing
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that we can derive the order of growth n
1
d and the continuum limit (P) from

such basic information. This seems analogous to dimensional analysis argu-
ments in applied mathematics, which use ideas like self-similarity and scaling
to derive fundamental laws for natural phenomena [59]. A fundamental fea-
ture of dimensional analysis is that, like our argument above, it usually gives
no information about the constants of proportionality. Contrary to dimen-
sional analysis, which is typically nonrigorous, we show in this paper that
the argument above can be made rigorous using the framework of viscosity
solutions.

2.2. Outline of proof

Our new proof of Theorem 2 is a rigorous version of the heuristic di-
mensional analysis argument given in Section 2.1. The main ideas used in
our proof draw some inspiration from the Barles-Souganidis framework for
convergence of numerical schemes [60]. The Barles-Souganidis framework es-
tablishes convergence of any numerical scheme that is monotone, consistent,
and stable, provided the PDE admits a strong comparison principle. In our
proof of Theorem 2, we view Un as a numerical approximation of the vis-
cosity solution of (P), and use ideas that parallel monotonicity, stability and
consistency to prove convergence to the viscosity solution of (P).

The longest chain problem is monotone in the following sense: For any
finite sets A,B ⊆ Rd,

A ⊆ B =⇒ `(A) ≤ `(B). (2.8)

When proving convergence of numerical schemes to viscosity solutions, mono-
tonicity of the scheme is used to replace the numerical solution by a smooth
test function for which consistency is trivial. The monotonicity property
(2.8) is used for precisely the same purpose in the proof of Theorem 2, though
consistency is non-trivial in this setting.

Stability of numerical schemes for PDE usually refers to a uniform bound
on the numerical solutions that is independent of the grid resolution. Here,
we use a type of asymptotic equicontinuity. Namely, in Theorem 4 we show
that a bound of the form

|Un(x)− Un(y)| . C|x− y|
1
dn

1
d (2.9)

holds for all x, y with probability one. The stability estimate (2.9) and the
monotonicity of Un can be combined with the Arzelà-Ascoli theorem to show
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that for every realization ω in a probability one event Ω, there exists a sub-

sequence n
− 1

d
k Uω

nk
converging locally uniformly on [0,∞)d to a locally Hölder-

continuous function Uω.
The final step in the proof is to use consistency and monotonicity to

identify Uω as the unique nondecreasing essential viscosity solution of (P).
Our consistency result, Theorem 5, is a statement on the asymptotic length
of a longest chain in sets resembling the approximate simplex (2.5) used in
the heuristic derivation. Namely, for a smooth test function ϕ with ϕxi > 0
for all i, we prove asymptotics of the form

`(Πnf ∩ Aε) ∼

(
cd
d

(
f(x)

ϕx1(x) · · ·ϕxd(x)

) 1
d

ε+O(ε2)

)
n

1
d ,

as n→∞, where

Aε(x) =
{
y ∈ B(x,

√
ε) : y 5 x and ϕ(y) ≥ ϕ(x)− ε

}
.

Notice the set Aε(x) is similar to the set A used in the heuristic derivation and
defined in (2.5). The main difference is that Aε(x) is defined using a smooth
test function, and more importantly, it is defined by looking “backward”
from the point x, instead of looking “forward” as in (2.5). This respects the
natural domain of dependence of the nondominated sorting problem, and
allows us to use the monotonicity of ` in the proof of Theorem 2. This is
analogous to the idea of an upwind numerical scheme for Hamilton-Jacobi
equations.

3. Analysis of longest chain problem

Let us give a brief history of the longest chain problem. Let X1, . . . , Xn

be i.i.d. random variables uniformly distributed on the unit hypercube [0, 1]d,
and let `n = `({X1, . . . , Xn}) be the length of a longest chain. Hammersley
[29] was the first to study the asymptotics of `n, motivated by a connection
to Ulam’s famous problem of finding the longest monotone subsequence in
a random sequence of numbers [28]. Hammersley showed that in dimension

d = 2, n−
1
2 `n → c > 0 in probability as n → ∞, and he conjectured that

c = 2. The value c = 2 was later established in [61, 62]. Hammersley’s proof
is now a classic application of subadditive ergodic theory.
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Bollobás and Winkler [30] extended Hammersley’s result to dimensions

d ≥ 3 showing that n−
1
d `n → cd > 0 in probability. They also established

the bounds
d2

d!
1
d Γ
(
1
d

) ≤ cd < e,

which by Stirling’s formula shows that limd→∞ cd = e. Aside from c2 = 2, the
exact values of cd are still unknown. When the random variables {`n}n∈N are
defined on a common probability space in such a way that n 7→ `n is monotone
nondecreasing along sample paths, the stronger almost sure convergence can
be obtained via an observation of Kesten [55].

