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Quick intro to learning

Fully supervised: Given training data (x1, y1), (22, %2), .-, (Tm, ym) with z; € X and
yi € )V, learn a function

u:X —)Y for which u(x;) =y, fori=1,...,m.
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Fully supervised: Given training data (x1, y1), (22, %2), .-, (Tm, ym) with z; € X and
yi € )V, learn a function

u:X —)Y for which u(x;) =y, fori=1,...,m.

Semi-supervised learning: Given additional unlabeled data z,,+1,...,z, for n > m,
use both the labeled and unlabeled data to learn f.
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Quick intro to learning

Fully supervised: Given training data (x1, y1), (22, %2), .-, (Tm, ym) with z; € X and
yi € )V, learn a function

u:X —)Y for which u(x;) =y, fori=1,...,m.

Semi-supervised learning: Given additional unlabeled data z,,+1,...,z, for n > m,
use both the labeled and unlabeled data to learn f.

@ Inductive learning: Learn a function

u:X —Y for which u(z;)) =y, fori=1,...,m.
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Quick intro to learning

Fully supervised: Given training data (x1, y1), (22, %2), .-, (Tm, ym) with z; € X and
yi € )V, learn a function

u:X —)Y for which u(x;) =y, fori=1,...,m.

Semi-supervised learning: Given additional unlabeled data z,,11,...,z, for n > m,
use both the labeled and unlabeled data to learn f.

@ Inductive learning: Learn a function

u:X —Y for which u(z;)) =y, fori=1,...,m.

@ Transductive learning: Learn a function

uw:{m,z2,..., 2} =Y for which u(z;) =y, fori=1,...,m
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Quick intro to learning

Fully supervised: Given training data (x1, y1), (22, %2), .-, (Tm, ym) with z; € X and
yi € )V, learn a function

u:X —)Y for which u(x;) =y, fori=1,...,m.

Semi-supervised learning: Given additional unlabeled data z,,11,...,z, for n > m,
use both the labeled and unlabeled data to learn f.

@ Inductive learning: Learn a function

u:X —Y for which u(z;)) =y, fori=1,...,m.

@ Transductive learning: Learn a function

u:{z,22,...,2,} =Y for which u(z;) =~ y; fori =1,...,m

Unsupervised learning: Uses only the unlabeled data z1,...,z, (e.g., clustering).
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Example: Automated image captioning

A stop sign is on a road with a
mountain in the background

A little girl sitting on a bed with a teddy bear. A giraffe standing in a forest with
trees in the background.

[Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learning. Nature, 2015.]
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Graph-based semi-supervised learning

Graph: G = (X, W)
@ X ={m,...,z,} are the vertices of the graph
@ W = (wy); j—1 are nonnegative and symmetric (w; = wj;) edge weights.

@ wy ~ 1if z;, z; similar, and w;; =~ 0 when dissimilar.
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Graph-based semi-supervised learning

Graph: G = (X, W)
@ X ={m,...,z,} are the vertices of the graph
@ W = (wy); j—1 are nonnegative and symmetric (w; = wj;) edge weights.

@ wy ~ 1if z;, z; similar, and w;; =~ 0 when dissimilar.

Labels: We assume the first m < n vertices are given labels

Y1,Y2,--.,Ym € {81,62,-..,ek} GRk.
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Graph-based semi-supervised learning

Graph: G = (X, W)
@ X ={m,...,z,} are the vertices of the graph
@ W = (wy); j—1 are nonnegative and symmetric (w; = wj;) edge weights.

@ wy ~ 1if z;, z; similar, and w;; =~ 0 when dissimilar.

Labels: We assume the first m < n vertices are given labels

k
Y, Y2, .- -, Ym € {€1,€2,...,e:} € R".

Task: Extend the labels to the rest of the vertices z+1, ..., Tn.
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Graph-based semi-supervised learning

Graph: G = (X, W)
@ X ={x,...,z,} are the vertices of the graph
@ W = (wy;)i ;=1 are nonnegative and symmetric (wi; = wj;) edge weights.

@ wy ~ 1if z;, z; similar, and w;; =~ 0 when dissimilar.

Labels: We assume the first m < n vertices are given labels

Y1, Y2y Ym € {€1,€2,...,e5} € R,

Task: Extend the labels to the rest of the vertices z,,41,..., Zn.

Semi-supervised: The graph encodes the unlabeled data in an efficient way.

@ Goal is to obtain good performance with far fewer labels compared to fully
supervised learning.
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Example: k-nearest neighbor graph
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@ We connect each point to its k-nearest neighbors (£ = 10).
@ Points are colored by the result of the spectral clustering.
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MNIST (70,000 28 x 28 pixel images of digits 0-9)
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MNIST (70,000 28 x 28 pixel images of digits 0-9)
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@ Each image is a datapoint
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MNIST (70,000 28 x 28 pixel images of digits 0-9)

@ Each image is a datapoint
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MNIST (70,000 28 x 28 pixel images of digits 0-9)

@ Each image is a datapoint
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Clustering MNIST

https://divamgupta.com
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https://divamgupta.com

Laplacian regularization

Laplacian regularized semi-supervised learning solves the Laplace equation

Lu(xz;)) =0, ifm+1<i<n,
uw(z) =y, if1<i<m,

where u : X — R*, and £ is the graph Laplacian

Lu(z;) = Z wij (u(zi) — u(z))).
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Laplacian regularization

Laplacian regularized semi-supervised learning solves the Laplace equation

Lu(xz;)) =0, ifm+1<i<n,
uw(z) =y, if1<i<m,

where u : X — R*, and £ is the graph Laplacian
Cula) = Y wy(u(z:) = u(z))
j=1

The label decision for vertex z; is determined by the largest component of u(x;)

l(x;) = argmax {u;(z)}.
je{l,....k}
References:
@ Original work [Zhu et al., 2003]
@ Learning [Zhou et al., 2005, Ando and Zhang, 2007]
@ Manifold ranking [He et al., 2006, Zhou et al., 2011, Xu et al., 2011]
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Label propagation
The solution of Laplace learning satisfies
Lu(m) =Y wy(u(m) —u(z;)) =0 (m+1<i<n).
j=1

