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Abstract—Most content-based image retrieval systems consider
either one single query, or multiple queries that include the
same object or represent the same semantic information. In this
paper we consider the content-based image retrieval problem for
multiple query images corresponding to different image seman-
tics. We propose a novel multiple-query information retrieval
algorithm that combines the Pareto front method (PFM) with
efficient manifold ranking (EMR). We show that our proposed
algorithm outperforms state of the art multiple-query retrieval
algorithms on real-world image databases. We attribute this
performance improvement to concavity properties of the Pareto
fronts, and prove a theoretical result that characterizes the
asymptotic concavity of the fronts.

Index Terms—Pareto fronts, information retrieval, multiple-
query retrieval, manifold ranking.

I. INTRODUCTION

In the past two decades content-based image retrieval
(CBIR) has become an important problem in machine learn-
ing and information retrieval [1]–[3]. Several image retrieval
systems for multiple queries have been proposed in the litera-
ture [4]–[6]. In most systems, each query image corresponds
to the same image semantic concept, but may possibly have
a different background, be shot from an alternative angle, or
contain a different object in the same class. The idea is that by
utilizing multiple queries of the same object, the performance
of single-query retrieval can be improved. We will call this
type of multiple-query retrieval single-semantic-multiple-query
retrieval. Many of the techniques for single-semantic-multiple-
query retrieval involve combining the low-level features from
the query images to generate a single averaged query [5].

In this paper we consider the more challenging problem
of finding images that are relevant to multiple queries that
represent different image semantics. In this case, the goal
is to find images containing relevant features from each
and every query. Since the queries correspond to different
semantics, desirable images will contain features from several
distinct images, and will not necessarily be closely related to
any individual query. This makes the problem fundamentally
different from single query retrieval, and from single-semantic-
multiple-query retrieval. In this case, the query images will not
have similar low level features, and forming an averaged query
is not as useful.

Since relevant images do not necessarily have features
closely aligned with any particular query, many of the standard
retrieval techniques are not useful in this context. For example,

This work was partially supported by ARO grants W911NF-09-1-0310 and
W911NF-11-1-0391 and by National Science Foundation grant CCF-1217880.
The paper is submitted to IEEE Transaction on Image Processing on February
20, 2014. K.-J. Hsiao and A. Hero are with the Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor. Jeff
Calder is with the Department of Mathematics, University of Michigan, Ann
Arbor. (email: {coolmark,hero,jcalder}@umich.edu.)

bag-of-words type approaches, which may seem natural for
this problem, require the target image to be closely related to
several of the queries. Another common technique is to input
each query one at a time and average the resulting similarities.
This tends to produce images closely related to one of the
queries, but rarely related to all at once. Many other multiple-
query retrieval algorithms are designed specifically for the
single-semantic-multiple-query problem [5], and again tend to
find images related to only one, or a few, of the queries.

Multiple-query retrieval is related to the metasearch problem
in computer science. In metasearch, the problem is to combine
search results for the same query across multiple search
engines. This is similar to the single-semantic-multiple-query
problem in the sense that every search engine is issuing the
same query (or semantic). Thus, metasearch algorithms are not
suitable in the context of multiple-query retrieval with several
distinct semantics.

In this paper, we propose a novel algorithm for multiple-
query image retrieval that combines the Pareto front method
(PFM) with efficient manifold ranking (EMR). The first step in
our PFM algorithm is to issue each query individually and rank
all samples in the database based on their dissimilarities to the
query. Several methods for computing representations of im-
ages, like SIFT and HoG, have been proposed in the computer
vision literature, and any of these can be used to compute the
image dissimilarities. Since it is very computationally intensive
to compute the dissimilarities for every sample-query pair
in large databases, we use a fast ranking algorithm called
Efficient Manifold Ranking (EMR) [7] to compute the ranking
without the need to consider all sample-query pairs. EMR
can efficiently discover the underlying geometry of the given
database and significantly reduces the computational time of
traditional manifold ranking. Since EMR has been successfully
applied to single query image retrieval, it is the natural ranking
algorithm to consider for the multiple-query problem.

The next step in our PFM algorithm is to use the ranking
produced by EMR to create Pareto points, which correspond
to dissimilarities between a sample and every query. Sets of
Pareto-optimal points, called Pareto fronts, are then computed.
The first Pareto front (depth one) is the set of non-dominated
points, and it is often called the Skyline in the database
community. The second Pareto front (depth two) is obtained by
removing the first Pareto front, and finding the non-dominated
points among the remaining samples. This procedure continues
until the computed Pareto fronts contain enough samples to
return to the user, or all samples are exhausted. The process of
arranging the points into Pareto fronts is called non-dominated
sorting.

A key observation in this work is that the middle of the
Pareto front is of fundamental importance for the multiple-
query retrieval problem. The middle of the Pareto front is
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Fig. 1. Images located on the first Pareto front when a pair of query images are issued. Images from the middle part of the front (images 10, 11 and 12)
contain semantic information from both query images. The images are from Stanford 15 scene dataset.

defined as the median of the set of points on the front. Some
work related to finding the middle of the Pareto front and
useful properties of such Pareto points can be found in [8],
[9]. For two queries points on the Pareto front can be linearly
ordered and the median is defined in the standard manner. For
more than two queries a multidimensional generalization of
the median, e.g., the mediod or the L1 median [10], [11], can
be used to define the middle of the front. As an illustrative
example, we show in Figure 1 the images from the first Pareto
front for a pair of query images corresponding to a forest
and a mountain. The images are listed according to their
position within the front, from one tail to the other. The images
located at the tails of the front are very close to one of the
query images, and may not necessarily have any features in
common with the other query. However, as seen in Figure 1,
images in the middle of the front (e.g., images 10, 11 and
12) contain relevant features from both queries, and hence are
very desirable for the multiple-query retrieval problem. It is
exactly these types of images that our algorithm is designed
to retrieve.

