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Quick intro to learning

Fully supervised: Given training data (x1, y1), (x2, y2), . . . , (xm , ym) with xi œ X and
yi œ Y, learn a function

u : X æ Y for which u(xi) ¥ yi for i = 1, . . . ,m.

Semi-supervised learning: Given additional unlabeled data xm+1, . . . , xn for n ∫ m,
use both the labeled and unlabeled data to learn f .

1 Inductive learning: Learn a function

u : X æ Y for which u(xi) ¥ yi for i = 1, . . . ,m.

2 Transductive learning: Learn a function

u : {x1, x2, . . . , xn} æ Y for which u(xi) ¥ yi for i = 1, . . . ,m

Unsupervised learning: Uses only the unlabeled data x1, . . . , xn (e.g., clustering).
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Example: Automated image captioning

[Yann LeCun, Yoshua Bengio, Geo↵rey Hinton. Deep learning. Nature, 2015.]
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Graph-based semi-supervised learning

Graph: G = (X , W)

X = {x1, . . . , xn} are the vertices of the graph

W = (wij )ni,j=1 are nonnegative and symmetric (wij = wji) edge weights.

wij ¥ 1 if xi , xj similar, and wij ¥ 0 when dissimilar.

Labels: We assume the first m π n vertices are given labels

y1, y2, . . . , ym œ {e1, e2, . . . , ek} œ Rk .

Task: Extend the labels to the rest of the vertices xm+1, . . . , xn .

Semi-supervised: The graph encodes the unlabeled data in an e�cient way.

Goal is to obtain good performance with far fewer labels compared to fully
supervised learning.
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Example: k -nearest neighbor graph

We connect each point to its k -nearest neighbors (k = 10).

Points are colored by the result of the spectral clustering.
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MNIST (70,000 28 ◊ 28 pixel images of digits 0-9)

Each image is a datapoint

xi œ R28◊28 = R784.

Geometric weights:

wij = ÷

3
|xi ≠ xj |

Á

4

k -nearest neighbor graph:

wij = ÷

3
|xi ≠ xj |
Ák (xi)

4
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Clustering MNIST

https://divamgupta.com
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Laplacian regularization

Laplacian regularized semi-supervised learning solves the Laplace equation

;
Lu(xi) = 0, if m + 1 Æ i Æ n,

u(xi) = yi , if 1 Æ i Æ m,

where u : X æ Rk , and L is the graph Laplacian

Lu(xi) =

nÿ

j=1

wij (u(xi) ≠ u(xj )).

The label decision for vertex xi is determined by the largest component of u(xi)

¸(xi) = argmax
jœ{1,...,k}

{uj (x )}.

References:

Original work [Zhu et al., 2003]

Learning [Zhou et al., 2005, Ando and Zhang, 2007]

Manifold ranking [He et al., 2006, Zhou et al., 2011, Xu et al., 2011]
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Label propagation

The solution of Laplace learning satisfies

Lu(xi) =

nÿ

j=1

wij (u(xi) ≠ u(xj )) = 0 (m + 1 Æ i Æ n).

Re-arranging, we see that u satisfies the mean-property

u(xi) =

qn

j=1
wiju(xj )qn

j=1
wij

.

Label propagation [Zhu 2005] iterates

uk+1(xi) =

qn

j=1
wiju

k (xj )qn

j=1
wij

,

and at convergence is equivalent to Laplace learning.
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Variational interpretation

Laplace learning is equivalent to the variational problem

min
u:X æR

; nÿ

i,j=1

wij |u(xi) ≠ u(xj )|2 : u(xi) = yi for i = 1, . . . ,m

<
.
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.

Many soft-constrained versions have been proposed
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Ill-posed with small amount of labeled data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Graph is n = 105 i.i.d. random variables uniformly drawn from [0, 1]2.

wxy = 1 if |x ≠ y | < 0.01 and wxy = 0 otherwise.