Re-arranging, we see that u satisfies the mean-property

D wiu(w)
u(z;) = S :

j=1 Wi
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Label propagation
The solution of Laplace learning satisfies
Lu(m) =Y wy(u(m) —u(z;)) =0 (m+1<i<n).
j=1

Re-arranging, we see that u satisfies the mean-property

D wiu(w)
u(z;) = S :

j=1 Wi

Label propagation [Zhu 2005] iterates

>y wyut ()

&) d;

and at convergence is equivalent to Laplace learning.

uk}—i—l (xz) —
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Variational interpretation

Laplace learning is equivalent to the variational problem

Qk) U:QER{ZMU@) w(z)|? @1:1 ..... m}.
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Variational interpretation

Laplace learning is equivalent to the variational problem

mi_r: { Z wij|u(zi) — w(zy)|® : w(z) =y fori=1,..., m}
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Variational interpretation

Laplace learning is equivalent to the variational problem

mi_n> {Zwﬂu(aa) w(z)]? : w(z) =y forizl,...,m}.

Many soft-constrained versions have been proposed

ug;i_flR{ Z wij|u(zi) — u(:cj)|2 + )\Zf(u(xi), yz))}

ij=1
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lll-posed with small amount of labeled data
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lll-posed with small amount of labeled data
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@ Graph is n = 10° i.i.d. random variables uniformly drawn from [0, 1]°.

0 otherwise.

if |z — y| < 0.01 and wy,

1
@ Two labels: 11

Q@ Wyy

1 at the Green point.

0 at the Red point and -

@ Over 95% of labels in [0.4975,0.5025].

[Nadler et al., 2009, El Alaoui et al., 2016]
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Laplace learning on MNIST at low label rates

# Labels per class 1 2 3 4 160

Laplace Learning  16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 97.0 (0.1)
Nearest Neighbor 65.4 (5.2) 74.2 (3.3) 77.8 (2.6) 80.7 (2.0) 92.4 (0.2)

@ Average accuracy over 100 trials with standard deviation in brackets.

@ Nearest neighbor is geodesic graph-nearest neighbor.
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Recent work

The low-label rate problem was originally identified in [Nadler 2011],

A lot of recent work has attempted to address this issue with new graph-based
classification algorithms at low label rates.

@ Higher-order regularization: [Zhou and Belkin, 2011], [Dunlop et al., 2019]

@ p-Laplace regularization: [Alaoui et al., 2016], [Calder 2018,2019], [Slepcev &
Thorpe 2019]

@ Re-weighted Laplacians: [Shi et al., 2017], [Calder & Slepcev, 2019]

@ Centered kernel method: [Mai & Couillet, 2018]
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Recent work

The low-label rate problem was originally identified in [Nadler 2011],

A lot of recent work has attempted to address this issue with new graph-based
classification algorithms at low label rates.

@ Higher-order regularization: [Zhou and Belkin, 2011], [Dunlop et al., 2019]

@ p-Laplace regularization: [Alaoui et al., 2016], [Calder 2018,2019], [Slepcev &
Thorpe 2019]

@ Re-weighted Laplacians: [Shi et al., 2017], [Calder & Slepcev, 2019]

@ Centered kernel method: [Mai & Couillet, 2018]

While we have lots of new models, the problem with Laplace learning at low label rates
was still not well-understood.
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Visualization of spikes

Figure: Demonstration of spikes in Laplacian learning. Label function is cos(xy).
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Visualization of spikes

Figure: Demonstration of spikes in Laplacian learning. Label function is cos(z;).
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Visualization of spikes

Figure: Demonstration of spikes in Laplacian learning. Label function is cos(z;).
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Main directions for talk

Label function is cos(z1).

@ Avoiding spikes: How many labels do we need to ensure spikes do not form?
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Main directions for talk

Label function is cos(z1).

@ Avoiding spikes: How many labels do we need to ensure spikes do not form?

@ Analyzing the spikes: Why do we see poor classification results at low label rates?

> Are the spikes too localized? Do they propagate information?
» |s a flat scoring function problematic?

Calder (UofM) Poisson Learning



Main directions for talk

Label function is cos(z1).

@ Avoiding spikes: How many labels do we need to ensure spikes do not form?

@ Analyzing the spikes: Why do we see poor classification results at low label rates?

> Are the spikes too localized? Do they propagate information?
» |s a flat scoring function problematic?

© Poisson learning: Careful analysis will lead to a simple fix and a new algorithm.

» Spikes can be interpreted as source terms in a Poisson equation.
» Experiments on MNIST, FashionMNIST, and CIFAR-10
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Outline

e Avoiding the spikes (moderate label rates)
@ Random geometric graph
@ Rates of convergence
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Random geometric graph

Random Geometric Graph: Assume the vertices of the graph are
X =A{x,...,z,}

where 1, ..., z, is a sequence of i.i.d. random variables on Q C R with positive density
p, and the weights are given by

(1) Wi =1 (W;_M) ;

where 7 : [0, 00) — [0, 1] is smooth with compact support.