The Pareto front method is well-known to have many advan-
tages when the Pareto fronts are non-convex [12]. In this paper,
we present a new theorem that characterizes the asymptotic
convexity (and lack thereof) of Pareto fronts as the size of the
database becomes large. This result is based on establishing
a connection between Pareto fronts and chains in partially
ordered finite set theory. The connection is as follows: a data
point is on the Pareto front of depth n if and only if it admits
a maximal chain of length n. This connection allows us to
utilize results from the literature on the longest chain problem,
which has a long history in probability and combinatorics.
Our main result (Theorem 1) shows that the Pareto fronts are
asymptotically convex when the dataset can be modeled as
i.i.d. random variables drawn from a continuous separable log-
concave density function f : [0, 1]d → (0,∞). This theorem
suggests that our proposed algorithm will be particularly useful
when the underlying density is not log-concave. We give

some numerical evidence (see Figure 2(b)) indicating that the
underlying density is typically not even quasi-concave. This
helps to explain the performance improvement obtained by our
proposed Pareto front method.

We also note that our PFM algorithm could be applied
to automatic image annotation of large databases. Here, the
problem is to automatically assign keywords, classes or cap-
tioning to images in an unannotated or sparsely annotated
database. Since images in the middle of first few Pareto fronts
are relevant to all queries, one could issue different query
combinations with known class labels or other metadata, and
automatically annotate the images in the middle of the first
few Pareto fronts with the metadata from the queries. This
procedure could, for example, transform a single-class labeled
image database into one with multi-class labels. Some major
works and introductions to automatic image annotation can be
found in [13]–[15].

Although we present our algorithm for an arbitrary number
of queries, the main focus of this paper is to validate the
algorithm on two-query retrieval problems, and to show the
importance of non-convex portions of the Pareto fronts. We
intend to conduct experiments for more than two queries in
a future work. In fact, there is some psychophysical research
supporting the view that humans are more adept at pairwise
ranking than rankings involving 3 or more objects [16]–[18].
This suggests that the two-query case is the most important,
especially when a human is issuing the queries, or is in the
loop.

The rest of this paper is organized as follows. We discuss
related work in Section II. In Section III, we introduce the
Pareto front method and present a theoretical analysis of the
convexity properties of Pareto fronts. In Section IV we show
how to apply the Pareto front method (PFM) to the multiple-
query retrieval problem and briefly introduce Efficient Mani-
fold Ranking. Finally, in Section V we present experimental
results and demonstrate a graphical user interface (GUI) that
allows the user to explore the Pareto fronts and visualize the
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partially ordered relationships between the queries and the
images in the database.

II. RELATED WORK

A. Content-based image retrieval

Content-based image retrieval (CBIR) has become an im-
portant problem over the past two decades. Overviews can
be found in [19], [20]. A popular image retrieval system is
query-by-example (QBE) [21], [22], which retrieves images
relevant to one or more queries provided by the user. In order
to measure image similarity, many sophisticated color and
texture feature extraction algorithms have been proposed; an
overview can be found in [19], [20]. SIFT [23] and HoG
[24] are two of most well-known and widely used feature
extraction techniques in computer vision research. Several
CBIR techniques using multiple queries have been proposed
[5], [6]. Some methods combine the queries together to
generate a query center, which is then modified with the
help of relevance feedback. Other algorithms issue each query
individually to introduce diversity and gather retrieved items
scattered in visual feature space [6].

The problem of ranking large databases with respect to a
similarity measure has drawn great attention in the machine
learning and information retrieval fields. Many approaches
to ranking have been proposed, including learning to rank
[25], [26], content-based ranking models (BM25, Vector Space
Model), and link structure ranking model [27]. Manifold
ranking [28], [29] is an effective ranking method that takes into
account the underlying geometrical structure of the database.
Xu et al. [7] introduced an algorithm called Efficient Manifold
Ranking (EMR) which uses an anchor graph to do efficient
manifold ranking that can be applied to large-scale datasets.
In this paper, we use EMR to assign a rank to each sample
with respect to each query before applying our Pareto front
method.

B. Pareto method

There is a wide use of Pareto-optimality in the machine
learning community [30]. Many of these methods must solve
complex multi-objective optimization problems, where finding
even the first Pareto front is challenging. Our use of Pareto-
optimality differs as we generate multiple Pareto fronts from a
finite set of items, and as such we do not require sophisticated
methods to compute the fronts.

In computer science the first Pareto front, which consists of
the set of non-dominated points, is often called the Skyline.
Several sophisticated and efficient algorithms have been de-
veloped for computing the Skyline [31]–[34]. Various Skyline
techniques have been proposed for different applications in
large-scale datasets, such as multi-criteria decision making,
user-preference queries, and data mining and visualization
[35]–[37]. Efficient and fast Skyline algorithms [32] or fast
non-dominated sorting [38] can be used to find each Pareto
front in our PFM algorithm for large-scale datasets.

Sharifzadeh and Shahabi [39] introduced Spatial Skyline
Queries (SSQ) which is similar to the multiple-query retrieval
problem. However, since EMR is not a metric (it doesn’t

satisfy the triangle inequality), the relation between the first
Pareto front and the convex hull of the queries, which is
exploited by Sharifzadeh and Shahabi [39], does not hold
in our setting. Our method also differs from SSQ and other
Skyline research because we use multiple fronts to rank items
instead of using only Skyline queries. We also address the
problem of combining EMR with the Pareto front method for
multiple queries associated with different concepts, resulting
in non-convex Pareto fronts. To the best of our knowledge, this
problem has not been widely researched.