Two labels: y1 = 0 at the Red point and y2 = 1 at the Green point.

Over 95% of labels in [0.4975, 0.5025].

[Nadler et al., 2009, El Alaoui et al., 2016]
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Laplace learning on MNIST at low label rates

# Labels per class 1 2 3 4 160

Laplace Learning 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 97.0 (0.1)

Nearest Neighbor 65.4 (5.2) 74.2 (3.3) 77.8 (2.6) 80.7 (2.0) 92.4 (0.2)

Average accuracy over 100 trials with standard deviation in brackets.

Nearest neighbor is geodesic graph-nearest neighbor.
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Recent work

The low-label rate problem was originally identified in [Nadler 2011].

A lot of recent work has attempted to address this issue with new graph-based
classification algorithms at low label rates.

Higher-order regularization: [Zhou and Belkin, 2011], [Dunlop et al., 2019]

p-Laplace regularization: [Alaoui et al., 2016], [Calder 2018,2019], [Slepcev &
Thorpe 2019]

Re-weighted Laplacians: [Shi et al., 2017], [Calder & Slepcev, 2019]

Centered kernel method: [Mai & Couillet, 2018]

While we have lots of new models, the problem with Laplace learning at low label rates
was still not well-understood.
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Visualization of spikes

Figure: Demonstration of spikes in Laplacian learning. Label function is cos(x1).
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Main directions for talk

Label function is cos(x1).

1 Avoiding spikes: How many labels do we need to ensure spikes do not form?

2 Analyzing the spikes: Why do we see poor classification results at low label rates?

I Are the spikes too localized? Do they propagate information?

I Is a flat scoring function problematic?

3 Poisson learning: Careful analysis will lead to a simple fix and a new algorithm.

I Spikes can be interpreted as source terms in a Poisson equation.

I Experiments on MNIST, FashionMNIST, and CIFAR-10
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Random geometric graph

Random Geometric Graph: Assume the vertices of the graph are

X = {x1, . . . , xn}

where x1, . . . , xn is a sequence of i.i.d. random variables on ⌦ µ Rd with positive density
fl, and the weights are given by

(1) wij = ÷

3
|xi ≠ xj |

Á

4
,

where ÷ : [0, Œ) æ [0, 1] is smooth with compact support.

In particular, we assume

Y
]

[

÷(t) Ø 1, if 0 Æ t Æ 1

÷(t) = 0, if t > 2

÷(t) Ø 0, for all t Ø 0.
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Pointwise consistency of graph Laplacian

The graph Laplacian is defined as

Lu(xi) =

nÿ

j=1

wij (u(xi) ≠ u(xj )).

In the large data n æ Œ and sparse graph Á æ 0 limit, L is consistent with

�flu = ≠fl≠1div(fl2Òu).

In particular, it is a standard result [Hein et al., 2007] that

--- 1
nÁd+2

Lu(x ) ≠ ‡÷�flu(x )
--- Æ C (⁄ + Á)

holds for any u œ C 3(⌦) with probability at least 1 ≠ 2 exp
!
≠cnÁd+2⁄2

"
.
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The density fl acts as an edge detector allowing sharp changes in u between clusters.

E.g., Image processing equations like Perona-Malik ut ≠ div(fl(|Òu|)Òu) = 0.
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≠cnÁd+2⁄2

"
.

The density fl acts as an edge detector allowing sharp changes in u between clusters.

E.g., Image processing equations like Perona-Malik ut ≠ div(fl(|Òu|)Òu) = 0.
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Model for labeled data

Model 1. Let — œ (0, 1] and Â⌦ µµ ⌦. Each xi œ Â⌦ is selected as training data
independently with probability —. Let � = training data.

