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ABSTRACT

Diffusion MRI has become an established research tool for the investigation of tissue structure and orientation from which
has stemmed a number of variations, such as Diffusion Tensor Imaging (DTI) Diffusion Spectrum Imaging (DSI) and Q-
Ball Imaging (QBI). The acquisition and analysis of such data is very challenging due to its complexity. Recently, an
exciting new Kalman filtering framework has been proposed for DTI and QBI reconstructions in real time during the rep-
etition time (TR) of the acquisition sequence. In this article, we first revisit and thoroughly analyze this approach and show
it is actually sub-optimal and not recursively minimizing the intended criterion due to the Laplace-Beltrami regularization
term. Then, we propose a new approach that implements the QBI reconstruction algorithm in real-time using a fast and
robust Laplace-Beltrami regularization without sacrificing the optimality of the Kalman filter. We demonstrate that our
method solves the correct minimization problem at each iteration and recursively provides the optimal QBI solution. We
validate with real QBI data that our proposed real-time method is equivalent in terms of QBI estimation accuracy to the
standard off-line processing techniques and outperforms the existing solution. This opens new and interesting opportuni-
ties for real-time feedback for clinicians during an acquisition and also for researchers investigating into optimal diffusion
orientation sets and, real-time fiber tracking and connectivity mapping.

Keywords: High Angular Resolution Diffusion Imaging, Q-ball imaging, Orientation Distribution Function, Real-Time
Diffusion MRI, Kalman filtering, Spherical Harmonics, Laplace-Beltrami Regularization

1. INTRODUCTION

Diffusion MRI (dMRI) is a recent Magnetic Resonance Imaging technique introduced in the middle of the 80’s. 1–3 Since
the first acquisitions of diffusion-weighted images (DWI) in vivo 4, 5 and the development of the rigorous formalism of the
diffusion tensor (DT) model,6–8 dMRI has become an established research tool for the investigation of tissue structure
and orientation and has opened up a landscape of extremely exciting discoveries for medicine and neuroscience. dMRI
utilizes the measurement of Brownian motion of water molecules to gain information about tissue structure and orientation
inside the brain and other organs. Using dMRI to infer the three dimensional diffusion probability displacement function
(PDF) requires the acquisition of many diffusion images sensitized to different orientations in the sampling space. The
number of diffusion weighted images (DWI) required depends on how the diffusion is modeled. The well known DT
model assumes the PDF is Gaussian and requires at least 6 DWIs plus an additional unweighted image. However, the
Gaussian assumption is an over-simplification of the diffusion of water molecules and thus has some limitations. While
the Gaussian assumption is adequate for voxels in which there is only a single fiber orientation (or none), it breaks down
for voxels in which there is more complicated internal structure. This is an important limitation, since resolution of DTI
acquisition is between 1 mm3 and 27 mm3 while the physical diameter of fibers can be between 1 μm and 30 μm. 9, 10

Research groups currently agree that there is complex fiber architecture in most fiber regions of the brain. 11 In fact, it is
currently thought that between one third to two thirds of imaging voxels in the human brain white matter contain multiple
fiber bundle crossings.12

Therefore, it is of utmost importance to develop techniques that go beyond the limitations of diffusion tensor imaging
(DTI). To do so, high angular resolution diffusion imaging (HARDI) has been proposed to measure diffusion images along
several directions. Some HARDI reconstruction techniques are model dependent, some model-free, some have linear so-
lutions whereas others require non-linear optimization schemes. For a thorough review of these methods the reader is
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referred elsewhere.13 In this paper, we will be using a recent HARDI technique known as Q-Ball Imaging (QBI). 14 Orig-
inally proposed by Tuch,14 QBI aims to reconstruct the angular portion of the diffusion displacement probability density
function (PDF) of water molecules, also called the diffusion orientation distribution function (ODF). This is a spherical
function that is particularily useful in tractography since its maxima are aligned with the underlying fiber directions at
every voxel. QBI and the diffusion ODF play a central role in this work focused on the development of a real-time reg-
ularized ODF solution that outperforms the state-of-the-art ODF estimation. However, note that the regularized Kalman
filtering framework could also be adapted easily to the problem of fiber orientation density (FOD) 15, 16 reconstruction.

