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Embeddings of high dimensional data
High dimensional data is hard to visualize and work with. Embeddings to low
dimensional spaces help us visualize data and improve the performance of data
analysis algorithms.

• PCA (linear dimension reduction)

• Spectral embedding (today)

• t-Distributed Stochastic Neighbor Embedding (t-SNE) (also today)

The key is to embed the data while still preserving important structures.



Spectral embeddings
Let v1, v2, v3, . . . be the normalized eigenvectors of L, in order of increasing eigen-
values 0 = �1  �2  · · · . The spectral embedding corresponding to L is the map
� : Im ! Rk (recall Im = {1, 2, . . . ,m} are the indices of our datapoints) given by

(1) �(i) = (v1(i), v2(i), . . . , vk(i)).

Since the first eigenvector v1 is the trivial constant eigenvector, it is also common
to omit this to obtain the embedding

�(i) = (v2(i), v3(i), . . . , vk+1(i)).

There are other normalizations of the graph Laplacian that are commonly used,
such as the symmetric normalization L = D

�1/2(D � W )D�1/2, and the spectral
embedding for a normalized Laplacian is defined analagously.



Spectral embedding of MNIST

(a) Unnormalized (b) Normalized

Figure 1: Example of spectral embeddings in the plane k = 2 of the 0, 1, and 2
digits of the MNIST dataset using the unnormalized L = D � W and symmetric
normalized L = D

�1/2(D �W )D�1/2 graph Laplacians.



t-SNE
The t-Stochastic Neighbor Embedding (t-SNE) tries to find embedded points whose
pairwise similarities match as closely as possible the given weight matrix W for the
graph.

From the weight matrix W , t-SNE constructs a probability weight matrix

(2) P =
1

2m
(D�1

W +W
T
D

�1),

where D is the diagonal matrix of degrees d(i) =
P

m

j=1 W (i, j). We say probability
since all entries of P sum to one, i.e., 1T

P1 = 1.



t-SNE
t-SNE aims to find embedded points y1, y2, . . . , ym 2 Rk, where usually k = 2 or
k = 3, so that the similarity between yi and yj matches P (i, j) as closely as possible.
The similarity matrix for the yi, denoted Q, is the m⇥m matrix defined by

(3) Q(i, j) =
(1 + kyi � yjk2)�1

P
` 6=s

(1 + kys � y`k2)�1
.

The discrepancy between P and Q is measured with the Kullback-Leibler divergence

(4) E(y1, y2, . . . , yk) = D(PkQ) :=
X

i 6=j

P (i, j) log

✓
P (i, j)

Q(i, j)

◆
.

t-SNE finds the embedded points yi by minimizing E with gradient descent.



Why Kullbck-Leibler?

E(y1, y2, . . . , yk) = D(PkQ) :=
X

i 6=j

P (i, j) log

✓
P (i, j)

Q(i, j)

◆
.

• When P (i, j) � 0, forces Q(i, j) ⇠ P (i, j); i.e., preserve local structure.

• When P (i, j) ⇠ 0 we don’t care what Q(i, j) does; i.e., allow global structure
to change.

• We cannot preserve all information in a dimension reduction.



Gradient descent
The gradient of the Kullback-Leibler divergence

E(y1, y2, . . . , yk) = D(PkQ) :=
X

i 6=j

P (i, j) log

✓
P (i, j)

Q(i, j)

◆

in the variable yi is given by

ryiE = 4Z
X

j:j 6=i

P (i, j)Q(i, j)(yi � yj)

| {z }
Attraction

� 4Z
X

j:j 6=i

Q(i, j)2(yi � yj)

| {z }
Repulsion

.

where Z =
P

i 6=j
(1 + kyi � yjk2)�1.

Gradient descent is
y
k+1
i

= y
k � hryiE(yk1 , y

k

2 , . . . , y
k

m
),

where h is the time-step.



t-SNE embedding of MNIST

Figure 2: A t-SNE embedding of 2500 images from the MNIST dataset, with colors
corresponding to the digit labels of each image.

























Early exaggeration
Gradient descent for t-SNE is very slow. To speed it up, early exaggeration is used,
which amplifies the attraction forces for the first few hunderd iterations:

ryiE = 4Z↵

X

j:j 6=i

P (i, j)Q(i, j)(yi � yj)� 4Z
X

j:j 6=i

Q(i, j)2(yi � yj),

The parameter ↵ is the amplification factor, often ↵ ⇡ 10.



Early exaggeration

(a) After early exaggeration (b) Final embedding

Figure 3: An example of the t-SNE embedding after the early exaggeration phase
and the final embedded, for a small version of MNIST with only 500 images from
the digits 0, 1, 2, and 3.



Perplexity
The construction of the weight matrix W is important for the performance of t-SNE.
The perplexity construction has the form

W (i, j) = exp

✓
�kxi � xjk2

2�2
i

◆
,

where �i is tuned independently for each xi depending on a specified perplexity level
(usually in the range 5 to 50).

The perplexity of the i
th row of W (i, j) is 2H(i), where

H(i) = �
mX

j=1

p(j) log p(j), p(j) =
W (i, j)P
m

k=1 W (i, k)
.

The value of �i is determined so that the perplexity 2H(i) equals a desired user-
specified value.



MNIST

Perplexity 5 Perplexity 30 Perplexity 50.



Gaussian mixture in 10 dimensions

Perplexity 5 Perplexity 30 Perplexity 50.



Parabolic curve in 5 dimensions

Perplexity 5 Perplexity 30 Perplexity 50.



Graph-based embeddings (.ipynb)

https://colab.research.google.com/drive/135dAjW--23KJSzzFE8X-PlCakrqLeFNy?usp=sharing