Calder (UofM) Poisson Learning
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Random geometric graph

Random Geometric Graph: Assume the vertices of the graph are
X =A{x,...,z,}

where 1, ..., z, is a sequence of i.i.d. random variables on Q C R with positive density
p, and the weights are given by

(1) Wi =1 (m;—xj') ;

where 7 : [0, 00) — [0, 1] is smooth with compact support. In particular, we assume
n(t)>1, fo<t<1

n(t) =0, ift>2
n(t) >0, forall t>0.
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Pointwise consistency of graph Laplacian

The graph Laplacian is defined as

Lu(w:) = wy(u(m) — u(y)).
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Pointwise consistency of graph Laplacian

The graph Laplacian is defined as
Lu(w:) = wy(u(m) — u(y)).
j=1

In the large data n — oo and sparse graph € — 0 limit, £ is consistent with

Ayu = —p "div(p®Vu).
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Pointwise consistency of graph Laplacian

The graph Laplacian is defined as

Lu(z;) = Z wij (u(xs) — u(zy)).

In the large data n — oo and sparse graph € — 0 limit, £ is consistent with
Ayu = —p "div(p®Vu).
In particular, it is a standard result [Hein et al., 2007] that

N

i Lu(x) — onApu(x)

< C(A+e)

holds for any u € C*(€Q) with probability at least 1 — 2 exp (—cn5d+2)\2).
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Pointwise consistency of graph Laplacian

The graph Laplacian is defined as
Lu(w) =Y wy(u(zm) — ulz)).
7j=1

In the large data n — oo and sparse graph € — 0 limit, £ is consistent with
Ayu=—p Hdiv(p®Vu).
In particular, it is a standard result [Hein et al., 2007] that

1

i Lu(z) — onApu(x)

< C(A+¢7%)

holds for any u € C*(Q) with probability at least 1 — 2 exp (—cn€d+2)\2).

Calder (UofM) Poisson Learning

RSORA Summer School 37 /89



Pointwise consistency of graph Laplacian

The graph Laplacian is defined as
Lu(m) = wy(u(z) — u(s)).
j=1

In the large data n — oo and sparse graph € — 0 limit, £ is consistent with
Ayu = —p tdiv(p®Vu).
In particular, it is a standard result [Hein et al., 2007] that

1

i Lu(z) — onAyu(x)

< C(A+¢7%)

holds for any u € C*(Q) with probability at least 1 — 2 exp (—cn€d+2)\2).

The density p acts as an edge detector allowing sharp changes in u between clusters.

@ E.g., Image processing equations like Perona-Malik u; — div(p(|Vu|)Vu) = 0.
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Model for labeled data

Model 1. Let g € (0, 1] and Q CC Q. Each z; € Q is selected as training data
independently with probability 5. Let [ = training data.
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Model for labeled data

Model 1. Let g € (0, 1] and Q CC Q. Each z; € Q is selected as training data
independently with probability 5. Let [ = training data.

The Laplacian learning problem is

Lun(z) =0, ifx e X\T
) { un(z) = g(z), ifzerl,

where g : Q — R is Lipschitz and

X ={x1,22,..., 20}
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Main result

The continuum PDE is

div(p®’Vu) =0 in Q\Q
(3) u=g onQ
Vu-n=0 on 0f.
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Main result

The continuum PDE is

div(p®’Vu) =0 in Q\Q
(3) w=g onQ
Vu-n=0 on 09Q.

Theorem (C.-Slepcev-Thorpe, 2020)

Let u, : X — R be the solution of (2), and let u € C*(Q) be the solution of (3). If
B >¢e*ande <\ < ¢ then

@ max () — u(z)| < O (ﬁ g (ﬁ> H)

holds with probability at least 1 — Cnexp (—cne?*?)?) .
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The negative result

Theorem (C.-Slepcev-Thorpe, 2020)

Assume that 3 = 3, — 0" and € = ¢, — 0" satisfy

(5) Bn < e2, and nel > log(n).

Then, with probability one, the sequence u, is pre-compact in TL? and any convergent
subsequence converges to a constant.

Summary: Laplacian learning propagates labels well when
Label rate = 8> .

Below this label rate, spikes form and the solution is degenerate.
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Error on MNIST

801 1 —— k=10 80 -
{ —e— k=20
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Figure: Error plots for MNIST experiment showing testing error versus number of
labels, averaged over 100 trials.

Fits very well to the error rate 57 1/2.
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Another model

Model 2. Let 8 € (0,1), § € (0,e]. Each x; € 058 is selected as training data
independently with probability 3, where

0sQ = {z € Q : dist(z,0Q) < d}.

Here, the continuum PDE is

(6) div(p°’Vu) =0 in Q
u=g¢g on OS2

J. Calder, D. Slepéev, D., and M. Thorpe. Rates of convergence for Laplacian
semi-supervised learning with low label rates. arXiv:2006.02765, 2020.
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Outline

Poisson learning: Embracing the spikes
@ Random walk perspective
@ Poisson learning
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Random walks on random graphs

Let Xo, X1, X2,... be a random walk on X = {z1,...,z,} with transition probabilities
Wij
P(Xk = 2 | Xp—1 = mi) = iji), d(zi) = Zl Wij
J:
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Random walks on random graphs

Let Xo, X1, X2,... be a random walk on X = {z1,...,z,} with transition probabilities

W4
P(Xe = @ | Xp—1 = @) = d(;,), d(z:) =) wy.
j=1

For any u : X — R we compute

1

Efu(Xe) = u(Xeo) | Xeoa] = G

Eu(Xk_l).

t EM(XK>/U(Xn-u) | XK-J
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Random walks on random graphs

Let Xo, X1, X2,... be a random walk on X = {z1,...,z,} with transition probabilities
Wij
P(Xy = 2 | Xj—1 = m) = iji)’ d(ri) = z; Wj .
J:
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Random walks on random graphs

Let Xo, X1, X2,... be a random walk on X = {z1,...,z,} with transition probabilities
Wij
P(Xy = 2 | Xj—1 = m) = —afi), d(ri) = z; Wj .
J:

For any u : X — R we compute

1

Elu(Xk) — w(Xp—1) [ Xe—1] = d(Xi-1)

[/U,(Xk_l).
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Random walks on random graphs

Let Xo, X1, X2,... be a random walk on X = {z1,...,z,} with transition probabilities
Wij
P(Xy = 2 | Xj—1 = m) = —afi), d(ri) = z; Wj .
]:

For any u : X — R we compute

1

Elu(Xk) — w(Xp—1) [ Xe—1] = d(Xi-1)

EU(Xk_l).