Here, we consider the longest chain among Poisson points. For t > 0 let

Lt = `(Πt ∩ [0, 1]d).

Then Lt has the same distribution as

Lt = `(Π1 ∩ [0, t
1
d ]d).

Notice that the family {Lt}t>0 is defined on a common probability space and
t 7→ Lt is monotone nondecreasing along sample paths. Subadditive ergodic
theory [29, 63] can be employed to show that

t−
1
dLt → cd almost surely as t→∞.

Since Lt and Lt merely have the same distribution, this argument only gives
convergence in probability for Lt.

Since we have made no assumptions about how the Poisson point process
Πnf is to be constructed, the proof of our main result (Theorem 2) relies
on establishing almost sure convergence for sequences of random variables
that have the same distribution as Lt, but may not necessarily satisfy the
monotonicity condition. Using the concentration of measure results provided
by Talagrand’s isoperimetric theory [58] we can establish the following result.

Theorem 3. For t > 0, let Lt = `(Πt∩ [0, 1]d). Let {tn}n∈N be an increasing
sequence of positive real numbers such that

∞∑
n=1

exp
(
−εt

1
d
n

)
<∞ for all ε > 0. (3.1)

Then
t
− 1

d
n Ltn −→ cd completely as n→∞.
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Recall that a sequence of random variables X1, X2, . . . , Xn, . . . converges
completely to a random variable X if

∞∑
n=1

P (|Xn −X| > ε) <∞ for all ε > 0.

By the Borel-Cantelli lemma, complete convergence implies almost sure con-
vergence. The advantage of complete convergence is that it depends only on
the distributions of Xn and X, and not on any particular construction of the
random variables. We believe Theorem 3 is likely well-known in the proba-
bility literature, but to the best of our knowledge it has not been published.
For the sake of completeness, we have sketched the proof of Theorem 3 in
the appendix.

3.1. Stability

In this section, we prove in Theorem 4 a stability result for the longest
chain problem. We first have a preliminary lemma.

Lemma 1. Let f ∈ L∞loc(Rd) be nonnegative, and define Un by (2.2). Then
for any x, y ∈ [0,∞)d

lim sup
n→∞

n−
1
d (Un(x)− Un(y)) ≤ cddM

d−1
d ‖f‖

1
d

L∞([0,M ]d)
|x− y|

1
d (3.2)

with probability one, where M = max{x1, y1, x2, y2, . . . , xd, yd}.

Proof. We first show that for each h > 0 and i ∈ {1, . . . , d}

lim sup
n→∞

n−
1
d (Un(x+ hei)− Un(x)) ≤ cdM

d−1
d ‖f‖

1
d

L∞([xiei,x+hei])
h

1
d , (3.3)

holds with probability one. Without loss of generality we may assume that
i = 1. If xj = 0 for some j ≥ 2, then x, x + he1 ∈ ∂Rd

+, and hence Un(x) =
Un(x+ he1) = 0 with probability one. Thus, we may assume that xj > 0 for
all j ≥ 2.

Let L = Un(x + he1) and let C = {X1, . . . , XL} be a chain in Πnf ∩
[0, x + he1] of length L. We can split this chain into two chains, C1 and
C2, such that C1 lies in the rectangle [0, x], and C2 belongs exclusively to
R := [x1e1, x + he1]. See Figure 4 for a depiction of the setup. By the
definition of Un

14



Figure 4: A depiction of the chains C1 and C2 from the proof of Lemma 1.

Un(x+ he1) = `(C1) + `(C2) ≤ Un(x) + `(Πnf ∩R). (3.4)

Let K = ess supR f and set

g(x) =

{
K − f(x), if x ∈ R
0, otherwise.

Let Πng be a Poisson point process with intensity ng and let Π = Πnf ∪Πng.
Then Π is a Poisson point process with intensity λ, where

λ(x) = nf(x) + ng(x) =

{
nK, if x ∈ R
nf(x), otherwise.

Let N = hx2x3 · · ·xdKn. By scaling, `(Π ∩ R) has the same distribution as
`(ΠN ∩ [0, 1]d). By Theorem 3 and the inclusion Πnf ⊆ Π we have

lim sup
n→∞

n−
1
d `(Πnf ∩R) ≤ lim

n→∞
n−

1
d `(Π ∩R)

= cd(x2 · · ·xd)
1
dK

1
dh

1
d

≤ cdM
d−1
d K

1
dh

1
d

with probability one. Combining this with (3.4) establishes (3.3).
We can apply (3.3) in each coordinate and note that∑

|xi − yi|
1
d ≤ d1−

1
2d |x− y|

1
d

15



to establish the desired result (3.2).