The Laplacian learning problem is

(2)

;
Lun(x ) = 0, if x œ X \ �

un(x ) = g(x ), if x œ �,

where g : ⌦ æ R is Lipschitz and

X = {x1, x2, . . . , xn}.
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Main result

The continuum PDE is

(3)

Y
_]

_[

div(fl2Òu) = 0 in ⌦ \ Â⌦
u = g on Â⌦

Òu · n = 0 on ˆ⌦.

Theorem (C.-Slepcev-Thorpe, 2020)

Let un : X æ R be the solution of (2), and let u œ C 3(⌦) be the solution of (3). If
— Ø Á2 and Á Æ ⁄ Æ c then

(4) max
xœX

|un(x ) ≠ u(x )| Æ C

3
ÁÔ
—
log

3Ô
—

Á

4
+ ⁄

4

holds with probability at least 1 ≠ Cn exp
!
≠cnÁd+2⁄2

"
.
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The negative result

Theorem (C.-Slepcev-Thorpe, 2020)

Assume that — = —n æ 0+ and Á = Án æ 0+ satisfy

(5) —n π Á2n , and nÁdn ∫ log(n).

Then, with probability one, the sequence un is pre-compact in TL2 and any convergent
subsequence converges to a constant.

Summary: Laplacian learning propagates labels well when

Label rate = — ∫ Á2.

Below this label rate, spikes form and the solution is degenerate.
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Error on MNIST

Figure: Error plots for MNIST experiment showing testing error versus number of

labels, averaged over 100 trials.

Fits very well to the error rate —≠1/2.
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Another model

Model 2. Let — œ (0, 1), ” œ (0, Á]. Each xi œ ˆ”⌦ is selected as training data
independently with probability —, where

ˆ”⌦ = {x œ ⌦ : dist(x , ˆ⌦) < ”}.

Here, the continuum PDE is

(6)

;
div(fl2Òu) = 0 in ⌦

u = g on ˆ⌦.

J. Calder, D. Slepčev, D., and M. Thorpe. Rates of convergence for Laplacian

semi-supervised learning with low label rates. arXiv:2006.02765, 2020.
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Random walks on random graphs

Let X0,X1,X2, . . . be a random walk on X = {x1, . . . , xn} with transition probabilities

P(Xk = xj |Xk≠1 = xi) =
wij

d(xi)
, d(xi) =

nÿ

j=1

wij .

For any u : X æ R we compute

E[u(Xk ) ≠ u(Xk≠1) |Xk≠1] =
1

d(Xk≠1)
Lu(Xk≠1).
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Random walks on random graphs

Let X0,X1,X2, . . . be a random walk on X = {x1, . . . , xn} with transition probabilities

P(Xk = xj |Xk≠1 = xi) =
wij

d(xi)
, d(xi) =

nÿ

j=1

wij .

For any u : X æ R we compute

E[u(Xk ) ≠ u(Xk≠1) |Xk≠1] =
1

d(Xk≠1)
Lu(Xk≠1).

The random walk Laplacian 1
d L is the generator for the random walk.

Hence, if Lu = 0 on Xn , then

E [u(Xk ) ≠ u(Xk≠1) |Xk≠1] = 0

so u(Xk ) is a martingale.
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Random Walk Perspective

Suppose u : X æ Rk solves the Laplace learning equation

;
Lu(xi) = 0, if m + 1 Æ i Æ n,

u(xi) = yi , if 1 Æ i Æ m.

Let X0,X1,X2, . . . be a random walk on X and define the stopping time

· = inf{k Ø 0 : Xk œ {x1, x2, . . . , xm}}.

Let i· Æ m so that X· = xi· . Then (by Doob’s optimal stopping theorem)

(7) u(x ) = E[yi· |X0 = x ].

This says u(x ) is a weighted average of (hopefully) nearby label vectors.
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Random Walk Perspective
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Random walk experiment
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Random walk experiment
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Random walk experiment
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The Random walk perspective

At low label rates, the random walker reaches the mixing time before hitting a label.

The label eventually hit is largely independent of where the walker starts.