The random walk Laplacian %E is the generator for the random walk.
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Random walks on random graphs

Let Xo, X1, X2,... be a random walk on X = {z1,...,z,} with transition probabilities
Wij
P(Xy = 2 | Xj—1 = m) = —ai), d(ri) = z; Wj .
]:

For any v : X — R we compute

1

Elu(Xk) — w(Xp—1) [ Xe—1] = d(Xi-1)

[/U,(Xk_l).

The random walk Laplacian %E is the generator for the random walk.
Hence, if Lu = 0 on X, then
E[U(Xk) — U(Xk_l) | Xk—l] = O

so u(Xy) is a martingale.

RSORA Summer School 50 /89
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Random Walk Perspective

Suppose u : X — R solves the Laplace learning equation
Lu(z;)=0, ifm+1<i<n,
u(z) =y, if1<7<m.
Let Xo, X1, X2,... be a random walk on X and define the stopping time

T = |nf{k Z 0 : Xk; c {1'1,372,.--,37771}}-
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Random Walk Perspective

Suppose u : X — R solves the Laplace learning equation

Lu(z;)=0, ifm+1<i<n,
u(z) =y, if1<7<m.

Let Xo, X1, X2,... be a random walk on X and define the stopping time

T = |nf{k 2 0 : Xk; c {1‘1,272,.--,37777,}}-

Let o < m so that X; = z;_. Then (by Doob’s optimal stopping theorem)

(7) u(z) = Elyi, | Xo = z].
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Random Walk Perspective

Suppose u : X — R solves the Laplace learning equation

Lu(z;)=0, ifm+1<i<n,
u(z) =y, if1<7<m.

Let Xo, X1, X2,... be a random walk on X and define the stopping time

T = |nf{]{; Z 0 : Xk; c {1‘1,272,---,37777,}}-

Let o < m so that X; = z;_. Then (by Doob’s optimal stopping theorem)

(7) u(z) = Elyi, | Xo = z].

This says u(z) is a weighted average of (hopefully) nearby label vectors.
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Random Walk Perspective
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Random walk experiment
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Random walk experiment
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Random walk experiment
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The Random walk perspective

At low label rates, the random walker reaches the mixing time before hitting a label.

@ The label eventually hit is largely independent of where the walker starts.
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The Random walk perspective

At low label rates, the random walker reaches the mixing time before hitting a label.

@ The label eventually hit is largely independent of where the walker starts.

After walking for a long time, the probability distribution of the walker approaches the
invariant distribution 7 given by

d; -
T, — S<n > d¢: Wij .
D i b ; ’
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The Random walk perspective

At low label rates, the random walker reaches the mixing time before hitting a label.

@ The label eventually hit is largely independent of where the walker starts.

After walking for a long time, the probability distribution of the walker approaches the
invariant distribution 7 given by

mzzn—i, d; —szj

7j=1

Thus, the solution of Laplace learning is approximately

> i1 4y

w(z) =Elys, | Xo = z] 7 ZL-——" =: ¢ € R".

Zj:l d;
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The Random walk perspective

To test this, we consider Shifted Laplace learning, which solves

Lu(z;))=0, ifm+1<i<n,
u(zi) = yi, if1<4d<m,

and decides on the label by the shifted argmax:
{(z;) = argmax {u;(z) — ¢},

Je{1,...,k}

where
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The Random walk perspective

To test this, we consider Shifted Laplace learning, which solves

{Eu(azz) =0,

fm+1<1< n,
u(zi) =y, ifl1<i<m,
and decides on the label by the shifted argmax:

l(z;) = argmax {v;(z) — ¢},

jed{1,..., k}
where n
c Zj:l djy]
2 i—1 4
Experiment on MNIST:
# Labels/class 1 2 3 5
Laplace 16.1 (6.2) 28.2(10) 42.0(12) 57.8(12) 69.5(12)
Shift Laplace  88.3(5.7) 92.6 (2.4) 943 (1.4) 94(1.5) 95 (0.6)

Calder (UofM) Poisson Learning
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A related Poisson equation

If the solution to Laplace learning u is roughly constant u =~ ¢, then at labeled nodes
T1,...,Tm WE Can compute

Lu(z;) = Z wij (w(zi) — u(w;))
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A related Poisson equation

If the solution to Laplace learning u is roughly constant u =~ ¢, then at labeled nodes
T1,...,Tm WE Can compute

Lu(z;) = Z wij (w(zi) — u(w;))

n
~ Z wij(yi —¢) (since u = ¢)
j=1
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A related Poisson equation

If the solution to Laplace learning u is roughly constant u =~ ¢, then at labeled nodes
T1,...,Tm WE Can compute

Lu(z;) = Z wij (w(zi) — u(w;))

Q

Z wij(yi — ¢) (since u = ¢)
j=1

= di(y: — c).
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A related Poisson equation

If the solution to Laplace learning u is roughly constant u =~ ¢, then at labeled nodes
T1,...,Tm WE Can compute

Lu(z;) = Z wij (w(zi) — u(w;))

Q

Z wij(yi — ¢) (since u = ¢)
j=1

= di(y:i — o).

At unlabeled nodes %41, ..., z, we have Lu(x;) = 0.

Calder (UofM) Poisson Learning

RSORA Summer School 58 /89



A related Poisson equation

If the solution to Laplace learning u is roughly constant u =~ ¢, then at labeled nodes
T1,...,Tm WE Can compute

Lu(x;) = Z wij (w(zi) — u(w;))

Q

Z wij(yi — ¢) (since u = ¢)
j=1

= di(y:i — o).