A similar Pareto front method has been applied to the
gene ranking problem [40]. Their approach utilized Pareto
methods to rank genes based on multiple criteria of interest to
a biologist. In another related work, Hsiao et al. [41] proposed
a multi-criteria anomaly detection algorithm utilizing Pareto
depth analysis. This approach uses multiple Pareto fronts to
define a new dissimilarity between samples based on their
Pareto depth. In their case, each Pareto point corresponds to
a similarity vector between pairs of database entries under
multiple similarity criteria. In this paper, a Pareto point corre-
sponds to a vector of dissimilarities between a single entry in
the database and multiple queries.

A related field is metasearch [42], [43], in which one query
is issued in different systems or search engines, and different
ranking results or scores for each item in the database are
obtained. These different scores are then combined to generate
one final ranked list. Many different methods, such as Borda
fuse and CombMNZ, have been proposed and are widely used
in the metasearch community. The same methods have also
been used to combine results for different representations of
a query [4], [44]. However these algorithms are designed for
the case that the queries represent the same semantics. In the
multiple-query retrieval setting this case is not very interesting
as it can easily be handled by other methods, including linear
scalarization.

In contrast we study the problem where each query corre-
sponds to a different image concept. In this case metasearch
methods are not particularly useful, and are significantly
outperformed by the Pareto front method. For example Borda
fusion gives higher rankings to the tails of the fronts, and
thus is similar to linear scalarization. CombMNZ gives a
higher ranking to documents that are relevant to multiple-
query aspects, but it utilizes a sum of all document scores,
and as such is intimately related to linear scalarization with
equal weights, which is equivalent to the Average of Multiple
Queries (MQ-Avg) retrieval algorithm [5]. We show in Section
V that our Pareto front method significantly outperforms MQ-
Avg, and all other multiple-query retrieval algorithms.

Another related field is multi-view learning [45], [46], in
which data is represented by multiple sets of features that
are referred to as “views”. Training in one view will usually
improve the learning in another, although there is often view
disagreement, in which the same sample may belong to a
different class in each view [47]. The views are similar to
criteria in our problem setting. However, different criteria may
be orthogonal and could even give contradictory information;
hence there may be severe view disagreement, and training in
one view could actually worsen performance in another view.
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A similar area is that of multiple kernel learning [48], which
is typically applied to supervised learning problems instead of
retrieval problems.

III. PARETO FRONT METHOD

Pareto-optimality is a powerful concept that has been ap-
plied in many fields, including economics, computer science,
and the social sciences [12]. We give here a brief overview of
Pareto-optimality and define the notion of a Pareto front.

In the general setting of a discrete multi-objective optimiza-
tion problem, we have a finite set S of feasible solutions, and
T criteria f1, . . . , fT : S → R for evaluating the feasible
solutions. One possible goal is to find x ∈ S minimizing all
criteria simultaneously. In most settings, this is an impossible
task. Many approaches to the multi-objective optimization
problem reduce to combining all T criteria into one. When
this is done with a linear combination, it is usually called
linear scalarization [12]. Different choices of weights in the
linear combination yield different minimizers. Without prior
knowledge of the relative importance of each criterion, one
must employ a grid search over all possible weights to identify
a set of feasible solutions.

A more robust and principled approach involves finding
the Pareto-optimal solutions. We say that a feasible solution
x ∈ S is Pareto-optimal if no other feasible solution ranks
better in every objective. More precisely, we say that x strictly
dominates y if fi(x) ≤ fi(y) for all i, and fj(x) < fj(y) for
some j. An item x ∈ S is Pareto-optimal if it is not strictly
dominated by another item. The collection of Pareto-optimal
feasible solutions is called the first Pareto front. It contains all
solutions that can be found via linear scalarization, as well as
other items that are missed by linear scalarization. The first
Pareto front is denoted by F1. The second Pareto front, F2, is
obtained by removing the first Pareto front from S and finding
the Pareto front of the remaining data. More generally, the ith

Pareto front is defined by

Fi = Pareto front of the set S \

i−1⋃
j=1

Fj

 .

If x ∈ Fk we say that x is at a Pareto depth of k. We say that
a Pareto front Fi is deeper than Fj if i > j.

The simple example in Figure 2(a) shows the advantage
of using Pareto front methods for ranking. Here the number
of criteria is T = 2 and the Pareto points [f1(x), f2(x)], for
x ∈ S, are shown in Figure 2(a). In this figure the large points
are Pareto-optimal, but only the hollow points can be obtained
as top ranked items using linear scalarization. It is well-known,
and easy to see in Figure 2(a), that linear scalarization can only
obtain Pareto points on the boundary of the convex hull of the
Pareto front. The same observation holds for deeper Pareto
fronts. Figure 2(b) shows Pareto fronts for the multiple-query
retrieval problem using real data from the Mediamill dataset,
introduced in Section V. Notice the severe non-convexity in
the shapes of the real Pareto fronts in Figure 2(b). This is a
key observation, and is directly related to the fact that each
query corresponds to a different image semantic, and so there
are no images that are very closely related to both queries.

