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Abstract

Complex interactions within the tumor microenvironment are increasingly recog-
nized as important drivers of treatment failure in cancer. For example, interactions
between stromal cells and therapies can alter the abundance of resources and signal-
ing factors within the tumor environment. These microenvironmental alterations in
turn may impact treatment efficacy, in some cases conferring a counterproductive pro-
tective effect on tumor cells. Disentangling these complex phenomena is critical for
understanding the impact of microenvironmental interactions on cancer treatment re-
sponse, and for designing effective dosing strategies. Here we propose a mathematical
model for the generic scenario in which a stromal cell population secretes signaling
factors that protect cancer cells from the effects of therapy, in a dose-dependent man-
ner. We demonstrate that the presence of this stromal interaction motif modulates the
therapeutic dose window of efficacy, with non-monotonic treatment responses possible.
We also analyze the impact of combination treatment strategies that target stromal
cells and their secretome. Based on these results, we suggest approaches to optimize
long-term treatment outcomes by identifying strategies that confine the dynamic drug
concentration to stay within efficacious windows for as long as possible. As a case
study, we explore an experimental dataset from colorectal cancer cells treated with an
anti-EGFR targeting therapy, cetuximab, where cancer associated fibroblasts increase
epidermal growth factor secretion under treatment. We apply our general approach to
identify a critical threshold for successful drug concentrations and determine effective
dosing regimens for single-drug treatment and combination therapy with growth factor
blockers.

1 Introduction

The ability of cancer therapies to enhance the development and outgrowth of resistant
tumor subpopulations is becoming increasingly recognized as an important contributor to
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therapeutic failure. For example, in the context of both bacterial and cancer cell populations
it has been observed that drug-induced stress can lead to elevated mutation rates, via
switching to less reliable DNA repair mechanisms [1] or elevating levels of reactive oxygen
species which can induce oxidative DNA damage. Other example mechanisms include drug-
induced remodeling of the tumor microenvironment (TME) to create protective niches where
cancer cells can survive therapy or resistant cells can thrive, e.g. [2], or therapy-induced
plasticity wherein tumor cells transition into more drug-tolerant phenotypic states in the
presence of therapy, [3]. In all cases, the opposing drug-induced resistance costs vs tumor-
reduction benefits suggest that careful selection of dose and timing may be required for
designing optimal therapeutic strategies and reducing therapeutic failures.

One common motif in TME remodeling contributing to drug resistance is the drug-
induced secretion of signaling factors that protect cancer cells from the effects of therapy.
These factors can be secreted by tumor cells themselves or by neighboring non-cancer cells.
For example, cancer-associated fibroblasts (CAFs), the most abundant stromal cell popu-
lation within the TME, have been observed to secrete signaling factors that protect tumor
cells from the cytotoxic effects of cetuximab in colorectal cancer (CRC) [4]. Targeted ther-
apy with BRAF, ALK or EGFR inhibitors was shown to induce changes to the cancer
cell secretome that stimulate the outgrowth of drug-resistant cancer cells in melanoma and
lung adenocarcinoma cells [5]. Additionally, drug-induced enrichment of a subpopulation of
fibroblasts promoted chemoresistance in breast and lung cancer models through cytokine-
mediated (IL-6 and IL-8) cancer stem cell survival [6].

In this work, we focus on developing mathematical models for the general scenario in
which a stromal cell population secretes signaling factors that protect cancer cells from
the effects of therapy, in a drug-dependent manner. There have been some mathematical
models developed previously for designing optimal therapy strategies in light of increased
drug-induced mutation rate, considered in [1] and references therein. Other works have
specifically modelled cancer associated fibroblasts by studying intra- and intercellular sig-
nalling of cancer and stromal cells that induce a transition to the activated fibroblast state
and in return influence tumor progression [7]. The authors in [8] consider a cell-level model
for sensitive and resistant melanoma cells and associated fibroblasts under treatment with
BRAF and FAK inhibitors. They briefly address the question of treatment with simple
on/off periods of drug administration, allowing the cancer cells to re-sensitize during treat-
ment breaks. This idea is further studied in a recent preprint, where the authors investigate
a spatially structured model for interacting cancer cells, stromal cells, and blood vessels [9].
In our work, we build upon these studies to investigate optimization of treatment strategies
(with regards to administration time and dose) in relation to threshold drug concentrations
for triggering responses in both cancer and stromal cells.