At unlabeled nodes x,41, ..., z, we have Lu(x;) = 0. Thus, u approximately solves

> i1 4Yi
2?21 d;

Lu(m:) =Y di(y; — )by, c=
j=1
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A related Poisson equation

If the solution to Laplace learning u is roughly constant u =~ ¢, then at labeled nodes
T1,...,Tm WE Can compute

Lu(x;) = Z wij (w(zi) — u(w;))

&Q

Z wii(yi —¢)  (since u =~ c¢)
j=1

= di(yi — c).

At unlabeled nodes x,41, ..., z, we have Lu(x;) = 0. Thus, u approximately solves

> i1 4Yi
2?21 d;

Lu(w) = di(y — c)dy, c=
j=1

Takeaway: At low label rates, there is a connection between hard label constraints, and
placing sources and sinks at labels.
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Poisson learning

We propose to replace Laplace learning

(8) Lu(z;)) =0, ifm+1<i<n,
u(zi) = yi, ifl1<i<m,

with Poisson learning

Lu(z;) = Z(yj — 7)oy fori=1,...,n
j=1

subject to Y | diu(z:) =0, where 7= L 3" ;.

m
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Poisson learning

We propose to replace Laplace learning

(8) Lu(z;)) =0, ifm+1<i<n,
u(zi) = yi, ifl1<i<m,

with Poisson learning
Lu(z;) = Z(yj — 7)oy fori=1,...,n
j=1

m

subject to Y | diu(z:) =0, where 7= L 3" ;.
In both cases, the label decision is the same:

l(z;) = argmax {u;(x)}.
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Poisson learning

We propose to replace Laplace learning

(9) Lu(z;)=0, ifm+1<i<n,
u(zi) = yi, if1<i<m,

with Poisson learning

Lu(z;) = Z(yj —4)oy; fori=1,....,n
j=1

subject to Y " | diu(z:) =0, where g = L 3™ ;.

m

For Poisson learning, unbalanced class sizes can be incorporated:

' ; = Fraction of in class j
U(z;) = argmax {p_Ju](x)} ) D; action of data in c J
je{1,....k} LTy n; = 7 training examples in class j.
Calder (UofM) Poisson Learning RSORA Summer School 60 /89




The random walk perspective
Let X,’, X,”, X,’ be a random walk on the graph X starting from z; € X', and define

T m m
1 _ _ 1
ur(z;) :=E Z 7 Z(yj — y)]l{X:j::Ei} ,  where y = po Z Yj -
k=0  j=1 j=1
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The random walk perspective
Let X,’, X,”, X,’ be a random walk on the graph X starting from z; € X', and define

T m i
1 _ . 1
UT(mz) y ]E [Z E Z(yj o y)]l{X:] =z;} 3 Where Yy = E Z yj
0 j=1 =1

k=

Theorem (C.-Cook-Thorpe-Slepcev, 2020)

For every T' > 0 we have
1 [+ _
ur+1(zi) = ur(z) + a4 (Z(Z/j —Y)0ij — EUT(%‘)) .
7 =1

If the graph G is connected and the Markov chain induced by the random walk is
aperiodic, then ur — u as T — oo, where u : X — R is the solution of

Eu(a;‘z) = Z(yj — @)513 for 1 = 1, ..o n
Jj=1

satisfying > " diu(z;) = 0.

Calder (UofM) Poisson Learning
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The variational interpretation

We define the space of weighted mean-zero functions

Z?:1 d@u(:v@)
Z?:l d;

(X)) = {u X >R (u)x = O}, where (u)x 1=
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The variational interpretation

We define the space of weighted mean-zero functions

D iy diu(z)
Z?:l d;

(X)) = {u X >R (u)x = 0}, where (u)x 1=

Consider the variational problem

(10) ugg;(nx){zwwluw u(a)P Z(yj—y)-u(wj)},

where g = =5 ;.
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Calder (UofM) Poisson Learning

The variational interpretation

We define the space of weighted mean-zero functions

Yo, diur)

(X)) = {u X =R (u)x = O}, where (u)x =

Z?:l d;

Consider the variational problem

(10) uer?zipx){ > wylu@) = ulz)® =) (- 79) U(fﬂj)},

1 m

where j = — ijl Y.

Theorem (C.-Cook-Thorpe-Slepcev, 2020)

Assume the graph is connected. Then there exists a unique solution u € ¢5(X) of (10),

and furthermore, u satisfies the Poisson equation

Lu(:) =Y (v —7)dy.

v

RSORA Summer School
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Poisson vs Laplace

For Poisson learning we have

o { 2 e =l =2 =0 o

We compare this with the variational interpretation for Laplace learning is

; 2 .

min wii|lu(x;) — w(x; cu(z) =y, fori=1,...,m ;.

ugzm{E () =) < ) = }
i,j=
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Poisson vs Laplace

For Poisson learning we have

uef?,j?x) { > wilu@) — u(z) =) (g — ) U(%‘)}-

ij=1
We compare this with the variational interpretation for Laplace learning is

u€l2(X)

min { Z wij|u(z) — u(z;)]? : u(w) =y fori=1,.. .,m}.

i,j=1

J. Calder, B. Cook, M. Thorpe, and D. Sleplev. Poisson Learning: Graph based
semi-supervised learning at very low label rates. International Conference on Machine
Learning (ICML), 2020.

RSORA Summer School 63 /89

Calder (UofM) Poisson Learning



Outline

o Experimental results
@ Volume constrained algorithms
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GraphLearning Python Package

README.md V4

Graph-based Clustering and Semi-Supervised Learning

;.5 o.o..l. U . ’.?‘. : . ,‘ B )
..'u RS PR s
’. e é .:'.'o .‘ - .: \.'.
& ou ;- l}‘. u. ....' L
*® e P ,.‘" e Y .
:* .,.\.. <. - . L

This python package is devoted to efficient implementations of modern graph-based learning algorithms for both semi-
supervised learning and clustering. The package implements many popular datasets (currently MNIST,
FashionMNIST, cifar-10, and WEBKB) in a way that makes it simple for users to test out new algorithms and rapidly
compare against existing methods.