Theorem 4 (Stability). Let f ∈ L∞loc(Rd) be nonnegative, and define Un by
(2.2). Then with probability one

lim sup
n→∞

n−
1
d (Un(x)− Un(y)) ≤ cddM

d−1
d ‖f e‖

1
d

L∞([0,M ]d)
|x− y|

1
d (3.5)

for all x, y ∈ [0,∞)d, where M = max{x1, y1, x2, y2, . . . , xd, yd}.

It is important to emphasize in Theorem 4 that (3.5) holds with probabil-
ity one simultaneously for all x, y ∈ [0,∞)d. This is a far stronger statement
than Lemma 1, where it was shown that for fixed x, y ∈ [0,∞)d, (3.5) holds
with probability one. This stronger result gives us a form of compactness
that is used in the proof of Theorem 2.

Proof. For x, y ∈ [0,∞)d let Ωx,y denote the event that (3.2) holds for x, y.
By Lemma 1, P(Ωx,y) = 1. Let

Ω =
⋂{

Ωx,y : x, y ∈ Qd ∩ [0,∞)d
}
.

Being the countable intersection of probability one events, Ω has probability
one.

Let x, y ∈ [0,∞)d. Let x̂, ŷ ∈ Qd ∩ [0,∞)d such that x 5 x̂ and ŷ 5 y,
and set

M̂ = max{x̂1, ŷ1, x̂2, ŷ2, . . . , x̂d, ŷd}.

Then since Un is nondecreasing

Un(x)− Un(y) ≤ Un(x̂)− Un(ŷ),

and therefore

lim sup
n→∞

n−
1
d (Uω

n (x)− Uω
n (y)) ≤ cddM̂

d−1
d ‖f‖

1
d

L∞([0,M̂ ]d)
|x̂− ŷ|

1
d for all ω ∈ Ω.

Since we can choose x̂ and ŷ arbitrarily close to x and y, respectively, we
obtain

lim sup
n→∞

n−
1
d (Uω

n (x)− Uω
n (y)) ≤ cddM

d−1
d ‖f e‖

1
d

L∞([0,M ]d)
|x− y|

1
d for all ω ∈ Ω,

which completes the proof.
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Figure 5: Illustration of the simplex Sx,v.

3.2. Consistency

We now establish our main consistency result. For x, v ∈ (0,∞)d, we
define

Sx,v =
{
z ∈ Rd : z 5 x and 〈x− z, v〉 ≤ 1

}
. (3.6)

The set Sx,v is a simplex with orthogonal corner at x and side lengths 1/v1,
. . . , 1/vd. See Figure 5 for an illustration of Sx,v. We also define 1 =
(1, . . . , 1) ∈ Rd.

Lemma 2. Let x, v ∈ (0,∞)d and let {tn}n∈N be any increasing sequence of
positive real numbers satisfying (3.1). Then

lim
n→∞

t
− 1

d
n ` (Πtn ∩ Sx,v) =

cd

d(v1 · · · vd)
1
d

(3.7)

in the sense of complete convergence.

Proof. We first show that

lim
n→∞

t
− 1

d
n ` (Πtn ∩ S1,1) =

cd
d

completely. (3.8)

Note that we can write

S1,1 =
{
x ∈ [0, 1]d : x1 + · · ·+ xd ≥ d− 1

}
.

Let K be a positive integer and define

I =

{
x ∈ [0, 1]d : Kx ∈ Zd and x1 + · · ·+ xd = d− 1− d

K

}
.

17



It follows from this construction that every chain in S1,1 is contained entirely
in [x,1] for some x ∈ I. Since I is a finite set

` (Πt ∩ S1,1)) ≤ max
{
` (Πt ∩ [x,1]) : x ∈ I

}
. (3.9)

Fix x ∈ I and let Nn = tn
∏d

i=1(1 − xi). Since `(Πtn ∩ [x,1]) has the same
distribution as `(ΠNn ∩ [0, 1]d) we have by Theorem 3 that

lim
n→∞

t
− 1

d
n `(Πtn ∩ [x,1]) = cd

d∏
i=1

(1− xi)
1
d ≤ cd

d

d∑
i=1

(1− xi) = cd

(
1

d
+

1

K

)
,

in the sense of complete convergence. Combining this with (3.9) and noting
that K was arbitrary yields

lim sup
n→∞

t
− 1

d
n ` (Πtn ∩ S1,1)) ≤ cd

d
(3.10)

completely.
For the other direction, let z = 1(d− 1)/d. By Theorem 3

lim inf
n→∞

t
− 1

d
n ` (Πtn ∩ S1,1) ≥ lim

n→∞
t
− 1

d
n `(Πtn ∩ [z,1]) = cd

d∏
i=1

(1− zi)
1
d =

cd
d
.

in the sense of complete convergence. This establishes (3.8).
We now establish (3.7) with a simple scaling argument. Let x, v ∈ (0,∞)d

and define Φ : Rd → Rd by

Φ(y) = ((y1 − x1)v1 + 1, (y2 − x2)v2 + 1, . . . , (yd − xd)vd + 1) .