A. Information retrieval using Pareto fronts

In this section we introduce the Pareto front method for the
multiple-query information retrieval problem. Assume that a
dataset XN = {X1, . . . , XN} of data samples is available.
Given a query q, the objective of retrieval is to return samples
that are related to the query. When multiple queries are
present, our approach issues each query individually and then
combines their results into one partially ordered list of Pareto-
equivalent retrieved items at successive Pareto depths. For
T > 1, denote the T -tuple of queries by {q1, q2, ..., qT }
and the dissimilarity between qi and the jth item in the
database, Xj , by di(j). For convenience, define di ∈ RN+
as the dissimilarity vector between qi and all samples in
the database. Given T queries, we define a Pareto point by
Pj = [d1(j), . . . , dT (j)] ∈ RT+, j ∈ {1, . . . , N}. Each Pareto
point Pj corresponds to a sample Xj from the dataset XN .
For convenience, denote the set of all Pareto points by P . By
definition, a Pareto point Pi strictly dominates another point
Pj if dl(i) ≤ dl(j) for all l ∈ {1, . . . , T} and dl(i) < dl(j)
for some l. One can easily see that if Pi dominates Pj , then
Xi is closer to every query than Xj . Therefore, the system
should return Xi before Xj . The key idea of our approach is
to return samples corresponding to which Pareto front they lie
on, i.e., we return the points from F1 first, and then F2, and
so on until a sufficient number of images have been retrieved.
Since our goal is to find images related to each and every
query, we start returning samples from the middle of the first
Pareto front and work our way to the tails. For more than
two queries, one possible way is to order points on a front by
distance to the line X1 = X2 = = XT . The details of our
algorithm are presented in Section IV.

B. Properties of Pareto fronts

Previous works have studied the distribution of the number
of Pareto-optimal points missed by linear scalarization. Hsiao
et al. [41] prove two theorems characterizing how many
Pareto-optimal points are missed, on average and asymptoti-
cally, due to nonconvexities in the geometry of the Pareto point
cloud, called large-scale non-convexities, and nonconvexities
due to randomness of the Pareto points, called small-scale
nonconvexities. In particular, Hsiao et al. [41] show that even
when the Pareto point cloud appears convex, at least 1/6 of
the Pareto-optimal points are missed by linear scalarization in
dimension T = 2.

We present here some new results on the asymptotic convex-
ity of Pareto fronts. Let X1, . . . , Xn be i.i.d. random variables
on [0, 1]d with probability density function f : [0, 1]d → R and
set Xn = {X1, . . . , Xn}. Then (Xn,5) is a partially ordered
set, where 5 is the usual partial order on Rd defined by

x 5 y ⇐⇒ xi ≤ yi for all i ∈ {1, . . . , d}.

Let F1,F2, . . . denote the Pareto fronts associated with Xn,
and let hn : [0, 1]d → R denote the Pareto depth function
defined by

hn(x) = max{i ∈ N : Fi 5 x}, (1)
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(a) (b)

Fig. 2. (a) Depiction of nonconvexities in the first Pareto front. The large points are Pareto-optimal, having the highest Pareto ranking by criteria f1 and
f2, but only the hollow points can be obtained by linear scalarization. Here f1 and f2 are the dissimilarity values for query 1 and query 2, respectively.
(b) Depiction of nonconvexities in the Pareto fronts in the real-world Mediamill dataset used in the experimental results in Section V. The points on the
non-convex portions of the fronts will be retrieved later by any scalarization algorithm, even though they correspond to equally good images for the retrieval
problem.

where for simplicity we set F0 = {(−1, . . . ,−1)}, and we
write Fi 5 x if there exists y ∈ Fi such that y 5 x. The
function hn is a (random) piecewise constant function that
“counts” the Pareto fronts associated with X1, . . . , Xn.

Recall that a chain of length ` in Xn is a sequence
x1, . . . , x` ∈ Xn such that x1 5 x2 5 · · · 5 x`. Define
un : [0, 1]d → R by

un(x) = max{` ∈ N : ∃ x1 5 · · · 5 x` 5 x in Xn}. (2)

The function un(x) is the length of the longest chain in
Xn with maximal element x` 5 x. We have the following
alternative characterization of hn:

Proposition 1. hn(x) = un(x) with probability one for all
x ∈ [0, 1]d.

Proof. Suppose that X1, . . . , Xn are distinct. Then each Pareto
front consists of mutually incomparable points. Let x ∈ [0, 1]d,
r = un(x) and k = hn(x). By the definition of un(x), there
exists a chain x1 5 · · · 5 xr in Xn such that xr 5 x. Noting
that each xi must belong to a different Pareto front, we see
there are at least r fronts Fi such that Fi 5 x. Note also that
for j ≤ i, Fi 5 x =⇒ Fj 5 x. It follows that Fi 5 x
for i = 1, . . . , r and un(x) = r ≤ hn(x). For the opposite
inequality, by definition of hn(x) there exists xk ∈ Fk such
that xk 5 x. By the definition of Fk, there exists xk−1 ∈ Fk−1
such that xk−1 5 xk. By repeating this argument, we can
find x1, . . . , xk with xi ∈ Fi and x1 5 · · · 5 xk, hence we
have exhibited a chain of length k in Xn and it follows that
hn(x) = k ≤ un(x). The proof is completed by noting that
X1, . . . , Xn are distinct with probability one.

It is well-known [12] that Pareto methods outperform more
traditional linear scalarization methods when the Pareto fronts
are non-convex. In previous work [41], we showed that the
Pareto fronts always have microscopic non-convexities due
to randomness, even when the Pareto fronts appear convex
on a macroscopic scale. Microscopic non-convexities only
account for minor performance differences between Pareto
methods and linear scalarization. Macroscopic non-convexities

induced by the geometry of the Pareto fronts on a macroscopic
scale account for the major performance advantage of Pareto
methods.