This package reproduces experiments from the paper

Calder, Cook, Thorpe, Slepcev. Poisson Learning: Graph Based Semi-Supervised Learning at Very Low Label Rates.,
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:1306-1316, 2020.

Installation

Install with

pip install graphlearning

Calder (UofM) Poisson Learning
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https://github.com/jwcalder/GraphLearning

Algorithmic details

Algorithm 1 Poisson Learning

Input: W, F. b, T {F € R¥*™ are label vectors, b € R” are class sizes.}
Output: U € R"*¥%
D < diag(W1)
L<~D-W
y « —F1
B < [F — ¥, zeros(k,n — m)]
U « zeros(n, k)
for: =1to T do
U+ U+D (B! -LU)
end for
: U <+ U -diag(b/y) {Accounts for unbalanced class sizes.}

e o N s D

= =
= O

© We only need about T = 100 iterations on MNIST, FashionMNIST, CIFAR-10, to
get good results. CPU Time: 8 seconds on CPU, 1 second on GPU.

Calder (UofM) Poisson Learning
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MNIST (70,000 28 x 28 pixel images of digits 0-9)

SV v N TN
M PO WS W —Q
OO 40 Y\ NN R
M\Q“Q\Wﬁﬂ\ok

L,{

3
7

b

]
7
6
)

=
v

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.]
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FashionMNIST
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[Xiao, Han, Kashif Rasul, and Roland Vollgraf. "Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms.” arXiv:1708.07747 (2017).]
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CIFAR-10
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[Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny
images.” (2009).]
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Autoencoders

For each dataset, we build the graph by training autoencoders.

Encoder

T

Input Data Encoded Data Reconstructed Data

www.compthree. com
Autoencoders are “Nonlinear versions of PCA”
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(null)://(null)www.compthree.com

Building graphs from autoencoders

For MNIST and FashionMNIST, we use a 4-layer variational autoencoder with 30 latent
variables:

[Kingma and Welling. Auto-encoding variational Bayes. ICML 2014]
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Building graphs from autoencoders

For MNIST and FashionMNIST, we use a 4-layer variational autoencoder with 30 latent
variables:

[Kingma and Welling. Auto-encoding variational Bayes. ICML 2014]

For CIFAR-10, we use the autoencoding framework from [Zhang et al. AuteEncoding
Transformations (AET), CVPR 2019] with 12,288 latent variables.

E(x)
———
t E D — ¢
S
E(t(x))
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Building graphs from autoencoders

After training autoencoders, we build a £ = 10 nearest neighbor graphs in the latent
space with Gaussian weights
wij = ex _—4|:1:¢ [
L/ P dk(CB@)Q )

where dj(z;) is the distance in the latent space between z; and its k™ nearest neighbor.
The weight matrix was then symmetrized by replacing W with W + W 7.
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Building graphs from autoencoders

After training autoencoders, we build a £ = 10 nearest neighbor graphs in the latent
space with Gaussian weights
wij = ex _—4|x¢ — gl
L/ P dk(xz)z )

where di(z;) is the distance in the latent space between z; and its k™ nearest neighbor.
The weight matrix was then symmetrized by replacing W with W + W 7.

For CIFAR-10, the latent feature vectors were normalized to unit norm (equivalent to
using an angular similarity).
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First comparison

We compared against many other graph-based learning algorithms
@ Laplace/Label propagation: [Zhu et al., 2003]

@ Graph nearest neighbor (using Dijkstra)

@ Lazy random walks: [Zhou et al., 2004]

@ Mutli-class MBO: [Garcia-Cardona et al., 2014]

@ Centered kernel method: [Mai & Couillet, 2018]

@ Sparse Label Propagation: [Jung et al., 2016]

@ Weighted Nonlocal Laplacian (WNLL): [Shi et al., 2017]

@ p-Laplace regularization: [Flores et al. 2019]
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5
Laplace/LP 16.1 (6.2)  28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
Nearest Neighbor 65.4 (5.2) 74.2 (3.3) 77.8 (2.6) 80.7 (2.0) 82.1 (2.0)
Random Walk 66.4 (5.3) 76.2 (3.3) 80.0 (2.7) 82.8 (2.3) 84.5 (2.0)
MBO 19.4 (6.2) 293 (6.9) 402 (7.4) 50.7 (6.0)  59.2 (6.0)
Centered Kernel 19.1 (1.9) 24.2 (2.3) 28.8 (3.4) 32.6 (4.1) 35.6 (4.6)
Sparse Label Prop.  14.0 (5.5) 14.0 (4.0) 14.5 (4.0) 18.0 (5.9) 16.2 (4.2)
WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5(1.1) 94.9 (0.8) 95.3 (0.7)

Calder (UofM) Poisson Learning

RSORA Summer School

74 /89



FashionMNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5(8.2) 44.0 (8.6) 522 (6.2) 57.9 (6.7)
Nearest Neighbor 46.6 (4.7) 53.5(3.6) 57.2(3.0) 59.3(26) 61.1(2.8)
Random Walk 49.0 (4.4) 55.6(3.8) 59.4(3.0) 61.6(2.5) 63.4 (2.5)
MBO 15.7 (4.1) 20.1 (4.6) 25.7 (4.9) 30.7 (4.9) 34.8 (4.3)
Centered Kernel 11.8 (0.4) 13.1(0.7) 143 (0.8) 15.2(0.9) 16.3 (1.1)
Sparse Label Prop. 14.1 (3.8) 16.5(2.0) 13.7(3.3) 13.8(3.3) 16.1 (2.5)
WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4(3.3) 70.0 (2.8)
p-Laplace 546 (4.0) 57.4(3.8) 654(28) 68.0(29) 68.4(0.5)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2(2.2) 72.4(2.3)