Since vi > 0 for all i, the mapping Φ preserves the partial order 5 and
therefore

`(Πtn ∩ Sx,v) = ` (Φ(Πtn ∩ Sx,v)) . (3.11)

Let Π be the Poisson point process induced by the mapping Φ, i.e., Π =
Φ(Πn). Then Π is a Poisson point process on Rd with constant intensity
Nn = tn/(v1 · · · vd). Since Φ(Sx,v) = S1,1, we have by (3.11) that `(Πtn∩Sx,v)
and ` (ΠNn ∩ S1,1) have the same distribution. The result now follows directly
from (3.8).
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Lemma 3. Let f ∈ L∞loc(Rd) be nonnegative. Then for any x, v ∈ (0,∞)d

lim sup
n→∞

n−
1
d ` (Πnf ∩ Sx,v) ≤

cd
d

(
ess supSx,v

f

v1 · · · vd

) 1
d

, (3.12)

and

lim inf
n→∞

n−
1
d ` (Πnf ∩ Sx,v) ≥

cd
d

(
ess infSx,v f

v1 · · · vd

) 1
d

(3.13)

with probability one.

Proof. Let x, v ∈ (0,∞)d, K = ess supSx,v
f , and define

g(x) =

{
K − f(x), if x ∈ Sx,v,
0, otherwise.

Let Πng be a Poisson point process with intensity ng and let Π = Πnf ∪Πng.
Then Π is a Poisson point process with intensity λ, where

λ(x) = nf(x) + ng(x) =

{
nK, if x ∈ Sx,v
nf(x), otherwise.

By Lemma 2

lim
n→∞

(Kn)−
1
d ` (Π ∩ Sx,v) =

cd

d(v1 · · · vd)
1
d

with probability one, and hence

lim
n→∞

n−
1
d ` (Π ∩ Sx,v) =

cd
d

(
ess supSx,v

f

v1 · · · vd

) 1
d

with probability one. Since Πnf ⊆ Π, ` (Πnf ∩ Sx,v) ≤ ` (Π ∩ Sx,v), which
establishes (3.12).

To prove (3.13), note first that if ess infSx,v f = 0, then the result is trivial.
Hence, we may take m := ess infSx,v f > 0. For each point X from Πnf that
falls in Sx,v, color X red with probability m/f(X). The red points form
another Poisson point process on Sx,v with intensity mn [53]. Let us denote
this Poisson point process by Πr. By Lemma 2, we have that

lim
n→∞

(mn)−
1
d ` (Πr ∩ Sx,v) =

cd

d(v1 · · · vd)
1
d

with probability one. (3.14)

Since Πr ⊆ Πnf , `(Π
r ∩ Sx,v) ≤ `(Πnf ∩ Sx,v). Combining this with (3.14)

completes the proof.
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Lemma 4. Let f ∈ L∞loc(Rd) be nonnegative. Then with probability one

lim sup
n→∞

n−
1
d ` (Πnf ∩ Sx,v) ≤

cd
d

(
supSx,v

f e

v1 · · · vd

) 1
d

, (3.15)

and

lim inf
n→∞

n−
1
d ` (Πnf ∩ Sx,v) ≥

cd
d

(
infSx,v fe

v1 · · · vd

) 1
d

, (3.16)

for all x, v ∈ (0,∞)d.

Proof. Let us prove (3.15); the proof of (3.16) is similar. For each x, v ∈
(0,∞)d let Ωx,v denote the event that (3.12) holds for x, v. By Lemma 3,
P(Ωx,v) = 1. Let us set

Ω =
⋂{

Ωx,v : x, v ∈ Qd ∩ (0,∞)d
}
.

Being the countable intersection of probability one events, Ω has probability
one.