It is thus very important to characterize when the Pareto
fronts are macroscopically convex. We therefore make the
following definition:

Definition 1. Given a density f : [0, 1]d → [0,∞), we
say that f yields macroscopically convex Pareto fronts if
for X1, . . . , Xn drawn i.i.d. from f we have that the almost
sure limit U(x) := limn→∞ n−

1
dhn(x) exists for all x and

U : [0, 1]d → R is quasiconcave.

Recall that U is said to be quasiconcave if the super level
sets

{x ∈ [0, 1]d : U(x) ≥ a}
are convex for all a ∈ R. Since the Pareto fronts are encoded
into the level sets of hn, the asymptotic shape of the Pareto
fronts is dictated by the level sets of the function U from
Definition 1. Hence the fronts are asymptotically convex on a
macroscopic scale exactly when U is quasiconcave, hence the
definition.

We now give our main result, which is a partial characteri-
zation of densities f that yield macroscopically convex Pareto
fronts.

Theorem 1. Let f : [0, 1]d → (0,∞) be a continuous, log-
concave, and separable density, i.e., f(x) = f1(x1) · · · fd(xd).
Then f yields macroscopically convex Pareto fronts.

Proof. We denote by F : [0, 1]d → R the cumulative distribu-
tion function (CDF) associated with the density f , which is
defined by

F (x) =

∫ x1

0

· · ·
∫ xd

0

f(y1, . . . , yd) dy1 · · · dyd. (3)

Let X1, . . . , Xn be i.i.d. with density f , and let hn denote
the associated Pareto depth function, and un the associated
longest chain function. By [49, Theorem 1] we have that for
every x ∈ [0, 1]d

n−
1
dun(x) −→ U(x) almost surely as n→∞, (4)
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where U(x) = cdF (x)
1
d , and cd is a positive constant. In fact,

the convergence is actually uniform on [0, 1]d with probability
one, but this is not necessary for the proof. For a general non-
separable density, the continuum limit (4) still holds, but the
limit U(x) is not given by cdF (x)

1
d (it is instead the viscosity

solution of a Hamilton-Jacobi equation), and the proof is quite
involved (see [49]). Fortunately, for the case of a separable
density the proof is straightforward, and so we include it here
for completeness.

Define Φ : [0, 1]d → [0, 1]d by

Φ(x) =

(∫ x1

0

f1(t) dt, . . . ,

∫ xd

0

fd(t) dt

)
.

Since f is continuous and strictly positive, Φ : [0, 1]d → [0, 1]d

is a C1-diffeomorphism. Setting Yi = Φ(Xi), we easily see
that Y1, . . . , Yd are independent and uniformly distributed on
[0, 1]d. It is also easy to see that Φ preserves the partial order
5, i.e.,

x 5 z ⇐⇒ Φ(x) 5 Φ(z).

Let x ∈ [0, 1]d, set y = Φ(x), and define Yn = Φ(Xn). By
our above observations we have

un(x) = max{` ∈ N : ∃ y1 5 · · · 5 y` 5 y in Yn}.

Let i1 < · · · < iN denote the indices of the random variables
among Y1, . . . , Yn that are less than or equal to y and set Zk =
Yik for k = 1, . . . , N . Note that N is binomially distributed
with parameter p := F (x) and that un(x) is the length of the
longest chain among N uniformly distributed points in the
hypercube {z ∈ [0, 1]d : z 5 y}. By [50, Remark 1] we have
N−

1
dun(x) → cd almost surely as n → ∞ where cd < e

are dimensional constants. Since n−1N → p almost surely as
n→∞, we have

n−
1
dun(x) =

(
n−

1
dN

1
d

)
N−

1
dun(x)→ cdp

1
d

almost surely as n → ∞. The proof of (4) is completed by
recalling Proposition 1.

In the context of Definition 1, we have U(x) = cdF (x)
1
d .

Hence U is quasiconcave if and only if the cumulative dis-
tribution function F is quasiconcave. A sufficient condition
for quasiconcavity of F is log-concavity of f [51], which
completes the proof.

Theorem 1 indicates that Pareto methods are largely redun-
dant when f is a log-concave separable density. As demon-
strated in the Mediamill [52] dataset (see Figure 2(b)), the
distribution of points in Pareto space is not quasiconcave,
and hence not log-concave, for the multiple-query retrieval
problem. This helps explain the success of our Pareto methods.

It would be very interesting to extend Theorem 1 to arbitrary
non-separable density functions f . When f is non-separable
there is no simple integral expression like (3) for U , and
instead U is characterized as the viscosity solution of a
Hamilton-Jacobi partial differential equation [49, Theorem 1].
This makes the non-separable case substantially more difficult,
since U is no longer an integral functional of f . See [53] for
a brief overview of our previous work on a continuum limit
for non-dominated sorting [49], [54].

IV. MULTIPLE-QUERY IMAGE RETRIEVAL

For most CBIR systems, images are preprocessed to extract
low dimensional features instead of using pixel values directly
for indexing and retrieval. Many feature extraction methods
have been proposed in image processing and computer vision.
For example many CBIR systems use the famous SIFT and
HoG feature extraction techniques and apply spatial pyramid
matching to obtain bag-of-words type features for image
representation. However, other feature extraction methods are
also common, e.g., features that include color and higher order
geometry [55]. The Pareto ranking methods in this paper do
not depend on the features used. However, the shape, e.g.,
convexity vs concavity, of the fronts will generally depend on
the feature extraction algorithm.

To avoid comparing every sample-query pair, we use an
efficient manifold ranking algorithm proposed by [7].