Generally, HARDI acquisitions require many more diffusion weighted measurements than traditional DTI acquisi-
tions, but they can resolve some of the fiber crossing problems. This comes at the price of a longer acquisition time, which
can be problematic for clinical studies involving children and people inflicted with certain diseases. Excessive motion of
the patient during the acquisition process can force an acquisition to be aborted or make the diffusion weighted images
useless. Thus, one would like to make only as many acquisitions as is necessary. According to the literature, this number
is likely to be somewhere between 50 and 200 diffusion weighted measurements but this is still an open question.

In recent literature,17, 18 an algorithm has been proposed for real-time estimation of the diffusion tensor and the ori-
entation distribution function (ODF) using the Kalman filtering framework. We should note that the idea of using the
Kalman filter for DTI reconstruction was suggested earlier, 7 however, to our knowledge it had not been developed nor
implemented until very recently.17, 18 The DT model, without any positivity constraints, is linear and easily fits into the
Kalman filtering framework. However, the recently proposed 19 fast and robust analytical ODF reconstruction algorithms
include a regularization term to deal with poor signal to noise (SNR) ratios. This adds a term to the minimization problem
which does not immediately fit into the standard Kalman filtering framework. In an attempt to include this regularization
term in the Kalman filter, the existing algorithm17, 18 is forced to make some adjustments to the reconstruction model.
These adjustments make the Kalman filtering algorithm sub-optimal in terms of the Laplace-Beltrami criterion with sub-
stantially large errors occurring at the beginning of the acquisition sequence. This has significant implications for the
intended applications of the real-time dMRI processing. As we would like to stop the acquisition as soon as the estima-
tion has converged, a good estimation of the ODFs is highly desirable at the beginning of the acquisition and thus, the
development of an optimal and incremental solution is important.

We propose a Kalman filtering solution that will correctly incorporate the Laplace-Beltrami regularization term 19 into
the filter’s parameters without changing the ODF reconstruction model. The basic idea is to go back to the derivation of
the Kalman filtering equations and include this regularization term. The surprising result is that only the initial covariance
matrix needs to be modified to correctly implement the regularization term. We will show that our proposed algorithm
yields optimal ODF estimations at each iteration (ie: continuously from the beginning to the end of the acquisition) and
hence clearly provides an important added value over the elegant and original approach. 17, 18

As background for the reader, we describe the Kalman filter in section 2.2. In section 3, we first thoroughly analyze
the existing real-time algorithm17, 18 and then describe our proposed recursive solution and prove that it is optimal with
respect to the Laplace Beltrami regularization criterion developed in recent literature. 19 In section 4 we present various
experimental results verifying our claims before concluding the paper.

2. BACKGROUND

Before presenting the body of this paper, we will provide some background on Kalman filtering and ODF reconstruction
techniques as well as clarify some notation.

2.1 Linear Observation Model

Throughout this paper we will use the following notation for the linear observation model.

yi = Cix + εi (1)

where yi is a scalar observation at the discrete time step i, x ∈ R
n is the state vector we wish to estimate, Ci is the 1 × n

observation matrix and εi is a Gaussian random variable with zero mean and varianceR i. We will use the notationE[·] for
the the expected value of a random variable or vector. Furthermore, we will assume that E[ε iεj ] = 0 for i �= j . We will



frequently combine all the measurements up to time k into a linear system in order to compute the least squares estimation
of the state x. In this case, we will use the notation

yk = Bkx + ηk (2)

where yk = [y1 y2 . . . yk]T is a vector of observations, ηk = [ε1 ε2 . . . εk]T is the vector of Gaussian random variables,
and Bk = [CT

1 CT
2 . . . CT

k ]T is the k × n matrix containing all the observation matrices up to time k. Here, we use the
T operator to denote matrix or vector transposition. Let us denote the covariance matrix of η k by Wk. Since the noise
sequence is zero mean, this is written as Wk = E

[
ηkη

T
k

]
. Since we are assuming that the components of the Gaussian

noise vector are uncorrelated, Wk is diagonal with diagonal elements given by Var(ε j) = Rj for j = 1 . . . k.