Let x, v ∈ (0,∞)d and let ω ∈ Ω. Let q ∈ (0,∞)d ∩Qd such that qi < vi
for all i, and let y ∈ (0,∞)d ∩Qd such that y = x and

1

qj
≥ 1 + 〈y − x, v〉

vj
. (3.17)

We claim that Sx,v ⊆ Sy,q. To see this, let z ∈ Sx,v and write

〈y − z, q〉
(3.17)

≤ 〈y − z, v〉
1 + 〈y − x, v〉

=
〈x− z, v〉+ 〈y − x, v〉

1 + 〈y − x, v〉
≤ 1,

where we used in the last step that 〈x − z, v〉 ≤ 1. Therefore z ∈ Sy,q. It
follows that `(Πnf ∩ Sx,v) ≤ `(Πnf ∩ Sy,q), and from (3.12) we deduce

lim sup
n→∞

n−
1
d `
(
Πω
nf ∩ Sx,v

)
≤ cd

d

(
ess supSy,q

f

q1 · · · qd

) 1
d

. (3.18)

Sending y → x in such a way that y = x and y ∈ Qd ∩ (0,∞)d yields

lim sup
n→∞

n−
1
d `
(
Πω
nf ∩ Sx,v

)
≤ cd

d

(
supSx,q

f e

q1 · · · qd

) 1
d

.

The result follows by noting that the limit above holds for all q ∈ (0,∞)d∩Qd

with qi < vi for all i.
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We denote by B(x, r) the open ball of radius r > 0 centered at x ∈ Rd.
We now prove our main consistency result.

Theorem 5 (Consistency). Let f ∈ L∞loc(Rd) be nonnegative. Then with
probability one

lim sup
ε→0+

lim sup
n→∞

ε−1n−
1
d `(Πnf ∩Aε(x0)) ≤

cd
d

(
f e(x0)

ϕx1(x0) · · ·ϕxd(x0)

) 1
d

, (3.19)

and

lim inf
ε→0+

lim inf
n→∞

ε−1n−
1
d `(Πnf ∩ Aε(x0) ≥

cd
d

(
fe(x0)

ϕx1(x0) · · ·ϕxd(x0)

) 1
d

, (3.20)

for all x0 ∈ (0,∞)d and all ϕ ∈ C2(Rd) such that ϕxi(x0) > 0 for all i, where

Aε(x0) :=
{
x ∈ B(x0,

√
ε) : x 5 x0 and ϕ(x) ≥ ϕ(x0)− ε

}
. (3.21)

Proof. Let Ω be the event that (3.15) and (3.16) hold for all x, v ∈ (0,∞)d.
By Lemma 4, Ω has probability one. Let x0 ∈ (0,∞)d, ε > 0 and let
ϕ ∈ C2(Ω) such that ϕxi(x0) > 0 for all i. Fix ω ∈ Ω.

We will give the proof of (3.19); the proof of (3.20) is very similar. Since
ϕxi(x0) > 0, there exists m > 0 such that ϕxi(x) ≥ m for all x ∈ Aε,
i ∈ {1, . . . , d}, and all ε > 0 sufficiently small. It follows that for any x ∈ Aε

ϕ(x0)− ϕ(x) =

∫ 1

0

〈Dϕ(x+ t(x0 − x)), x0 − x〉 dt ≥ m
d∑
i=1

(x0,i − xi)

≥ m|x0 − x|√
d

. (3.22)

We therefore deduce

|x0 − x| ≤
√
dε

m
for all x ∈ Aε. (3.23)

Since ϕ ∈ C2, there exists a constant C > 0 such that

ϕ(x)− ϕ(x0) ≤ 〈Dϕ(x0), x− x0〉+ Cε2 (3.24)
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for all x ∈ Aε and ε > 0 sufficiently small. It follows that

Aε(x0) ⊆
{
x ∈ Rd : x 5 x0 and 〈Dϕ(x0), x0 − x〉 ≤ ε+ Cε2

}
.

Setting qε = Dϕ(x0)/(ε+ Cε2) we have Aε(x0) ⊆ Sx0,qε , and hence

`(Πω
nf ∩ Aε(x0)) ≤ `(Πω

nf ∩ Sx0,qε).

By (3.15)

lim sup
n→∞

n−
1
d `(Πω

nf ∩ Aε(x0)) ≤
cd
d

(
supSx0,qε

f e

ϕx1(x0) · · ·ϕxd(x0)

) 1
d

(ε+ Cε2).

Sending ε→ 0+ completes the proof.

4. Proof of main result

We now have the proof of Theorem 2.

Proof. Let Ω denote the event that the conclusions of Theorem 4 and The-
orem 5 hold, and Un ≡ 0 on ∂Rd

+ for all n. Then P(Ω) = 1. Let us fix a
realization ω ∈ Ω. The remainder of the proof is split into several steps.

1. We first use stability (Theorem 4) to obtain a compactness result.
Since Uω

n (0) = 0 for all n, it follows from Theorem 4 that the sequence{
n−

1
dUω

n (x)
}
n∈N is bounded for all x ∈ [0,∞)d. By a diagonal argument,

there exists a subsequence {Uω
nk
}k∈N such that for all x ∈ [0,∞)d ∩ Qd,{

n
− 1

d
k Uω

nk
(x)
}
k∈N is a convergent sequence, whose limit we denote by Uω(x).