A. Efficient manifold ranking (EMR)

The traditional manifold ranking problem [28] is as follows.
Let X = {X1, . . . , Xn} ⊂ Rm be a finite set of points, and let
d : X ×X → R be a metric on X , such as Euclidean distance.
Define a vector y = [y1, . . . , yn], in which yi = 1 if Xi is a
query and yi = 0 otherwise. Let r : X → R denote the ranking
function which assigns a ranking score ri to each point Xi.
The query is assigned a rank of 1 and all other samples will
be assigned smaller ranks based on their distance to the query
along the manifold underlying the data. To construct a graph
on X , first sort the pairwise distances between all samples in
ascending order, and then add edges between points according
to this order until a connected graph G is constructed. The
edge weight between Xi and Xj on this graph is denoted by
wij . If there is an edge between Xi and Xj , define the weight
by wij = exp[−d2(Xi, Xj)/2σ

2], and if not, set wij = 0, and
set W = (wij)ij ∈ Rn×n. In the manifold ranking method,
the cost function associated with ranking vector r is defined
by

O(r) =

n∑
i,j=1

wij

∣∣∣∣∣ 1√
Dii

ri −
1√
Djj

rj

∣∣∣∣∣
2

+ µ

n∑
i=1

|ri − yi|2

where D is a diagonal matrix with Dii =
∑n
j=1 wij and µ >

0 is the regularization parameter. The first term in the cost
function is a smoothness term that forces nearby points have
similar ranking scores. The second term is a regularization
term, which forces the query to have a rank close to 1, and
all other samples to have ranks as close to 0 as possible. The
ranking function r is the minimizer of O(r) over all possible
ranking functions.

This optimization problem can be solved in either of two
ways: a direct approach and an iterative approach. The direct
approach computes the exact solution via the closed form
expression

r∗ = (In − αS)−1y (5)

where α = 1
1+µ , In is an n × n identity matrix and

S = D−1/2WD−1/2. The iterative method is better suited
to large scale datasets. The ranking function r is computed by
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repeating the iteration scheme r(t+ 1) = αSr(t) + (1−α)y,
until convergence. The direct approach requires an n×n matrix
inversion and the iterative approach requires n×n memory and
may converge to a local minimum. In addition, the complexity
of constructing the graph G is O(n2 log n). Sometimes a kNN
graph is used for G, in which case the complexity is O(kn2).
Neither case is suitable for large-scale problems.

In [7], an efficient manifold ranking algorithm is proposed.
The authors introduce an anchor graph U to model the data
and use the Nadaraya-Watson kernel to construct a weight
matrix Z ∈ Rd×n which measures the potential relationships
between data points in X and anchors in U . For convenience,
denote by zi the i-th column of Z. The affinity matrix W is
then designed to be ZTZ. The final ranking function r can
then be directly computed by

r∗ = (In −HT (HHT − 1

α
Id)
−1H)y, (6)

where H = ZD−
1
2 and D is a diagonal matrix with

Dii =
∑n
j=1 z

T
i zj . This method requires inverting only a

d × d matrix, in contrast to inverting the n × n matrix used
in standard manifold ranking. When d � n, as occurs in
large databases, the computational cost of manifold ranking
is significantly reduced. The complexity of computing the
ranking function with the EMR algorithm is O(dn + d3). In
addition, EMR does not require storage of an n× n matrix.

Notice construction of the anchor graph and computation
of the matrix inversion [7] can be implemented offline. For
out-of-sample retrieval, Xu et al. [7] provides an efficient way
to update the graph structure and do out-of-sample retrieval
quickly.

B. Multiple-query case

In [7], prior knowledge about the relevance or confidence
of each query can be incorporated into the EMR algorithm
through the choice of the initial vector y. For example, in the
multiple-query information retrieval problem, we may have
queried, say, X1, X2 and X3. We could set y1 = y2 = y3 = 1
and yi = 0 for i ≥ 4 in the EMR algorithm. This instructs
the EMR algorithm to assign high ranks to X1, X2, and X3

in the final ranking r∗. It is easy to see from (5) or (6) that
r∗ is equal to the scalarization r∗1 + r∗2 + r∗3 where r∗i , i =
1, 2, 3, is the ranking function obtained when issuing each
query individually. The main contribution of this paper is to
show that our Pareto front method can outperform this standard
linear scalarization method. Our proposed algorithm is given
below.

Given a set of queries {q1, q2, ..., qT }, we apply EMR to
compute the ranking functions r∗1 . . . r

∗
T ∈ RN corresponding

to each query. We then define the dissimilarity vector di ∈ RN+
between qi and all samples by di = 1 − r∗i where 1 =
[1, . . . , 1] ∈ RN . We then construct the Pareto fronts associated
to d1, . . . , dT as described in Section III-A. To return relevant
samples to the user, we return samples according to their
Pareto front number, i.e., we return points on F1 first, then F2,
and so on, until sufficiently many images have been retrieved.
Within the same front, we return points in a particular order,
e.g., for T = 2, from the middle first. In the context of

this paper, the middle part of each front will contain samples
related to all queries. Relevance feedback schemes can also
be used with our algorithm to enhance retrieval performance.
For example one could use images labeled as relevant by the
user as new queries to generate new Pareto fronts.

V. EXPERIMENTAL STUDY

We now present an experimental study comparing our Pareto
front method against several state of the art multiple-query
retrieval algorithms. Since our proposed algorithm was devel-
oped for the case where each query corresponds to a different
semantic, we use multi-label datasets in our experiments. By
multi-label, we mean that many images in the dataset belong
to more than one class. This allows us to measure in a precise
way our algorithm’s ability to find images that are similar to
all queries.