We will denote by x̂k the minimum variance estimation of the state x given all observations from time i = 1 . . . k.
Thus, we can express x̂k as

x̂k = arg min
x∈Rn

(yk − Bkx)T W−1
k (yk − Bkx). (3)

The solution to equation (3) is easily obtained by differentiating with respect to x. We obtain

x̂k = (BT
k W−1

k Bk)−1BT
k W−1

k yk (4)

2.2 Kalman Filtering

The Kalman Filter is a linear optimal recursive estimator.20 It was originally designed for linear dynamic systems but has
since been successfully used for non-linear systems and problems involving state constraints. There are many excellent
textbook references on Kalman Filtering.21 We recall the observation model equation (1)

yi = Cix + εi.

As we record each new measurement, we gain an incremental amount of information about the state x and by combining
all the recorded measurements into a linear system, we can compute the minimum variance estimation after k observations
x̂k using equation (4).

x̂k = (BT
k W−1

k Bk)−1BT
k W−1

k yk

However, as we only gain an incremental amount of information about the state between observations y k−1 and yk, it is
reasonable to expect that the corresponding change in the state estimate between x̂k−1 and x̂k is also incremental. The
Kalman Filter allows us to quantify this incremental estimation correction and express x̂k in terms of x̂k−1 and the new
observation. The Kalman filtering equations are given below.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂0 = E[x0]
P0 = E

[
(x0 − x̂0)(x0 − x̂0)T

]

Gk = Pk−1CT
k

(
CkPk−1CT

k +Rk

)−1

Pk = (I − GkCk)Pk−1

x̂k = x̂k−1 + Gk (yk − Ckx̂k−1)

(5)

zk = yk−Ckx̂k−1 is generally called the innovations sequence and Gk is called the Kalman gain matrix. It can be shown
that

Pk = E
[
(x − x̂k)(x − x̂k)T

]
(6)

so Pk is the covariance matrix of the estimation error at time k.

2.3 Q-Ball Linear Model

QBI has the advantage over diffusion tensor imaging of being model independent. In his seminal paper, 14 Tuch showed
that it was possible to reconstruct a smoothed version of the diffusion orientation distribution function (ODF), ψ(g) =∫ ∞
0
P (gr)dr, directly from a single shell HARDI acquisition. The method involves viewing the HARDI acquisition

signals as samples of a function on the sphere and taking the Funk-Radon transform (FRT) to arrive at the diffusion ODF.
Reliable computation of the FRT has been an active research area. We will use the fast and robust analytical method with
Laplace-Beltrami regularization19 as it performs well at low SNR and is well-suited for real-time applications.



This method relies on the decomposition of the spherical HARDI signal onto a spherical harmonic (SH) basis. Let Y m
�

denote the SH of order � and degreem (m = −�, ..., �) in the standard basis and Y j (j(�,m) = (�2 + �+2)/2+m) be the
SH in the modified real and symmetric basis.19, 22 We will use the notation x̃ = [x̃1, x̃2, . . . , x̃n]T for coefficients of the
truncated spherical harmonic representation of the HARDI signal and x = [x 1, x2, . . . , xn]T for the spherical harmonic
coefficients of the ODF. The HARDI signal can now be expressed with the linear observation model

S(θi, φi) =
n∑

j=1

x̃jYj(θi, φi) = C̃ix̃ (7)

where n = (L + 1)(L + 2)/2 is the number of terms in the modified spherical harmonic basis of order L, S(θ i, φi)
is the measured HARDI signal in the polar direction (θ i, φi) and C̃i = [Y1(θiφi) Y2(θi, φi) . . . Yn(θi, φi)]. Since we
have a linear observation model, given any number of measurements, we can decompose the HARDI signal onto the
spherical harmonic basis by computing the least squares solution from equation (4). However, as diffusion weighted
images are typically very noisy, Descoteaux et al22 have proposed a robust regularized estimation algorithm using the
Laplace-Beltrami operator, which leads to the following regularized minimization equation,

M(x̃) =
(
ỹk − B̃kx̃

)T (
ỹk − B̃kx̃

)
+ λx̃T L̃x̃, (8)

where B̃k = [C̃T
1 C̃T

2 . . . C̃T
k ]T and ỹk = [S(θ1, φ1) S(θ2, φ2) . . . S(θk, φk)]T contains the HARDI measurements.