After walking for a long time, the probability distribution of the walker approaches the
invariant distribution fi given by

fii =
diqn

j=1
dj

, di =

nÿ

j=1

wij .

Thus, the solution of Laplace learning is approximately

u(x ) = E[yi· |X0 = x ] ¥
qn

j=1
dj yjqn

j=1
dj

=: c œ Rk .
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The Random walk perspective

To test this, we consider Shifted Laplace learning, which solves

;
Lu(xi) = 0, if m + 1 Æ i Æ n,

u(xi) = yi , if 1 Æ i Æ m,

and decides on the label by the shifted argmax:

¸(xi) = argmax
jœ{1,...,k}

{uj (x ) ≠ cj},

where

c =

qn

j=1
dj yjqn

j=1
dj

.

Experiment on MNIST:

# Labels/class 1 2 3 4 5

Laplace 16.1 (6.2) 28.2 (10) 42.0 (12) 57.8 (12) 69.5 (12)

Shift Laplace 88.3 (5.7) 92.6 (2.4) 94.3 (1.4) 94 (1.5) 95 (0.6)
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A related Poisson equation

If the solution to Laplace learning u is roughly constant u ¥ c, then at labeled nodes
x1, . . . , xm we can compute

Lu(xi) =

nÿ

j=1

wij (u(xi) ≠ u(xj ))

¥
nÿ

j=1

wij (yi ≠ c) (since u ¥ c)

= di(yi ≠ c).

At unlabeled nodes xm+1, . . . , xn we have Lu(xi) = 0. Thus, u approximately solves

Lu(xi) =

mÿ

j=1

dj (yj ≠ c)”ij , c =

qn

j=1
dj yjqn

j=1
dj

.

Takeaway: At low label rates, there is a connection between hard label constraints, and
placing sources and sinks at labels.
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Poisson learning

We propose to replace Laplace learning

(8)

;
Lu(xi) = 0, if m + 1 Æ i Æ n,

u(xi) = yi , if 1 Æ i Æ m,

with Poisson learning

Lu(xi) =

mÿ

j=1

(yj ≠ y)”ij for i = 1, . . . ,n

subject to
qn

i=1
diu(xi) = 0, where y = 1

m

qm

i=1
yi .

In both cases, the label decision is the same:

¸(xi) = argmax
jœ{1,...,k}

{uj (x )}.
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Poisson learning

We propose to replace Laplace learning

(9)
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with Poisson learning

Lu(xi) =

mÿ

j=1

(yj ≠ y)”ij for i = 1, . . . ,n

subject to
qn

i=1
diu(xi) = 0, where y = 1

m

qm

i=1
yi .

For Poisson learning, unbalanced class sizes can be incorporated:

¸(xi) = argmax
jœ{1,...,k}

;
pj
nj

uj (x )

<
, pj = Fraction of data in class j

nj = # training examples in class j .
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The random walk perspective
Let X

xj
0 ,X

xj
1 ,X

xj
2 be a random walk on the graph X starting from xj œ X , and define

uT (xi) := E

C
Tÿ

k=0

1
di

mÿ

j=1

(yj ≠ y)1{X
xj
k

=xi}

D
, where y =

1
m

mÿ

j=1

yj .

Theorem (C.-Cook-Thorpe-Slepcev, 2020)

For every T Ø 0 we have

uT+1(xi) = uT (xi) +
1
di

A
mÿ

j=1

(yj ≠ y)”ij ≠ LuT (xi)

B
.

If the graph G is connected and the Markov chain induced by the random walk is
aperiodic, then uT æ u as T æ Œ, where u : X æ R is the solution of

Lu(xi) =

mÿ

j=1

(yj ≠ y)”ij for i = 1, . . . ,n

satisfying
qn

i=1
diu(xi) = 0.
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The variational interpretation
We define the space of weighted mean-zero functions

¸20(X ) =
Ó
u : X æ R : (u)X = 0

Ô
, where (u)X :=

qn

i=1
diu(xi)qn

i=1
di

.