By Theorem 4

|Uω(x)− Uω(y)| = lim
nk→∞

n
− 1

d
k |U

ω
nk

(x)− Uω
nk

(y)|

≤ cddM
d−1
d ‖f e‖

1
d

L∞([0,M ]d)
|x− y|

1
d (4.1)

for all x, y ∈ Qd ∩ [0,∞)d, where M = max{x1, y1, x2, y2, . . . , xd, yd}. Hence,
we can extend Uω uniquely to a function Uω ∈ C([0,∞)d) such that for every

M > 0, Uω ∈ C0, 1
d ([0,M ]d) and

[Uω] 1
d
;[0,M ]d ≤ cddM

d−1
d ‖f e‖

1
d

L∞([0,M ]d)
. (4.2)
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Furthermore, Uω is nondecreasing and Uω ≡ 0 on ∂Rd
+.

We claim that n
− 1

d
k Uω

nk
−→ Uω locally uniformly on [0,∞)d. The proof

of this is similar to [1, Theorem 1]. We include it here for completeness.
Fix M > 0 and let ε > 0. Let T ∈ N and for any multi-index α ∈ Zd, let
xα = α/T . Let I be the set of multi-indices α ∈ Zd for which xα ∈ [0,M ]d.
Since Uω is continuous on [0,M ]d, we can choose T large enough so that

Uω(xα+1)− Uω(xα) < ε for all α ∈ I. (4.3)

Since I is a finite set and xα ∈ Qd for all α ∈ I, we deduce

lim
k→∞

max
α∈I

∣∣∣n− 1
d

k Uω
nk

(xα)− Uω(xα)
∣∣∣ = 0. (4.4)

Let y ∈ [0,M ]d and let α ∈ I such that xα 5 y 5 xα+1. Since Uω
n and Uω

are nondecreasing we have

n−
1
dUω

n (y)− Uω(y) ≤ n−
1
dUω

n (xβ)− Uω(xβ−1)
(4.3)
< n−

1
dUω

n (xβ)− Uω(xβ) + ε,

where β = α + 1. Similarly, we deduce

n−
1
dUω

n (y)− Uω(y) ≥ n−
1
dUω

n (xα)− Uω(xα+1)
(4.3)
> n−

1
dUω

n (xα)− Uω(xα)− ε.

Combining these inequalities yields

‖n−
1
dUω

n − Uω‖L∞([0,M ]d) < max
α∈I

∣∣∣n− 1
dUn(xα)− Uω(xα)

∣∣∣+ ε. (4.5)

Invoking (4.4) we see that

lim sup
k→∞

‖n−
1
d

k Uω
nk
− Uω‖L∞([0,M ]d) < ε.

Sending ε→ 0 establishes the claim.
2. We now show that Uω is an essential viscosity subsolution of (P). For

simplicity, let us set

Vk = n
− 1

d
k Uω

nk
and V = Uω.

Fix M > 0 and let x0 ∈ (0,M)d. Let ϕ ∈ C2(Rd) such that V − ϕ has a
local maximum at x0. Since V is nondecreasing, ϕxi(x0) ≥ 0 for all i. If
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ϕxi(x0) = 0 for some i, then the subsolution property is trivially satisfied.
Hence, we may assume that ϕxi(x0) > 0 for all i. Without loss of generality,
we may also assume that V − ϕ has a strict maximum at x0, relative to the
set [0,M ]d. Then there exists a sequence {xk}k∈N in [0,M ]d converging to x0
such that Vk − ϕ has a maximum at xk, relative to [0,M ]d.

Let r,m > 0 such that B(x0, r) ⊆ (0,M)d and ϕxi(x) > m for all x ∈
B(x0, r) and all i. Let ε ∈ (0, 1) such that

ε < min

{
m2

4d
, r2
}
. (4.6)

Since Vk → V uniformly on [0,M ]d and xk → x0, there exists K > 0 such
that for all k > K

ϕ(x0)− ϕ(xk) + Vk(xk)− Vk(x0) < ε2. (4.7)

Let
Ak,ε =

{
z ∈ [0, x0] : Vk(z) ≥ Vk(x0)− ε

}
. (4.8)

We claim that Ak,ε ⊆ B(x0,
√
ε) for all k > K. To see this, let z ∈

B(x0, r) such that z 5 x0 and note that

ϕ(x0)− ϕ(z) =

∫ 1

0

〈Dϕ(z + t(x0 − z)), x0 − z〉 dt ≥ m
d∑
i=1

(x0,i − zi)

≥ m|x0 − z|√
d

. (4.9)