Now we are really interested in relating the ODF to the HARDI signal and as the spherical harmonic functions are
eigenfunctions of the FRT, there is a simple relationship between the HARDI signal and the ODF in the spherical harmonic
basis. The spherical harmonic coefficients of the ODF, x, are given by x = 1

S0
Px̃ where P is the n× n FRT matrix with

diagonal elements pkk given by pkk = 2πP�(j)(0) and P�(j)(0)∗ is the Legendre polynomial of degree � evaluated at 0.
Since we want to estimate the ODF directly from HARDI data, we can rewrite the minimization criterion (8) in terms of
the spherical harmonic representation, x, of the ODF. We have

M(x) = (yk − Bkx)T (yk − Bkx) + λxT Lx (9)

where Bk = B̃kP−1 and yk = ỹk/S0 and L = P−1L̃P−1. So by minimizing equation (9) we can robustly estimate the
ODF directly from the HARDI signal. Now, although we have the same linear observation model as used in the Kalman
filter, the minimization criterion is slightly different than equation (3) due to the additional regularization term. In the next
section, we will address this problem in the Kalman filtering framework.

3. KALMAN FILTERING WITH REGULARIZATION

The Kalman filtering algorithm presented in section 2.2 recursively solves equation (3) at each time step k. However, we
would like to consider the following minimization problem

x̂k = arg min
x∈Rn

(yk − Bkx)T W−1
k (yk − Bkx) + λxT Lx (10)

which is slightly modified from equation (3) by the addition of λx T Lx which is a quadratic regularization term on the
state variable x. This is the form of the minimization obtained using the robust Laplace Beltrami regularization described
in the prevous section. The closed form solution to equation (10) is easily obtained by setting the partial derivatives equal
to zero. This yields

x̂k = (BT
k W−1

k Bk + λL)−1BT
k W−1

k yk (11)

We would like to modify the Kalman filtering equations (5) so that we can recursively solve equation (11) with the
addition of each new observation. Currently, we are only aware of one work 17, 18 addressing this problem in practice
for DT and ODF estimation with the Kalman filtering framework, although the idea was mentioned earlier for DTI
reconstruction.7 We show in the next sections that the existing method17, 18 is actually sub-optimal for every time step
except the last one. Then, in section 3.2, we present a new Kalman filtering method that deals with this regularization
term with a very simple and elegant modification of the Kalman filtering equations from section 2.2.

∗�(j) is the order associated with the jth element of the spherical harmonic basis, ie: for j = 1, 2, 3, 4, 5, 6, 7, . . . �(j) =
0, 2, 2, 2, 2, 2, 4, . . .



3.1 Existing Method

The idea behind the recently proposed Kalman filtering solution 17, 18 is to start with the solution to equation (11) and
“invert” it to obtain a linear system, whose least squares solution coincides with equation (11). Let N be the total number
of measurements in the MR acquisition. The linear system obtained by “inverting” equation (11) is y N = B+x + ηN

where B+ is defined as
B+ =

(
(BT

NBN + λL)−1BT
N

)†

The symbol (·)† is used to denote the Moore-Penrose pseudo-inverse operator. Now, denote the k th row of B+ by C+
k .

By using the linear system yN = B+x + ηN , we would be using the following observation equation

yk = C+
k x + εk, (12)

as input to the Kalman filter at each time step k. By construction, solving this system after all N measurements will yield
the correct estimation, but there is no reason why this should be the correct incremental solver for any of the intermediate
steps. In the next section, we analyze this approach and derive an explicit expression for the estimation at each iteration.
In doing so, we show that this approach in fact does not minimize equation (10) at any iterations except for the last. Thus
it is not the correct incremental solver and is only correct after the scan has been completed.