Consider the variational problem

(10) min
uœ¸2

0
(X )

; nÿ

i,j=1

wij |u(xi) ≠ u(xj )|2 ≠
mÿ

j=1

(yj ≠ y) · u(xj )
<

,

where y = 1
m

qm

j=1
yj .

Theorem (C.-Cook-Thorpe-Slepcev, 2020)

Assume the graph is connected. Then there exists a unique solution u œ ¸20(X ) of (10),
and furthermore, u satisfies the Poisson equation

Lu(xi) =

mÿ

j=1

(yj ≠ y)”ij .
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The variational interpretation
We define the space of weighted mean-zero functions

¸20(X ) =
Ó
u : X æ R : (u)X = 0

Ô
, where (u)X :=

qn

i=1
diu(xi)qn

i=1
di

.

Consider the variational problem

(10) min
uœ¸2

0
(X )

; nÿ

i,j=1

wij |u(xi) ≠ u(xj )|2 ≠
mÿ

j=1

(yj ≠ y) · u(xj )
<
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Poisson vs Laplace

For Poisson learning we have

min
uœ¸2

0
(X )

; nÿ

i,j=1

wij |u(xi) ≠ u(xj )|2 ≠
mÿ

j=1

(yj ≠ c) · u(xj )
<

.

We compare this with the variational interpretation for Laplace learning is

min
uœ¸2(X )

; nÿ

i,j=1

wij |u(xi) ≠ u(xj )|2 : u(xi) = yi for i = 1, . . . ,m

<
.

J. Calder, B. Cook, M. Thorpe, and D. Slepčev. Poisson Learning: Graph based

semi-supervised learning at very low label rates. International Conference on Machine
Learning (ICML), 2020.
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semi-supervised learning at very low label rates. International Conference on Machine
Learning (ICML), 2020.

Calder (UofM) Poisson Learning RSORA Summer School 63 / 89



Outline

1 Introduction
Graph-based semi-supervised learning
Laplacian regularization
Spikes at low label rates
Outline of talk

2 Avoiding the spikes (moderate label rates)
Random geometric graph
Rates of convergence

3 Poisson learning: Embracing the spikes
Random walk perspective
Poisson learning

4 Experimental results
Volume constrained algorithms

5 The continuum perspective

Calder (UofM) Poisson Learning RSORA Summer School 64 / 89



GraphLearning Python Package

https://github.com/jwcalder/GraphLearning
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Algorithmic details

Algorithm 1 Poisson Learning

1: Input: W,F,b,T {F œ Rk◊m
are label vectors, b œ Rk

are class sizes.}
2: Output: U œ Rn◊k

3: D Ω diag(W1)

4: L Ω D ≠ W
5: y Ω 1

mF1
6: B Ω [F ≠ y, zeros(k ,n ≠ m)]

7: U Ω zeros(n, k)
8: for i = 1 to T do

9: U Ω U+D≠1
(BT ≠ LU)

10: end for

11: U Ω U · diag(b/y) {Accounts for unbalanced class sizes.}

1 We only need about T = 100 iterations on MNIST, FashionMNIST, CIFAR-10, to
get good results. CPU Time: 8 seconds on CPU, 1 second on GPU.
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MNIST (70,000 28 ◊ 28 pixel images of digits 0-9)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Ha↵ner. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.]
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FashionMNIST (70,000 28 ◊ 28 images of fashion items)

[Xiao, Han, Kashif Rasul, and Roland Vollgraf. ”Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms.”arXiv:1708.07747 (2017).]
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CIFAR-10

[Krizhevsky, Alex, and Geo↵rey Hinton. ”Learning multiple layers of features from tiny
images.” (2009).]