Since Vk − ϕ has a maximum at xk,

Vk(z)− ϕ(z) ≤ Vk(xk)− ϕ(xk) for z ∈ [0,M ]d. (4.10)

Combining this with (4.6), (4.7) and (4.9) we deduce

Vk(z) ≤ Vk(xk) + ϕ(z)− ϕ(xk)

= Vk(x0) + ϕ(z)− ϕ(x0) + ϕ(x0)− ϕ(xk) + Vk(xk)− Vk(x0)

< Vk(x0)−
m√
d

√
ε+ ε2

< Vk(x0)− ε
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for all z ∈ ∂B(x0,
√
ε) with z 5 x0, and k > K. Since Vk is nondecreasing,

Ak,ε ⊆ B(x0,
√
ε), establishing the claim.

We now claim that
εn

1
d
k ≤ `(Πω

nkf
∩ Ak,ε). (4.11)

To see this, since Un is integer valued, we can write Ak,ε as

Ak,ε =
{
z ∈ [0, x0] : Uω

nk
(z) ≥ Uω

nk
(x0)− bεn

1
d
k c
}
, (4.12)

where btc is the largest integer less than or equal to t ∈ R. Since Ak,ε ⊆
B(x0, r) ⊆ (0,∞)d and Uω

nk
(y) = 0 for y ∈ ∂Rd

+, we must have that Uω
nk

(x0)−
bεn

1
d
k c ≥ 1. Let L = Uω

nk
(x0) and let Xω

1 5 · · · 5 Xω
L be a chain in Πω

nkf
∩

[0, x0] of length L. For any q ≥ L − bεn
1
d
k c, Uω

nk
(Xω

q ) ≥ q ≥ L − bεn
1
d
k c,

and hence Xω
q ∈ Ak,ε. Hence the chain Xω

q , . . . , X
ω
L belongs to Ak,ε for

q = L− bεn
1
d
k c and

εn
1
d
k ≤ bεn

1
d
k c+ 1 = L− q + 1 ≤ `(Πω

nkf
∩ Ak,ε),

which establishes the claim.
By (4.7) and (4.10)

Vk(z)− Vk(x0) ≤ ϕ(z)− ϕ(x0) + ε2

for all k > K and z ∈ [0,M ]d. Since Ak,ε ⊆ B(x0,
√
ε) it follows that

Ak,ε ⊆
{
z ∈ B(x0,

√
ε) : x 5 x0 and ϕ(z) ≥ ϕ(x0)− ε− ε2)

}
=: Aε+ε2(x0)

(4.13)
for k > K, where Aε+ε2(x0) is defined as in Theorem 5. Invoking (4.11) and
the monotonicity of ` we have

ε ≤ lim sup
k→∞

n
− 1

d
k `(Πω

nkf
∩ Ak,ε) ≤ lim sup

n→∞
n−

1
d `
(
Πω
nf ∩ Aε+ε2(x0)

)
.

Since Theorem 5 holds for all ω ∈ Ω and ϕxi(x0) > 0, we deduce

1 ≤ lim sup
ε→0

lim sup
n→∞

(ε+ ε2)−1n−
1
d `
(
Πω
nf ∩ Aε+ε2(x0)

)
≤ cd

d

(
f e(x0)

ϕx1(x0) · · ·ϕxd(x0)

) 1
d

,
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and hence

ϕx1(x0) · · ·ϕxd(x0) ≤
cdd
dd
f e(x0).

3. We now show that V is an essential viscosity supersolution of (P). Let
ϕ ∈ C2(Rd) such that V − ϕ has a local minimum at x0. Without loss of
generality, we may assume that x0 is a minimum of V −ϕ relative to the set
[0,M ]d. Since V is nondecreasing, ϕxi(x0) ≥ 0 for all i. For λ > 0, set

ϕλ(x) = ϕ(x) + λ(x1 + · · ·+ xd).

Then V − ϕλ has a strict minimum at x0, relative to the set [0, x0], and
ϕλxi(x0) > 0 for all i. Therefore, there exists a sequence {xk}k∈N in [0, x0]
converging to x0 such that Vk − ϕλ has a minimum at xk, relative to [0, x0].

Let r,m > 0 such that B(x0, r) ⊆ (0,M)d and ϕλxi(x) > m for all x ∈
B(x0, r) and all i. Let ε > 0 and let Xω

1 , . . . , X
ω
j be a chain in Πω

nkf
∩ Ak,ε.

Then by the definition of Ak,ε (4.12)

Uω
nk

(Xω
1 ) ≥ Uω

nk
(x0)− bεn

1
d
k c,

and therefore

Uω
nk

(x0) ≥ Uω
nk

(Xω
j ) ≥ Uω

nk
(Xω

1 ) + j − 1 ≥ Uω
nk

(x0)− bεn
1
d
k c+ j − 1.