Calder (UofM) Poisson Learning

Compare to clustering result of 67.2% [McConville et al., 2019]
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CIFAR-10 results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)
Nearest Neighbor 33.1(43) 37.3(41) 39.7(3.0) 41.7(2.8) 43.0(2.5)
Random Walk 36.4 (4.9) 42.0 (4.4) 45.1(3.3) 47.5(2.9) 49.0 (2.6)
MBO 14.2 (4.1) 193 (5.2) 243 (5.6) 285 (5.6) 33.5(5.7)
Centered Kernel 15.4 (1.6) 16.9 (2.0) 18.8(2.1) 19.9 (2.0) 21.7 (2.2)
Sparse Label Prop. 11.8 (2.4) 123 (2.4) 11.1(3.3) 14.4(3.5) 11.0(2.9)
WNLL 16.6 (5.2) 26.2 (6.8) 33.2(7.0) 39.0 (6.2) 44.0 (5.5)
p-Laplace 26.0 (6.7) 35.0 (5.4) 42.1(3.1) 48.1(2.6) 49.7 (3.8)
Poisson 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3(3.1) 53.8 (2.6)

Calder (UofM) Poisson Learning
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Varying number of neighbors k

0.2

0.0

—0.21

—0.41 —— MNIST
—e— FashionMNIST
—+— Cifar-10

Difference in Accuracy (%)

—0.61 | | .
5 10 15 20
Number of neighbors (k)

5 labels per class for all classes.
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Unbalanced training data

(o)]

Ul

D

w

N

—— MNIST
—eo— FashionMNIST
—+— Cifar-10

=

Difference in Accuracy (%)

o

1 2 3 4 5
Number of labels per even class

Odd numbered classes got 1 label per class.
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Volume constrained semi-supervised learning

Journal of Computational Physics
Volume 354, 1 February 2018, Pages 288-310

-

ELSEVIER

Auction dynamics: A volume constrained MBO
scheme

Matt Jacobs & &, Ekaterina Merkurjev, Selim Esedoglu

Show more v

https://doi.org/10.1016/j.jcp.2017.10.036 Get rights and content

Classification results can be improved by incorporating prior knowledge of class sizes
through volume constraints.
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PoissonMBO: Volume constrained Poisson learning

Observation 1: The Poisson learning iteration with a fixed time step

uri1(zi) = wr(z:) + dt (Z(yj —Y)dy — ﬁuT(l’z‘)>

j=1

is volume preserving. That is (ur+1)x = (ur)x.
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PoissonMBO: Volume constrained Poisson learning

Observation 1: The Poisson learning iteration with a fixed time step
ur+1(zi) = wr(z) + dt (Z(yj —Y)0ij — £uT(:1:,-)>
j=1

is volume preserving. That is (ur+1)x = (ur)x.

Observation 2: We can easily perform a volume constrained label decision:

l(x;) = argmax {s;u;(x)}.
GE{1,... K}

We adjust the weights s; to grow/shrink each region to achieve the correct class sizes.

@ Equivalent to re-weighting the point sources in Poisson learning.
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PoissonMBO Algorithm

Algorithm 2 PoissonMBO

Input: W F, Nuer, Nowter,b, i, T > 0
Output: U € R"*%
U < PoissonLearning(W,F.b, T')
dt « 1/ MaXi<i;<n D,
for : =1 to N, yer do

for j =1 to Njyper do

U+ U —dt(LU — uB?)

end for

U <+ VolumeConstrainedLabelProjection(U, b)
end for

© O N R e

[E
e

Named after the Merriman-Bence-Osher (MBO) scheme for curvature motion, which
has been used before in graph-based learning [Garcia, et al., 2014, Jacobs et al., 2018].
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5
Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
VolumeMBO 89.9 (7.3) 95.6 (1.9) 96.2 (1.2) 96.6 (0.6) 96.7 (0.6)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
PoissonMBO 96.5 (2.6) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)
# Labels per class 10 20 40 80 160
Laplace/LP 91.3 (3.7) 95.8 (0.6) 96.5 (0.2) 96.8 (0.1) 97.0 (0.1)
WNLL 95.6 (0.5) 96.1 (0.3) 96.3 (0.2) 96.4 (0.1) 96.3 (0.1)
p-Laplace 94.0 (0.8) 95.1 (0.4) 95.5 (0.1) 96.0 (0.2) 96.2 (0.1)
VolumeMBO 96.9 (0.2) 97.0 (0.1) 97.1 (0.1) 97.2 (0.1) 97.3 (0.1)
Poisson 95.9 (0.4) 96.3 (0.3) 96.6 (0.2) 96.8 (0.1) 96.9 (0.1)
PoissonMBO 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)
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Table: Average (standard deviation) classification accuracy over 100 trials.

FashionMNIST results

# Labels per class 1 2 3 4 5
Laplace/LP 18.4 (7.3) 325(8.2) 44.0(8.6) 52.2(6.2) 57.9(6.7)
WNLL 446 (7.1) 59.1(47) 647 (35) 67.4(3.3) 70.0(2.8)
p-Laplace 546 (4.0) 57.4(3.8) 654(28) 68.0(29) 68.4 (0.5
VolumeMBO 54.7 (5.2) 61.7(44) 66.1(3.3) 685(2.8) 70.1(2.8)
Poisson 60.8 (4.6) 66.1(3.9) 69.6(2.6) 71.2(2.2) 72.4(2.3)
PoissonMBO 62.0 (5.7) 67.2 (4.8) 704 (2.9) 721 (2.5) 73.1(2.7)
# Labels per class 10 20 40 80 160
Laplace/LP 70.6 (3.1) 76.5(1.4) 79.2(0.7) 80.9(0.5) 82.3(0.3)
WNLL 744 (16) 776 (1.1) 79.4(0.6) 80.6(0.4) 815(0.3)
p-Laplace 73.0(0.9) 76.2(0.8) 78.0(0.3) 79.7 (0.5) 80.9 (0.3)
VolumeMBO 744 (15) 77.4(1.0) 79.5(0.7) 81.0(0.5) 821 (0.3)
Poisson 75.2 (1.5) 77.3(1.1) 78.8(0.7) 79.9(0.6) 80.7 (0.5
PoissonMBO 76.1 (1.4) 78.2 (1.1) 79.5(0.7) 80.7(0.6) 81.6(0.5)
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Table: Average (standard deviation) classification accuracy over 100 trials.