Calder (UofM) Poisson Learning RSORA Summer School 69 / 89



Autoencoders

For each dataset, we build the graph by training autoencoders.

www.compthree.com
Autoencoders are “Nonlinear versions of PCA”
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Building graphs from autoencoders

For MNIST and FashionMNIST, we use a 4-layer variational autoencoder with 30 latent
variables:

[Kingma and Welling. Auto-encoding variational Bayes. ICML 2014]

For CIFAR-10, we use the autoencoding framework from [Zhang et al. AuteEncoding
Transformations (AET), CVPR 2019] with 12,288 latent variables.
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Building graphs from autoencoders

After training autoencoders, we build a k = 10 nearest neighbor graphs in the latent
space with Gaussian weights

wij = exp

3
≠4|xi ≠ xj |2

dk (xi)2

4
,

where dk (xi) is the distance in the latent space between xi and its k th nearest neighbor.
The weight matrix was then symmetrized by replacing W with W +W T .

For CIFAR-10, the latent feature vectors were normalized to unit norm (equivalent to
using an angular similarity).
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First comparison

We compared against many other graph-based learning algorithms

Laplace/Label propagation: [Zhu et al., 2003]

Graph nearest neighbor (using Dijkstra)

Lazy random walks: [Zhou et al., 2004]

Mutli-class MBO: [Garcia-Cardona et al., 2014]

Centered kernel method: [Mai & Couillet, 2018]

Sparse Label Propagation: [Jung et al., 2016]

Weighted Nonlocal Laplacian (WNLL): [Shi et al., 2017]

p-Laplace regularization: [Flores et al. 2019]
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)

Nearest Neighbor 65.4 (5.2) 74.2 (3.3) 77.8 (2.6) 80.7 (2.0) 82.1 (2.0)

Random Walk 66.4 (5.3) 76.2 (3.3) 80.0 (2.7) 82.8 (2.3) 84.5 (2.0)

MBO 19.4 (6.2) 29.3 (6.9) 40.2 (7.4) 50.7 (6.0) 59.2 (6.0)

Centered Kernel 19.1 (1.9) 24.2 (2.3) 28.8 (3.4) 32.6 (4.1) 35.6 (4.6)

Sparse Label Prop. 14.0 (5.5) 14.0 (4.0) 14.5 (4.0) 18.0 (5.9) 16.2 (4.2)

WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)

p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)

Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
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FashionMNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)

Nearest Neighbor 46.6 (4.7) 53.5 (3.6) 57.2 (3.0) 59.3 (2.6) 61.1 (2.8)

Random Walk 49.0 (4.4) 55.6 (3.8) 59.4 (3.0) 61.6 (2.5) 63.4 (2.5)

MBO 15.7 (4.1) 20.1 (4.6) 25.7 (4.9) 30.7 (4.9) 34.8 (4.3)

Centered Kernel 11.8 (0.4) 13.1 (0.7) 14.3 (0.8) 15.2 (0.9) 16.3 (1.1)

Sparse Label Prop. 14.1 (3.8) 16.5 (2.0) 13.7 (3.3) 13.8 (3.3) 16.1 (2.5)

WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)

p-Laplace 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)

Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)

Compare to clustering result of 67.2% [McConville et al., 2019]
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CIFAR-10 results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)

Nearest Neighbor 33.1 (4.3) 37.3 (4.1) 39.7 (3.0) 41.7 (2.8) 43.0 (2.5)

Random Walk 36.4 (4.9) 42.0 (4.4) 45.1 (3.3) 47.5 (2.9) 49.0 (2.6)

MBO 14.2 (4.1) 19.3 (5.2) 24.3 (5.6) 28.5 (5.6) 33.5 (5.7)

Centered Kernel 15.4 (1.6) 16.9 (2.0) 18.8 (2.1) 19.9 (2.0) 21.7 (2.2)

Sparse Label Prop. 11.8 (2.4) 12.3 (2.4) 11.1 (3.3) 14.4 (3.5) 11.0 (2.9)

WNLL 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)

p-Laplace 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)

Poisson 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3 (3.1) 53.8 (2.6)

Compare to clustering result of 41.2% [Mukherjee et al., ClusterGAN, CVPR 2019].
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Varying number of neighbors k
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5 labels per class for all classes.