Our approach to optimizing treatment protocols for drug-induced resistance through in-
creased growth factor secretion by stromal cells is structured as follows: We first focus on
the short-term dynamics of the system to predict effective drug concentrations (in terms
of inducing tumor reduction), based on the specific composition of the microenvironment
(Subsection 3.1). Moreover, we investigate potential combination treatment that targets
the stromal cells and their growth factor secretion dynamics by studying the sensitivity of
the treatment outcome and effective concentrations to the variation of a number of system
parameters (Subsections 3.2-3.4). Based on the acquired knowledge of these short-term dy-
namics, we suggest strategies for treatment optimization, considering the long-term outcome
of the system. We study periodic drug administration and drug decay, varying both the
administered drug concentration and break time between administrations (Section 4).
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This general model is motivated by the specific application of CRC cells interacting
with CAFs and the observations in [4]. In this system, under treatment with the EGFR
inhibitor cetuximab, CAFs demonstrate increased EGF secretion which then induces partial
drug-resistance. We consider this specific scenario as a case study in Section 5, where we
investigate the advantages of combination therapy with EGF-blockers and different protocols
for single- and multi-drug treatment.

This mathematical modeling framework, guided by experimental and/or clinical obser-
vations, contributes to a better understanding of the microenvironment’s contributions to
drug-induced resistance and clinical strategies for overcoming them.

2 Mathematical model

We first propose a general model for drug-induced resistance through environmental re-
modeling by a stromal cell population. In particular, consider a population of cancer cells
C and a population of stromal cells S in the tumor microenvironment (such as CAFs).
The stromal cells secrete a growth factor G that induces partial drug-resistance in the can-
cer cells, and this secretion rate as well as the cancer growth rate may be dependent on
the drug concentration D. The state of the system at time t ≥ 0 is then described by
(C(t), S(t), D(t), G(t)) ∈ R4

+, where C(t) and S(t) are considered as numbers of cells and
D(t) and G(t) as concentrations. Mathematically, we describe the dynamics of this system
using the following system of ordinary differential equations; a schematic is provided in
Figure 1(A).

dC

dt
= rC(D,G) · C

dS

dt
= rS(D) · S

dD

dt
= −dD ·D

dG

dt
= bG(M,D,G) · S − dG ·G (1)

Here, rC is the exponential net growth rate of cancer cells, dependent on the drug
and growth factor concentrations and rS is the exponential net growth rate of the stromal
cells, which can depend on the drug concentration. In addition, bG is the rate of growth
factor secretion, which may be dependent on the drug concentration and number of stromal
cells. Lastly, dD and dG denote the decay rates of the drug and secreted growth factor,
respectively. Here we have assumed unrestricted exponential growth for cancer and stromal
cells, reflecting a regime in which resources are not limited. Note that this model could
easily be extended to a stochastic (agent-based) Markov process to study stochastic events
such as extinction in small population settings.

To study treatment resistance, many models distinguish between sensitive and resistant
cancer cells and introduce either a reversible phenotypic switching mechanism between these
two states or a non-reversible mutation. In the case of growth factor-induced resistance, the
presence of many receptors that can bind to either drug or growth factor molecules and the
relatively quick (un)binding dynamics result in more of a continuum of cancer cell states
that display different dynamics, based on the current drug and growth factor concentra-
tion and the corresponding equilibrium receptor state. We therefore choose to consider a
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continuum of drug-resistance phenotypes, i.e. to have the mean growth rate rC of the can-
cer cell population depend on the drug and growth factor concentrations in a continuous way.