3.1.1 Analysis

In keeping with the proposed method,17, 18 we assume the noise covariance matrix Wk is the identity matrix for all time
steps k. Before doing any detailed analysis, we can make some notes just from the definition of B + and the observation
equation

yk = C+
k x + εk. (13)

As C+
k is a row of B+, it is clear from definition of B+ that every observation matrix C+

k depends on BN and therefore
on all N gradient acquisition directions. Hence, the acquisition of a given diffusion gradient orientation will be modeled
differently depending on how many acquisitions are required in the acquisition. Furthermore, this means that when
applying the Kalman filter to this model, every estimation depends on the entire diffusion orientation set being used.
Thus, changing some diffusion gradients at the end of the acquisition could influence the estimations from the beginning.
This is definitely undesirable behavior for an incremental optimal estimator. Based on experimental results, 17, 18 this
method converges after all N acquisitions (as we mentioned before), but there are no results regarding how close the
intermediate estimations are to the optimal intermediate estimations. This is the problem we will address next.

The best way to analyze this method is to derive an explicit expression for the Kalman filter output at each iteration
under this method. First, we derive in other works23 a closed form expression for B+. The result is

B+ =
(
(BT

NBN + λL)−1BT
N

)†

= BN

(
In×n + λ

(
BT

NBN

)−1
L

)
. (14)

Now let Dk = [C+
1

T
C+

2

T
. . . C+

k

T
]T be the k × n matrix containing the first k observation matrices (or rows of B+).

Using the result in equation (14), we can write Dk as

Dk = Bk

(
In×n + λ

(
BT

NBN

)−1
L

)
(15)

This formula comes from the fact that taking the first k rows of the product of two matrices (ie: D N = BN×nAn×n)
is equivalent to taking the first k rows of the first matrix, Bk×n and multiplying them by the second matrix An×n

(ie: Dk = Bk×nAn×n). Now consider the linear system

yk = Dkx + ηk. (16)

This linear system relates all the observations up to time k to the state x using the observation equation (12) from the
proposed method. So, after k observations, the “optimal” state estimate will be given by the least squares solution to this
linear system. That is, the output of the Kalman filter, x̂k at iteration k is given by

x̂k =
(
DT

k Dk

)−1
DT

k yk



This can be simplified23 to

x̂k =
(
BT

k Bk + λBT
k Bk

(
BT

NBN

)−1
L

)−1

BT
k yk (17)

A quick comparison with equation (11) shows that this is not the optimal estimate unless

BT
k Bk = BT

NBN

or λ = 0. The former is only satisfied when k = N . Thus, we have shown that this method is sub-optimal at every
estimation step except for the last. The implications of this sub-optimality should be made perfectly clear. If the expected
number of acquisitions is set to N = 200 and the acquisition was stopped before completion (say at k = 100) the ODF
estimates obtained from the Kalman filtering method recently proposed 17, 18 will not be minimizing the correct criterion
from equation (10). We would in fact be minimizing

M(x) = (yk − Dkx)T (yk − Dkx) (18)

which yields a different minimizing argument (17) compared to the correct criterion (10) for k < 200.

3.1.2 Some Naive Approaches

There are some naive approaches one might take to correct this method. The first comes from the observation that
this method could be ”corrected” by replacing N by k in the definition of D k (15). Then the least squares solution to
yk = Dkx would be equal to the correct solution from equation (11). This in fact would be true, but it is impossible to
apply Kalman filtering in this situation. Recall that the Kalman filter is derived from the linear observation model (1);
it depends heavily on the fact that Bk−1 and Bk differ by only the addition of one row Ck. If we were to make this
modification to Dk, then Dk would differ from Dk−1 by much more than just the addition of a single row. Therefore,
there would be no system of observation models of the form yk = Ckx + εk such that Dk = [CT

1 CT
2 . . . CT

k ]T for all
k. This makes it impossible to derive a recursive relationship between x̂k and x̂k−1 and hence impossible to apply the
Kalman filter.