Calder (UofM) Poisson Learning RSORA Summer School 77 / 89



Unbalanced training data
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Odd numbered classes got 1 label per class.
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Volume constrained semi-supervised learning

Classification results can be improved by incorporating prior knowledge of class sizes
through volume constraints.
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PoissonMBO: Volume constrained Poisson learning

Observation 1: The Poisson learning iteration with a fixed time step

uT+1(xi) = uT (xi) + dt

A
mÿ

j=1

(yj ≠ y)”ij ≠ LuT (xi)

B

is volume preserving. That is (uT+1)X = (uT )X .

Observation 2: We can easily perform a volume constrained label decision:

¸(xi) = argmax
jœ{1,...,k}

{sjuj (x )} .

We adjust the weights sj to grow/shrink each region to achieve the correct class sizes.

Equivalent to re-weighting the point sources in Poisson learning.
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PoissonMBO Algorithm

Algorithm 2 PoissonMBO

1: Input: W,F,Ninner ,Nouter ,b, µ,T > 0
2: Output: U œ Rn◊k

3: U Ω PoissonLearning(W,F,b,T )

4: dt Ω 1/max1ÆiÆn Dii

5: for i = 1 to Nouter do

6: for j = 1 to Ninner do

7: U Ω U ≠ dt(LU ≠ µBT
)

8: end for

9: U Ω VolumeConstrainedLabelProjection(U,b)
10: end for

Named after the Merriman-Bence-Osher (MBO) scheme for curvature motion, which
has been used before in graph-based learning [Garcia, et al., 2014, Jacobs et al., 2018].
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)

WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)

p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)

VolumeMBO 89.9 (7.3) 95.6 (1.9) 96.2 (1.2) 96.6 (0.6) 96.7 (0.6)

Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)

PoissonMBO 96.5 (2.6) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)

# Labels per class 10 20 40 80 160

Laplace/LP 91.3 (3.7) 95.8 (0.6) 96.5 (0.2) 96.8 (0.1) 97.0 (0.1)

WNLL 95.6 (0.5) 96.1 (0.3) 96.3 (0.2) 96.4 (0.1) 96.3 (0.1)

p-Laplace 94.0 (0.8) 95.1 (0.4) 95.5 (0.1) 96.0 (0.2) 96.2 (0.1)

VolumeMBO 96.9 (0.2) 97.0 (0.1) 97.1 (0.1) 97.2 (0.1) 97.3 (0.1)

Poisson 95.9 (0.4) 96.3 (0.3) 96.6 (0.2) 96.8 (0.1) 96.9 (0.1)

PoissonMBO 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)
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FashionMNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)

WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)

p-Laplace 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)

VolumeMBO 54.7 (5.2) 61.7 (4.4) 66.1 (3.3) 68.5 (2.8) 70.1 (2.8)

Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)

PoissonMBO 62.0 (5.7) 67.2 (4.8) 70.4 (2.9) 72.1 (2.5) 73.1 (2.7)

# Labels per class 10 20 40 80 160

Laplace/LP 70.6 (3.1) 76.5 (1.4) 79.2 (0.7) 80.9 (0.5) 82.3 (0.3)

WNLL 74.4 (1.6) 77.6 (1.1) 79.4 (0.6) 80.6 (0.4) 81.5 (0.3)

p-Laplace 73.0 (0.9) 76.2 (0.8) 78.0 (0.3) 79.7 (0.5) 80.9 (0.3)

VolumeMBO 74.4 (1.5) 77.4 (1.0) 79.5 (0.7) 81.0 (0.5) 82.1 (0.3)

Poisson 75.2 (1.5) 77.3 (1.1) 78.8 (0.7) 79.9 (0.6) 80.7 (0.5)