Dependence of cancer growth on drug and growth factor concentration. The
dependence of the cancer cell growth rate rC(D,G) on the drug concentration D is modelled
by a classic Hill function (dose-response curve), as depicted in Figure 1(B). We set

rC(D,G) = rmin
C +

rmax
C − rmin

C

1 +
(

D
D50(G)

)k1
. (2)

The increased growth rate of the cancer cells under increasing growth factor concentra-
tion is reflected in the varying inflection point D50(G) of the response curve, which marks
the drug concentration of 50% efficacy. In particular, an increasing growth factor concentra-
tion G shifts the Hill function curve to the right (see Figure 1(B)). This increase of D50(G)
under increasing growth factor concentration is modelled as a logistic function

D50(G) =
Dmax

50

1 + e−k2(G−Ĝ)
, (3)

where Ĝ is the inflection point. It roughly corresponds to the threshold growth factor con-
centration to induce cancer cell drug resistance (see Figure 1(C)). These forms of dependence
are consistent with our experimental data set on CRC-CAF interactions (see Section 5 and
Appendix A.1).

Note that if rmin
C < 0 < rmax

C , the critical drug concentration Dcrit(G) at which the
growth rate changes sign (i.e. rC(D,G) < 0 if and only if D > Dcrit(G)) can be calculated
as

Dcrit(G) = D50(G)
k1
√

rmax
C∣∣rmin
C

∣∣ . (4)

Dependence of growth factor secretion on drug concentration. In vitro exper-
iments with stromal cells indicate that an equilibrium growth factor concentration G is
achieved quickly by secretion and remains stable at least over the course of multiple days
(see Appendix A.2). To depict the dependence of this equilibrium concentration on the drug
concentration, we model G(S,D) as a logistic function

G(S,D) =
Gmax(S)

1 + e−k3(D−D̂)
, (5)

where Gmax(S) is the maximal concentration (dependent on the number of stromal cells
S) and D̂ is the inflection point (see Figure 1(D)). The latter roughly corresponds to the
threshold drug concentration to induce increased growth factor secretion of stromal cells.

To achieve G(S,D) as an equilibrium concentration in the dynamic system with growth
factor degradation, we model growth factor secretion at rate

bG(S,D,G) = aG (G∗(S,D)−G)+ , (6)

i.e. as a decreasing function in the current growth factor concentration G that eventually
reaches zero (see Figure 1(E)). To balance out degradation at rate dG > 0 and obtain a
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stable growth factor concentration of G(S,D), G∗(S,D) needs to be chosen such that

0 =
dG

dt

∣∣∣
G=G(S,D)

= aG(G
∗(S,G)−G(S,D))+ · S − dg ·G(S,D)

⇔ G∗(S,D) =
aGS + dG

aGS
G(S,D) > G(S,D). (7)

Whether the equilibrium concentration G(S,D) is obtained in praxis depends on the spe-
cific scaling of the growth factor secretion and degradation rates. High rates in relation to
the drug decay rate make it easier to reach the (drug-dependent) equilibrium growth factor
concentration before the drug concentration itself changes too much.

Impact of stromal content level on growth factor concentration. The concen-
tration of growth factors inducing drug-resistance of cancer cells may be dependent on the
level of stromal content in the tumor. We model the impact of the stromal content level
on the the maximal growth factor concentration Gmax(S) in two ways: We consider (i) a
dose-dependence phenomenon in which the maximal growth factor concentration depends
linearly on stromal population levels via slope k4

Gmax(S) = k4 · S, (8)

reflecting a fixed increase in the maximal growth factor concentration per stromal cell.
Alternatively (ii), as long as there is any stromal presence, a constant maximal growth
factor concentration is achieved,

Gmax(S) = Gmax1S>0. (9)

We investigate both possibilities in this work; experimental observations of the CRC-CAFs
system are consistent with the second version (see Appendix A.2).