CIFAR-10 results

# Labels per class 1 2 3 4 5
Laplace/LP 10.4 (1.3) 11.0(2.1) 116 (2.7) 129(3.9) 14.1 (5.0
WNLL 16.6 (5.2) 26.2 (6.8) 33.2(7.0) 39.0(6.2) 44.0(5.5)
p-Laplace 26.0 (6.7) 35.0(5.4) 42.1(3.1) 48.1(2.6) 49.7 (3.8)
VolumeMBO 38.0(7.2) 46.4(7.2) 50.1(5.7) 533(44) 553(3.8)
Poisson 40.7 (5.5) 46.5(5.1) 499 (3.4) 523(3.1) 53.8(2.6)
PoissonMBO 41.8 (6.5) 50.2 (6.0) 53.5(4.4) 56.5(3.5) 57.9(3.2)
# Labels per class 10 20 40 80 160
Laplace/LP 21.8(7.4) 38.6(8.2) 54.8(44) 62.7(1.4) 66.6(0.7)
WNLL 54.0 (2.8) 60.3(1.6) 64.2(0.7) 66.6(0.6) 68.2(0.4)
p-Laplace 56.4 (1.8) 60.4 (1.2) 63.8(0.6) 66.3(0.6) 68.7 (0.3)
VolumeMBO 59.2 (3.2) 61.8(2.0) 63.6(1.4) 64.5(1.3) 65.8(0.9)
Poisson 58.3 (1.7) 61.5(1.3) 63.8(0.8) 65.6(0.6) 67.3(0.4)
PoissonMBO 61.8 (2.2) 64.5(1.6) 66.9 (0.8) 68.7 (0.6) 70.3 (0.4)
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Outline

e The continuum perspective
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The continuum perspective

Continuum limits can help explain why Poisson learning works for low label rates.
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The continuum perspective

Continuum limits can help explain why Poisson learning works for low label rates.

Manifold assumption: Let z1,...,z, be a sequence of i.i.d. random variables drawn
from a d-dimensional compact, closed, and connected manifold M embedded in RP.
where d < D. We assume the random variables have a density p : M — R with respect

to the volume form Volx on the manifold.
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The continuum perspective

Continuum limits can help explain why Poisson learning works for low label rates.

Manifold assumption: Let z1,...,z, be a sequence of i.i.d. random variables drawn
from a d-dimensional compact, closed, and connected manifold M embedded in RP.
where d < D. We assume the random variables have a density p : M — R with respect
to the volume form Volx on the manifold.

Fix a finite set of points [ C M. The vertices of the random geometric graph are

Xn i =Hx1,...,2, U T

Ve

Unlabeled Labeled

We define the edge weights in the graph by
Way = Ne (|7 — yl),

where 7 : [0, 00) — [0, 00) is smooth with compact support, and 7.(t) = Eidn (ﬁ)
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The continuum perspective

The normalized graph Laplacian is given by

2
2
onne

L cu(z) =

> ne(lz — yh(u(@) — u()),

yeEXn,

where o, = fRd |21]%n(]2]) dz.

Using the normalized graph Laplacian, the Poisson learning problem is

(11) Lpctne(z)=mn Z(g(y) — ¢)0g=y forz € X,

yel

where ¢ = ﬁ > wer 9(2).
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The continuum perspective

The normalized graph Laplacian is given by

2
2
onne

Locu(z) = D ne(lz = y)(u(z) — u(y)),

yeEXn

where o, = fRd |21%n(|2|) dz.

Using the normalized graph Laplacian, the Poisson learning problem is

(11) Lpctne(z)=mn Z(g(y) — ¢)0g=y forz € X,

yel

where ¢ = ﬁ > wer 9(2).

Question: What can we say about u, . as n — oo and € — 07 Is it stable, and does it
converge to a well-posed continuum limit?
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The continuum perspective

Conjecture

Assume p is smooth. Assume that n — oo and € = €, — 0 so that

Then with probability one

lim  max |up(z) —u(z)|=0
n—oco TEX),
dist(z,lN)>48

for all § > 0, where u € C°°(M \ T') is the solution of the Poisson equation

(12) — dlv p Vu Z(g(y) —c)é, onM,

yel

where ¢ = 5 > - 9().
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Python Notebook: .ipynb

References:

© J. Calder, D. Slepev, D., and M. Thorpe. Rates of convergence for Laplacian
semi-supervised learning with low label rates. arXiv:2006.02765, 2020.

@ J. Calder, B. Cook, M. Thorpe, and D. Slep&ev. Poisson Learning: Graph based
semi-supervised learning at very low label rates. International Conference on
Machine Learning (ICML), 2020.

Code:

https://github.com/jwcalder/GraphLearning

README.md Va

Graph-based Clustering and Semi-Supervised Learning

This python package is devoted to efficient implementations of modern graph-based learning algorithms for both semi-
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https://colab.research.google.com/drive/1s1AN59icvak3OAukI_wA8VQmqjGGIVOn?usp=sharing
https://github.com/jwcalder/GraphLearning