PoissonMBO 76.1 (1.4) 78.2 (1.1) 79.5 (0.7) 80.7 (0.6) 81.6 (0.5)

Calder (UofM) Poisson Learning RSORA Summer School 83 / 89



CIFAR-10 results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)

WNLL 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)

p-Laplace 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)

VolumeMBO 38.0 (7.2) 46.4 (7.2) 50.1 (5.7) 53.3 (4.4) 55.3 (3.8)

Poisson 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3 (3.1) 53.8 (2.6)

PoissonMBO 41.8 (6.5) 50.2 (6.0) 53.5 (4.4) 56.5 (3.5) 57.9 (3.2)

# Labels per class 10 20 40 80 160

Laplace/LP 21.8 (7.4) 38.6 (8.2) 54.8 (4.4) 62.7 (1.4) 66.6 (0.7)

WNLL 54.0 (2.8) 60.3 (1.6) 64.2 (0.7) 66.6 (0.6) 68.2 (0.4)

p-Laplace 56.4 (1.8) 60.4 (1.2) 63.8 (0.6) 66.3 (0.6) 68.7 (0.3)

VolumeMBO 59.2 (3.2) 61.8 (2.0) 63.6 (1.4) 64.5 (1.3) 65.8 (0.9)

Poisson 58.3 (1.7) 61.5 (1.3) 63.8 (0.8) 65.6 (0.6) 67.3 (0.4)

PoissonMBO 61.8 (2.2) 64.5 (1.6) 66.9 (0.8) 68.7 (0.6) 70.3 (0.4)
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The continuum perspective

Continuum limits can help explain why Poisson learning works for low label rates.

Manifold assumption: Let x1, . . . , xn be a sequence of i.i.d. random variables drawn
from a d-dimensional compact, closed, and connected manifold M embedded in RD ,
where d π D . We assume the random variables have a density fl : M æ R with respect
to the volume form VolM on the manifold.

Fix a finite set of points � µ M. The vertices of the random geometric graph are

Xn := {x1, . . . , xn}¸ ˚˙ ˝
Unlabeled

fi �¸˚˙˝
Labeled

.

We define the edge weights in the graph by

wxy = ÷Á (|x ≠ y |) ,

where ÷ : [0, Œ) æ [0, Œ) is smooth with compact support, and ÷Á(t) = 1
Ád

÷
!

t
Á

"
.
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The continuum perspective

The normalized graph Laplacian is given by

Ln,Áu(x ) =
2

‡÷nÁ2

ÿ

yœXn

÷Á(|x ≠ y |)(u(x ) ≠ u(y)),

where ‡÷ =
s
Rd |z1|2÷(|z |) dz .

Using the normalized graph Laplacian, the Poisson learning problem is

(11) Ln,Áun,Á(x ) = n
ÿ

yœ�

(g(y) ≠ c)”x=y for x œ Xn ,

where c = 1
|�|

q
xœ�

g(x ).

Question: What can we say about un,Á as n æ Œ and Á æ 0? Is it stable, and does it
converge to a well-posed continuum limit?
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The continuum perspective

Conjecture

Assume fl is smooth. Assume that n æ Œ and Á = Án æ 0 so that

lim
næŒ

nÁd+2

log n
= Œ.

Then with probability one

lim
næŒ

max
xœXn

dist(x ,�)>”

|un,Á(x ) ≠ u(x )| = 0

for all ” > 0, where u œ CŒ(M \ �) is the solution of the Poisson equation

(12) ≠ div
!
fl2Òu

"
=

ÿ

yœ�

(g(y) ≠ c)”y on M,

where c = 1
|�|

q
xœ�

g(x ).
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Python Notebook: .ipynb
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Code:

https://github.com/jwcalder/GraphLearning
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https://colab.research.google.com/drive/1s1AN59icvak3OAukI_wA8VQmqjGGIVOn?usp=sharing
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