A. Multiple-query performance metrics

We evaluate the performance of our algorithm using nor-
malized Discounted Cumulative Gain (nDCG) [56], which is
standard in the retrieval community. The nDCG is defined in
terms of a relevance score, which measures the relevance of a
returned image to the query. In single query retrieval, a popular
relevance score is the binary score, which is 1 if the retrieved
image is related to the query and 0 otherwise. In the context
of multiple-query retrieval, where a retrieved image may be
related to each query in distinct ways, the binary score is
an oversimplification of the notion of relevance. Therefore,
we define a new relevance score for performance assessment
of multiple-query multiclass retrieval algorithms. We call this
relevance score multiple-query unique relevance (MQUR).

Roughly speaking, multiple-query unique relevance mea-
sures the fraction of query class labels that are covered by the
retrieved object when the retrieved object is uniquely related to
each query. When the retrieved object is not uniquely related to
each query, the relevance score is set to zero. The importance
of having unique relations to each query cannot be understated.
For instance, in the two-query problem, if a retrieved image is
related to one of the queries only through a feature common
to both queries, then the image is effectively relevant to only
one of the those queries in the sense it would likely be ranked
highly by a single-query retrieval algorithm issuing only one
of the queries. A more interesting and challenging problem,
which is the focus of this paper, is to find images that have
different features in common with each query.

More formally, let us denote by C the total number of
classes in the dataset, and let ` ∈ {0, 1}C be the binary label
vector of a retrieved object X . Similarly, let yi be the label
vector of query qi. Given two label vectors `1 and `2, we
denote by the logical disjunction `1 ∨ `2 (respectively, the
logical conjunction `1 ∧ `2) the label vector whose jth entry
is given by max(`1j , `

2
j ) (respectively, min(`1j , `

2
j )). We denote

by |`| the number of non-zero entries in the label vector `.
Given a set of queries {q1, . . . , qT }, we define the multiple-
query unique relevance (MQUR) of retrieved sample X having
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label ` to the query set by

MQUR(X) =


|` ∧ β|
|β|

, if ∀i, |` ∧ (yi − ηi)| 6= 0,

0, otherwise,
(7)

where β = y1 ∨ y2 ∨ · · · ∨ yT is the disjunction of the label
vectors corresponding to q1, . . . , qT and ηi =

∨
j 6=i y

j ∧ yi.
Multiple-query unique relevance measures the fraction of
query classes that the retrieved object belongs to whenever
the retrieved image has a unique relation to each query, and
is set to zero otherwise.

For simplicity of notation, we denote by MQURi the
multiple-query unique relevance of the ith retrieved image.
The Discounted Cumulative Gain (DCG) for top-K retrieved
items is then given by

DCG = MQUR1 +

K∑
i=2

MQUR1
i

log2(i)
, (8)

The normalized DCG, or nDCG, is computed by normalizing
the DCG by the best possible score which is 1+

∑K
i=2

1
log2(i)

.
Note that, analogous to binary relevance score, we have

MQURi = 1 if and only if the label vector corresponding to
the ith retrieved object contains all labels from both queries
and each query has at least one unique class. The difference is
that multiple-query relevance is not a binary score, and instead
assigns a range of values between zero and one, depending
on how many of the query labels are covered by the retrieved
object. Thus, MQURi can be viewed as a generalization of the
binary relevance score to the multiple-query setting in which
the goal is to find objects uniquely related to all queries.

B. Evaluation on multi-label datasets

We evaluate our algorithm on the Mediamill video dataset
[52], which has been widely used for benchmarking multi-
class classifiers, and the LAMDA dataset, which is widely
used in the retrieval community [55]. The Mediamill dataset
consists of 29800 videos, and Snoek et al. [52] provide a
manually annotated lexicon containing 101 semantic concepts
and a large number of pre-computed low-level multimedia
features. Each visual feature vector, Xi, is a 120-dimensional
vector that corresponds to a specified key frame in the dataset.
The feature extraction is based on the method of [57] and
characterizes both global and local color-texture information
of a single key frame, that is, an image. Each key frame is
associated with a label vector ` ∈ {0, 1}C , and each entry of
` corresponds to one of 101 semantic concepts. If Xi contains
content related to the jth semantic concept, then the jth entry
of `i is set to 1, and if not, it is set to 0.

The LAMDA database contains 2000 images, and each
image has been labeled with one or more of the following five
class labels: desert, mountains, sea, sunset, and trees. In total,
1543 images belong to exactly one class, 442 images belong
to exactly two classes, and 15 images belong to three classes.
Of the 442 two-class images, 106 images have the labels
‘mountain’ and ‘sky’, 172 images have the labels ‘sunset’ and
‘sea’, and the remaining label-pairs each have less than 40
image members, with some as few as 5. Zhou and Zhang [55]

preprocessed the database and extracted from each image a
135 element feature vector, which we use to compute image
similarities.

To evaluate the performance of our algorithm, we randomly
generated 10000 query-pairs for Mediamill and 1000 for
LAMDA, and ran our multiple-query retrieval algorithm on
each pair. We computed the nDCG for different retrieval
algorithms for each query-pair, and then computed the average
nDCG over all query-pairs at different K. Since Efficient
Manifold Ranking (EMR) uses a random initial condition
for constructing the anchor graph, we furthermore run the
entire experiment 20 times for Mediamill and 100 times for
LAMDA, and computed the mean nDCG over all experiments.
This ensures that we avoid any bias from a particular EMR
model.