3 Effective drug concentrations for short-term dynam-
ics

The success of therapy - in terms of reducing the cancer growth rate in response to an ad-
ministered drug dose - is dependent on complex interactions between drug, drug-dependent
growth factor secretion by stromal cells, and treatment effect on cancer cells. In our first set
of investigations, we make several simplifying assumptions to identify regimes of effective
drug concentration thresholds and combination strategies to achieve tumor reduction on
short time scales, e.g. initial response at the start of treatment. Recognizing that initial
tumor reduction may not always correspond to optimal long-term dynamics, however, we
will return to the more complicated model (1) to address longer time spans and the option
of treatment with breaks in Section 4.

Simplified model for short-term dynamics. To model the initial treatment re-
sponse, for the remainder of this section, we assume that drug decay is negligible and just
set D(t) ≡ D(0) as the constant concentration that was initially administered. To re-
flect a much slower growing stromal cell population than cancer cell population, we also
assume rS(D) to be very small or even rS(D) = 0, which entails S(t) ≡ S(0). Finally,
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as discussed in Appendix A.2, the CRC experiments demonstrate that the stromal-cancer
cell interactions result in a relatively stable concentration of growth factors. We hence set
G(t) ≡ G(S(0), D(0)) as a constant concentration, depending on the constant number of
stromal cells and drug concentration. These assumptions are motivated by multi-day ex-
periments performed on colorectal cancer cells interacting with CAFs under treatment with
cetuximab; this example is explored in detail in Section 5. All of the above assumptions
result in the simplified model

D ≡ D(0)

S ≡ S(0)

G ≡ G(S(0), D(0))

dC

dt
= rC(D,G) · C

= rC(D(0), G(S(0), D(0))) · C, (10)

which we apply to study initial tumor response to single and combination therapies.

3.1 Drug concentration thresholds for tumor reduction

Figure 1(B) in the previous section only depicts the cancer growth rate in response to an
increasing drug concentration D for a fixed growth factor concentration G. However, in
the more realistic setting where the growth factor concentration depends on the current
drug concentration, the more clinically relevant quantity is the effective growth rate of can-
cer cells within their microenvironment. To find this quantity and determine whether an
administered drug concentration Da is successful, one needs to follow three steps:

1. Determine the equilibrium growth factor concentrationG(S,Da) that is induced by the
drug’s impact on growth factor secretion by stromal cells. This fixes the corresponding
tumor dose-response curve.

2. Use this dose-response curve to determine the corresponding critical drug concentra-
tion Dcrit(G(S,Da)) that is needed to induce a negative growth rate.

3. Compare the administered drug concentration to this induced critical concentration.
If the latter is smaller, i.e Dcrit(G(S,Da)) < Da, the induced growth rate is negative,
leading to tumor reduction. Otherwise, it is positive and therapy at this administered
drug concentration does not control tumor burden.

Figure 2(A)&(B) visualises this three-step procedure for two different administered
drug concentrations - one corresponding to successful treatment (D1

a) and one correspond-
ing to failed treatment (D2

a). Figure 2(C) directly plots the critical drug concentration
Dcrit(G(S,Da)) as a function of the administered drug concentration Da. The parameters
chosen to generate the plots in this section are summarised in Appendix A.4.

The above considerations allow us to find the minimal drug concentration that induces
any negative growth rate for the cancer cells (very close to zero). For most applications, it
is however more relevant to push the growth rate below a certain (strictly negative) value
so that the tumour size actually decreases and the cancer cells eventually die out, rather
than just preventing the tumour from growing. Note that this question can be addressed in
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exactly the same way. Instead of investigating the critical concentration Dcrit at which the
growth rate hill function changes sign, we could have also chosen to study a general

Dr(G) = D50(G)
k1
√

rmax
C − r

r − rmin
C

, (11)

for rmin
C < r < rmax

C , the concentration at which the growth rate first drops below r. Study-
ing intersections of this function with the equilibrium secreted growth factor concentration
allows us to determine the minimal drug concentration to keep the cancer growth rate below
a certain threshold r.