The second approach is similar to the first; since we cannot apply the Kalman filter recursively with the modification
described above, we could apply the Kalman filter to all of the data when we get a new observation. But by doing this,
the solution is no longer obtained in a recursive way and real-time processing is impossible. For example, to compute the
estimation at iteration k the Kalman filter would have to be iterated over all the previously recorded observations which
is k times more expensive than the truly recursive Kalman filter and thus not suitable for real-time applications. In fact,
there is little difference between this method and computing the offline estimation at each iteration.

The purpose of this discussion is to clarify that there are no simple modifications that could correct this method. In
the next section, we will present a modification of the Kalman filter that allows the regularization term to be incorporated
while still producing the optimal estimation at every time step.

3.2 Our Proposed Method

We propose a new Kalman filtering method that will incorporate the regularization term in the initial condition of P 0.
Recall that we wish to solve the following equation (10)

x̂k = arg min
x∈Rn

(yk − Bkx)T W−1
k (yk − Bkx) + λxT Lx

in a recursive manner. The Kalman filtering equations for our proposed approach are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂0 = E[x0]
P̃0 = E

[
(x0 − x̂0)T (x0 − x̂0)

]

P0 =
(
P̃−1

0 + λL
)−1

Gk = Pk−1CT
k

(
CkPk−1CT

k +Rk

)−1

Pk = (I − GkCk)Pk−1

x̂k = x̂k−1 + Gk (yk − Ckx̂k−1)

(19)



The state prediction correction and covariance recursive update equations are unchanged and the regularization term only
appears in the initial condition. This is a significant result as it allows us to implement the regularization without any
additional computational requirement compared to the standard Kalman filter. The derivation of these equations mimics
the derivation of the standard Kalman filtering equations but is outside the scope of this paper. For more details on the
derivation, please see other works by the authors. 23 With the correct Kalman filtering equations at hand we next present
some experimental results that validate our proposed algorithm.

4. EXPERIMENTAL VALIDATION

In order to validate our method, we have tested it on real HARDI data and compared with the offline methods. Before we
present the details of our results, we should clarify the exact algorithm that we have implemented as the Kalman filtering
equations were derived in some generality.

4.1 Implementation Details

In any implementation of the Kalman filter, one must be careful in selecting proper initial conditions, most importantly
so is the initial error covariance matrix P0 (written P̃0 in the previous section) . One usually selects P0 = σ2In×n, and
chooses an appropriate value for σ. In the case of ODF estimation, before the first measurement, we have no a priori
information about the diffusion properties at any voxel. To convey our ignorance of the system’s state to the filter, we
must set σ to a sufficiently large value so that the Kalman filter does not place any weight on the initial state x 0 which we
set to the zero vector. In our experiments we typically use σ = 1000.

The only other parameter to be set is the noise covariance matrix W k. To ensure that we are in fact minimizing
equation (9), we use Wk = Ik×k which means that Rk = 1 in all the Kalman filtering equations. The Kalman filtering
equations used in our implementation are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x̂0 =0

P0 =
(
1/σ2In×n + λL

)−1

Gk =Pk−1CT
k

(
CkPk−1CT

k + 1
)−1

Pk =(I − GkCk)Pk−1

x̂k =x̂k−1 + Gk (yk − Ckx̂k−1)

where σ = 1000. We should note here that in the case where L is invertible, we can take the limit as σ → ∞ and initialize
P0 = (λL)−1. However, for the case of ODF reconstruction, the Laplace-Beltrami operator has no dependence on the
zeroth order spherical harmonic coefficient which makes L singular.