We show the mean nDCG for our algorithm and many state
of the art multiple-query retrieval algorithms for Mediamill
and LAMDA in Figures 3(a) and 3(b), respectively. We
compare against MQ-Avg, MQ-Max, Joint-Avg, and Joint-
SVM [5]. Joint-Avg combines histogram features of different
queries to generate a new feature vector to use as an out-
of-example query. A Joint-SVM classifier is used to rank
each sample in response to each query. We note that Joint-
SVM does not use EMR, while MQ-Avg and MQ-Max both
do. Figures 3(a) and 3(b) show that our retrieval algorithm
significantly outperforms all other algorithms. We also com-
pute the p-value of a one-sided paired t-test of the hypothesis
that the performance of our Pareto method is better than the
competing method for different Ks. The results are shown in
Table I and II. The statistical analysis shows that our results
are statistically significant.

We should note that when randomly generating query-
pairs for LAMDA, we consider only the label-pairs (‘moun-
tain’,‘sky’) and (‘sunset’,‘sea’), since these are the only label-
pairs for which there are a significant number of corresponding
two-class images. If there no multi-class images corresponding
to a query-pair, then multiple-query retrieval is unnecessary;
one can simply issue each query separately and take a union
of the retrieved images.

To visualize advantages of the Pareto front method, we
show in Figure 4 the multiple-query unique relevance scores
for points within each of the first five Pareto fronts, plotted
from one tail of the front, to the middle, to the other tail. The
relevance scores within each front are interpolated to a fixed
grid, and averaged over all query pairs to give the curves in
Figure 4. We used the Mediamill dataset to generate Figure
4; the results on LAMDA are similar. This result validates
our assumption that the first front includes more important
samples than deeper fronts, and that the middle of the Pareto
fronts is fundamentally important for multiple-query retrieval.

We also note that the middle portions of fronts 2–5 contain
samples with higher scores than those located at the tail of
the first front. This phenomenon suggests a modified version
of PFM which starts returning points around the middle of
second front after returning only, say, d points from the first
front. The same would hold for the second front and so on.
We have carried out some experiments with such an algorithm,
and have found that it can lead to even larger performance
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Fig. 3. Comparison of PFM against state of the art multiple-query retrieval algorithms for LAMDA and Mediamill dataset with respect to the nDCG defined
in (8). The proposed method significantly outperforms others on both datasets.

TABLE I
THE P-VALUE OF A ONE-SIDED PAIRED T-TEST OF THE HYPOTHESIS THAT THE PERFORMANCE OF OUR PARETO METHOD IS BETTER THAN THE

COMPETING METHOD FOR DIFFERENT K ON MEDIAMILL DATASET. FOR COMPETING METHOD MQ-AVG, MQ-MAX AND JOINT-SVM, P-VALUES ARE
ALL LESS THAN 10−4 . THIS STATISTICAL ANALYSIS SHOWS THAT OUR RESULTS ARE STATISTICALLY SIGNIFICANT.

K 10 20 30 40 50 60 70 80 90 100
Pareto v.s. Joint-Avg 0.0017 0.0011 0.0002 less than 10−4

TABLE II
THE SAME STATISTICAL ANALYSIS FOR LAMDA DATASET.

K 2 4 6 8 10 12 14 16 18 20
Pareto v.s. Joint-Avg 0.2694 less than 10−4

Pareto v.s. MQ-Avg 0.5593 0.0009 less than 10−4

Pareto v.s. MQ-Max 0.0001 less than 10−4

Pareto v.s. Joint-SVM 0.0004 0.0007 0.0018 0.0021 0.0053 0.0099 0.0243 0.0632 0.1507 0.2775

improvements, as suggested by Figure 4, for certain choices
of d. However, it may be difficult to determine the best choice
of d in advance since the label information is not available.
Recall that label information is available only for testing and
generating Figure 4 for validation. Therefore, we decided for
simplicity to leave this simple modification of the algorithm
to future work.

C. GUI for Pareto front retrieval

A GUI for a two-query image retrieval was implemented
to illustrate the Pareto front method for image retrieval. Users
can easily select samples from different fronts and visually
explore the neighboring samples along the front. Samples
corresponding to Pareto points at one tail of the front are
similar to only one query, while samples corresponding to
Pareto points at the middle part of front are similar to both
queries. When the Pareto point cloud is non-convex, users can
use our GUI to easily identify the Pareto points that cannot be
obtained by any linear scalarization method. The screen shot of
our GUI is shown in Figure 5. In this example, the two query

images correspond to a mountain and an ocean respectively.
One of the retrieved images corresponds to a point in the
middle part of the second front that includes both a mountain
and an ocean. The Matlab code of the GUI can be downloaded
from http://tbayes.eecs.umich.edu/coolmark/pareto.

VI. CONCLUSIONS

We have presented a novel algorithm for content-based
multiple-query image retrieval where the queries all corre-
spond to different image semantics, and the goal is to find
images related to all queries. This algorithm can retrieve
samples which are not easily retrieved by other multiple-query
retrieval algorithms and any linear scalarization method. We
have presented theoretical results on asymptotic non-convexity
of Pareto fronts that proves that the Pareto approach is better
than using linear combinations of ranking results. Experimen-
tal studies on real-world datasets illustrate the advantages of
the proposed Pareto front method.

http://tbayes.eecs.umich.edu/coolmark/pareto


10

Fig. 5. GUI screenshot. The two images on the upper left are two query images containing mountain and water, respectively. The largest image corresponds
to the 7th Pareto point on the second Pareto front and the other four images correspond to adjacent points on the same front . Users can select the front and
the specific relevance point using the two slider bars at the bottom.
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Fig. 4. Average unique relevance scores at different regions along top five
Pareto fronts. This plot validates our assumption that the middle part of first
Pareto fronts contain more important samples that are uniquely related to both
queries. Samples at deeper fronts and near the tails are less interesting.
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