Stromal content impacts the therapeutic window. Interestingly, the success of
treatment can exhibit a non-monotonic behavior, as shown in Figure 2, where an increase
in the drug concentration does not necessarily lead to a better treatment outcome. Even-
tually, for a high enough administered drug concentration, the cancer growth rate becomes
negative. This is due to the fact that, for any fixed stromal cell population S, the drug dose
D eventually surpasses the critical drug concentration corresponding to the maximal se-
creted growth factor concentration, i.e. eventually D > Dcrit(G

max(S)). However, if certain
relations between the involved parameters are satisfied, it is possible to have multiple fixed
points Dcrit(G(S,D)) = D, i.e. multiple sign changes of Dcrit(G(S,D))−D, corresponding
to multiple switches between positive and negative growth rates as the administered drug
concentration increases. In particular, this can lead to a window of lower drug concentra-
tions inducing negative growth rates, followed by a window of intermediate concentrations
that lead to therapy failure, before reaching a threshold above which all concentrations are
successful.

The intuition for this non-monotonic behavior is explained as follows: consider the in-
flection point D̂ of the growth factor secretion function. For drug concentrations below
this value, the stromal cells secrete lower amounts of growth factor and hence G ≈ 0. For
concentrations above D̂, the growth factor secretion is activated and quickly approaches its
maximum, i.e. G ≈ Gmax(S). If

D̂ > Dcrit(0), (12)

there is a window of drug concentrations [Dcrit(0), D̂] where the increased growth factor
secretion by the stromal cells has not been triggered yet but the drug concentration is
higher than the critical concentration corresponding to no growth factor. This induces a
negative cancer growth rate. If additionally

Dcrit(G
max(S)) > D̂, (13)

then there is a window of drug concentrations [D̂,Dcrit(G
max(S))] where the maximal growth

factor concentration is reached but the drug concentration is still below the critical concen-
tration corresponding to this growth factor regime, hence inducing a positive cancer growth
rate. These three concentration thresholds defining the windows for successful or unsuccess-
ful treatment are visualized in Figure 2(C).

Note that these heuristics essentially assume the growth factor secretion function to be
a step function, jumping from 0 to Gmax(S) at D̂. This is only a good approximation for
steep slopes k3; hence criteria (12) and (13) become less accurate for lower values of k3 (as
seen in Figure 2(C), where the proposed thresholds do not exactly match up with the fixed
points of Dcrit(G(S, ·))).
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3.2 Combination therapy - targeting stromal cells

In our model, stromal cells influence the cancer treatment response through the secretion of
growth factors. We focus here on analyzing the case in which there is a fixed increase in the
maximal growth factor concentration per stromal cell, as in (8). Here, the maximal growth
factor concentration depends linearly on S through Gmax(S) = k4 · S. Since the presence
of this growth factor inhibits the effect of the drug on cancer cells, we explore the notion of
targeting the stromal cell population in a combination therapy approach.

As can be seen in Figure 3(A) with the series of orange lines, decreasing the number of
stromal cells pushes down the line corresponding to the secreted equilibrium growth factor
concentration. In particular, the maximal growth factor concentration Gmax(S) decreases
proportionally with S, while the threshold drug concentration D̂ for switching from the
low growth factor to the high growth factor regime remains the same (no horizontal shift).
This extends the range of drug concentrations corresponding to a negative cancer growth
rate regime and in particular lowers the minimal drug concentration necessary to induce a
negative cancer growth rate. Eventually, for low enough cell numbers, it is even possible
to eradicate the window of intermediate drug concentrations for which the treatment is
unsuccessful, effectively eliminating this microenvironmental pathway to resistance for most
drug concentrations. Referencing Subsection 3.1, this is the case when S is small enough
such that Dcrit(G

max(S)) drops below D̂.
Figure 3(B) visualises the same effects in a heat map plot, depicting the growth rate of

the cancer cells depending on the number of stromal cells S and the drug concentration D.
We can observe that nothing changes for the effects of very high drug concentrations. This
is the case because of our function for D50(G), which eventually levels off to Dmax