4.2 Results and Discussion

Two sets of MRI data have been used in these experiments. In all experiments, a rank 4 spherical harmonic basis was
used so there are 15 coefficients to estimate. The comparison metric used is the mean squared error (MSE) between the
spherical harmonic coefficients of the ODFs over all relevant portions of the brain. The relevant regions of the brain were
deduced from the T2 image. The first database is from the CEA Neurospin Lab in Paris, France. 24 The second is from
the Max Planck Institute(MPI) in Leipzig, Germany.25 We will refer to these by the acronyms CEA and MPI from now
on. The CEA data was acquired on a 1.5T scanner with 200 encoding directions, b = 3000s/mm 2, 60 slices with 2mm
thickness, 25 b = 0s/mm2 images, 128x128 image matrix, TE=93.2 ms, TR = 19 s. The MPI data was acquired with
a 3T scanner using 60 encoding directions and the average of three measurements per direction, seven b = 0 images, a
b-value of 1000s/mm2, 72 slices with 1.7 mm thickness, 128x128 image matrix, TE = 100 ms, TR = 12s.

The proposed algorithm has been tested and compared at each iteration with the optimal offline estimation. We have
also implemented the only other existing method 17, 18 and tested it with the same datasets. Figure 1 shows the evolution of
the MSE for the MPI and the CEA datasets for both our proposed regularized Kalman filtering algorithm and the existing
algorithm proposed by Poupon et al. We can see that at the beginning of the acquisition, the MSE associated with the
existing method is an order of magnitude higher than our proposed method. Our method yields a lower MSE for every
iteration in the acquisition until both methods converge to the optimal offline estimation at the last iteration.



Figure 1. On the left, mean squared error between the SH coefficients of the final offline estimation and each iteration’s Kalman
filter output using both our proposed Regularized Kalman filtering method and the existing method.18 This shows that our method
is superior in terms of MSE at every iteration with the largest differences coming in the first half of the scan. Note that the top
and bottom of the graphs on the left are on different scales to show all the important features. On the right, the MSE between each
iteration’s optimal estimation and our Regularized Kalman filtering method. This shows that there is virtually no difference in terms of
estimation accuracy between our method and the optimal off-line methods. We remind the reader that our algorithm has the advantage
of recursively producing the results in real-time.

From these graphs we can conclude approximately how many measurements are actually necessary when using our
proposed method. For the MPI dataset, there is little change between iteration 20 and 60, thus 20 measurements might
be appropriate here. For the CEA dataset, the equivalent number is probably somewhere between 80 and 120. Keep in
mind however, that these graphs are highly dependent on the fact that we have used a rank 4 spherical harmonic basis.
Using a higher rank would result in more coefficients to be estimated and thus require more acquisitions. Furthermore, we
cannot conclude with certainty how many measurements are required without investigating the effects on fiber tracking,
fiber clustering and any other algorithms that depend on the ODF estimation.

The MSE comparisons on the left of figure 1 are very convincing, but they do not actually prove that our method yields
the smallest MSE at each iteration. We do, however, have a closed form for the optimal estimation after each acquisition
in equation (11), so this is what we should be comparing our solution to. We have computed offline the optimal estimation
after each diffusion gradient orientation as per equation (11) and compared our Kalman filtering method to this in terms
of MSE at each iteration. Our algorithm differs from the optimal by a maximum MSE of 10 −6 throughout the entire scan.
This difference is purely numerical and depends on our choice of σ = 1000. These results are shown on the right of figure
1. This validates our method by proving that we are in fact achieving the optimal estimation at each iteration.

To make a visual comparison between our proposed algorithm and the existing algorithm described in this paper 17, 18

we have generated ODF visualizations for a small region within a single axial slice of each dataset. The locations of
the regions are shown in figure 2. Axial slice number 36 was chosen in both datasets and the ROIs were chosen in fiber
crossing regions from the genu of the corpus callosum with peripheral fibers from the lateral cortex. In figure 3 we show
the evolution of the ODFs under both algorithms next to the optimal estimation at that iteration for the MPI and CEA
datasets respectively. We should note that the MPI HARDI data has a very high SNR, estimated to be roughly 37 (since



MPI data CEA data
Figure 2. The Kalman filtering methods are visually compared in figure 3 on small regions of the MPI and CEA data respectively,
illustrating fiber crossing regions from the genu of the corpus callosum with peripheral fibers from the lateral cortex.