Hence j ≤ εn
1
d
k + 1 and therefore

`(Πω
nkf

(Ak,ε)) ≤ εn
1
d
k + 1. (4.14)

Since Vk − ϕλ has a minimum at xk

Vk(z)− Vk(x0) ≥ ϕλ(z)− ϕλ(x0) + ϕλ(x0)− ϕλ(xk) + Vk(xk)− Vk(x0),

for z ∈ [0, x0]. Since xk → x0 and Vk → V locally uniformly, we can choose
k larger, if necessary, so that

Vk(z)− Vk(x0) ≥ ϕλ(z)− ϕλ(x0)− ε2 for all z ∈ [0, x0].

It follows that

Ak,ε ⊇ {z ∈ B(x0,
√
ε) : x 5 x0 and ϕλ(z) ≥ ϕλ(x0) + ε2 − ε} =: Aε−ε2(x0),
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where Aε−ε2(x0) is as defined in Theorem 5. Invoking (4.14) and the mono-
tonicity of `

εn
1
d
k + 1 ≥ `

(
Πω
nkf
∩ Ak,ε

)
≥ `(Πω

nkf
∩ Aε−ε2(x0)),

and therefore
ε ≥ lim inf

n→∞
n−

1
d `(Πω

nf ∩ Aε−ε2(x0)).

Since Theorem 5 holds for all ω ∈ Ω and ϕλxi(x0) > 0

1 ≥ lim inf
ε→0

lim inf
n→∞

(ε− ε2)−1n−
1
d `(Πω

nf ∩ Aε−ε2(x0))

≥ cd
d

(
fe(x0)

ϕλx1(x0) · · ·ϕλxd(x0)

) 1
d

.

Thus, we arrive at

(ϕx1(x0) + λ) · · · (ϕxd(x0) + λ) ≥ cdd
dd
fe(x0).

Since λ > 0 was arbitrary, V is an essential viscosity supersolution of (P).
4. By the assumed uniqueness of nondecreasing essential viscosity solu-

tions of (P), we have Uω = u, where u is the unique nondecreasing essential
viscosity solution of (P). Since we can apply the same argument to any subse-

quence of {n− 1
dUω

n }n∈N, and extract a further subsequence converging locally

uniformly to u, we find that n−
1
dUω

n −→ u locally uniformly on [0,∞)d for
all ω ∈ Ω, where Ω has probability one.
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Appendix A. Complete convergence for longest chain problem

We sketch the proof of Theorem 3.
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Proof. Let ε > 0. Let X1, X2, X3, . . . be a sequence of independent and uni-
formly distributed random variables on [0, 1]d and let `n = `({X1, . . . , Xn})
be the length of a longest chain. Let N denote the cardinality of Πt ∩ [0, 1]d.
Conditioned on N = n, Lt and `n have the same distribution, so by the usual
tail bounds on Poisson random variables we deduce

P (Lt ≥ λ) ≤ P
(
`
bt+t

3
4 c
≥ λ

)
+ exp

(
−t 12

2

)
. (A.1)

By [30] there exist constants 0 < C1 < C2 such that

C1n
1
d ≤ E[`n] ≤ C2n

1
d (A.2)

for all n ≥ 1, and
lim
n→∞

n−
1
dE[`n] = cd > 0. (A.3)

Since the longest chain function ` is a configuration function (see [58, Defi-
nition 7.1.7]), we have

P (`n ≤M[`n]− λ) , P (`n ≥M[`n] + λ) ≤ 2 exp

(
− λ2

4(M[`n] + λ)

)
, (A.4)

for any λ > 0, where M[`n] denotes any median of `n. A short computation
involving (A.2) and (A.4) yields

|E[`n]−M[`n]| ≤ C log(n)n
1
2d . (A.5)

and we find that n−
1
dM[`n]→ cd as n→∞. Fix T large enough so that

|M[`n]− cdn
1
d | ≤ ε

2
n

1
d for all n > T. (A.6)

It is well known (see, e.g., [64]) that

|E[`n]− E[`k]| ≤ C|n− k|
1
d .

Combining this with (A.5) we deduce

|M[`n]−M[`k]| ≤ C
(

log(k)k
1
2d + log(n)n

1
2d + |n− k|

1
d

)
. (A.7)

Recalling (A.1), (A.4) and (A.6) we have

P (Lt ≥ cdt
1
d + εt

1
d ) ≤ 2 exp

(
−Cε2t

1
d

)
+ exp

(
−t 12

2

)
. (A.8)

for all t > T sufficiently large. The other inequality is similar, and the result
follows from (3.1).
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