3 averaging) in the white matter, so the visual difference between the optimal estimation using 15 versus 60 acquisitions
is very small. Thus, this is an excellent example showing visually that the existing Kalman filtering method 17, 18 is sub-
optimal. After 15 acquisitions, the optimal estimation is very good and close to the true ODFs, but the existing method is
clearly quite far from optimal and in fact has very little in common visually with the true ODF field. After 20 acquisitions,
the two methods are visually much more similar, but numerically still much different, and we see that by 60 acquisitions,
they both converge to the optimal solution. For the CEA data, the ODFs become visually indistinguishable after about 60
to 80 acquisitions.

To validate that the algorithm is indeed real-time, we measured the execution time for the CEA dataset. The total pro-
cessing time to update the Kalman filter across the entire volume (ie: all slices) after a new acquisition was approximately
6.23 seconds for both our algorithm and the existing method. As this is less than the repetition time of 12.5 seconds, 17, 18

both algorithms are truly real-time. The important difference between the algorithms is not the execution time, but that our
proposed method solves the correct minimization problem at each iteration and hence provides a better estimation of the
ODFs. For the test, both algorithms were implemented in C++ and executed on a 64-bit Linux machine with a dual-core
3.4GHz processor and 3.0 GBytes of RAM. However, the code was not written to take advantage of a multi-core processor
and it was verified during the test that only one processor was being used. Theoretically, it would be possible to improve
the performance by parallelizing the code, but this has not been investigated. We should note that we have defined real-
time as the ability to produce the spherical harmonic coefficients of the ODF in real-time. In many applications, especially
in a clinical setting, visualization is very important and one’s definition of real-time depends on the applications at hand.
Visualization is a very computationally intensive process and on a single workstation cannot be done in real-time. Further
work could be aimed at implementing this algorithm on a cluster of workstations so visualization could also be performed
in real-time.

Another topic for future work is the issue of the true Rician nature of the noise in the diffusion weighted images. 26–28

In this work we have modeled the noise as Gaussian because it is required by the linear Kalman filter. At high SNR, the
Gaussian distribution is a good approximation to Rician noise, but the approximation is poor at low SNR which is typical
of diffusion MRI. We can see these differences in the quality of the estimations between the MPI and CEA datasets.
The MPI data is acquired by averaging three measurements per orientation. Firstly, this lowers the noise variance, and
secondly, from the central limit theorem in probability theory we know that the average of identically distributed random
variables will tend to a Gaussian distribution. Thus, the noise in the MPI dataset is well modeled by a Gaussian distribution
whereas the noise in the CEA data is not. The incorporation of the Rician noise model into a recursive filtering algorithm
would likely yield better results for data with low SNR than the linear Kalman filter used in this work. However, this is a
topic for future research.



Figure 3. Visualization of the ODFs computed from the MPI (Top) and CEA (Bottom) data by (Top Row) Optimal least squares
solution (Middle Row) our proposed Regularized Kalman filtering method, and (Bottom Row) the method proposed by.17,18 The ODFs
are shown at intermediate diffusion acquisitions from left to right.



5. CONCLUSION

We have developed a truly incremental Regularized Kalman filtering algorithm for real-time processing of diffusion Mag-
netic Resonance Q-Ball Imaging. This method allows for real-time estimation of the orientation distribution function
(ODF) during an ongoing MRI scan. We have validated that our proposed method is equivalent to the standard offline
processing techniques and is therefore fit to be used as a real-time processing algorithm in MRI acquisitions. We have also
analyzed the only other proposed method known to the authors 17, 18 and have shown that it is sub-optimal and not truly
an incremental solution. Applications of real-time Kalman filtering for Q-ball imaging are numerous. It could be used
to provide clinicians with a quality measure of the acquisition after each diffusion measurement and provide a stopping
condition for the acquisition. This could shorten many HARDI acquisitions and reduce the probability of having to abort
the acquisition due to motion of the patient. Aside from its obvious clinical applications, this real-time Kalman filtering
framework will likely prove to be a useful tool for investigations into optimal diffusion gradient orientation sets, real-
time fiber-tracking and connectivity mapping, real-time fiber orientation distribution function (FOD) estimation through
spherical deconvolution,16, 29 and many other areas. We are currently working towards achieving these objectives.
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