50 for high
G. Whenever the administered drug concentration D is higher than the critical dose Dcrit

corresponding to this Dmax
50 (i.e. to the most right-shifted dose-response curve), then the

cancer growth rate is negative, independent of the composition of the microenvironment.
Note that, at least under the assumption of a homogeneous cell population, lowering the

secreted growth factor concentration by decreasing k4 (i.e. lowering the maximal secreted
growth factor concentration per stromal cell) or neutralising a certain percentage of growth
factor molecules through growth factor-blockers would have the same effect as decreasing the
number of stromal cells. Both S and k4 enter the function for G(S,D) in a linear fashion
through Gmax(S). Similarly, neutralising a given percentage of growth factor molecules
yields a linear factor decreasing the concentration of effective growth factor.

3.3 Combination therapy - targeting stromal drug response

Another possible target for combination therapies is to decrease the stromal sensitivity to
the drug. In contrast to the previous section, this might not decrease the maximal secreted
growth factor concentration Gmax(S) but rather increase the threshold drug concentration
D̂ for switching from the low growth factor to the high growth factor regime. For example,
if the drug interacted with stromal cells by binding to a different receptor than the receptor
on the cancer cells, there might be a way to (partially) block this receptor specifically.
As a consequence, a higher drug concentration would be required to trigger a response in
the stromal cells (increasing growth factor secretion), while the cancer cells’ response to
the drug remains unchanged. Another approach would be to reprogram cancer-associated
stromal cells to a more normal-like state where they may be less sensitive to the drug [10].

As seen in Figure 3(C), increasing D̂ extends the window of lower drug concentrations
leading to a successful therapy outcome. This is due to the fact that the upper bound
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of this window essentially corresponds to D̂ itself, as discussed in Subsection 3.1. It is
even possible to fully get rid of the opposing window of intermediate drug concentrations
corresponding to failed treatment if D̂ surpassed the minimal successful dose corresponding
to the highest possible growth factor concentration Dcrit(G

max(S)) (see Figure 3(D)). In this
case the increased growth factor secretion would only get triggered at drug concentrations
that are high enough to induce negative cancer growth rates either way. Increasing D̂ to
such high drug concentrations might not be a feasible in practice however.

It is worth noting that below the diagonal, i.e. for D > D̂ the growth rate of the cancer
cells is not affected by a varied D̂. This is due to the fact that for these higher doses the
increased growth factor secretion has been triggered and we can essentially apply the dose-
response curve corresponding to the maximal growth factor concentration rC(·, Gmax(S)).
Amplified by the logarithmic axis for the drug concentration, we can observe a slight decrease
of the lower bound of the window of successful low drug concentrations as D̂ increases. The
reason is that the secreted growth factor concentration at very low drug concentrations (or
no drug) G(S, 0) only approaches 0 as the inflection point D̂ is increased, and hence the
approximation of Dcrit(0) for this turning point (cf. Subsection 3.1) only really applies to
those cases. This however also implies that, if we are looking for the smallest successful drug
concentration, decreasing the stromal cells’ sensitivity (i.e. increasing D̂) is only helpful to
a certain degree since Dcrit(0) is a strict lower bound.

3.4 Combination therapy - targeting growth factor efficacy

A third target for combination therapies could be to decrease the growth factor efficacy, i.e.
to increase the threshold growth factor concentration Ĝ for triggering a shift in the dose-
response curve of the cancer cells. One approach to achieve this is to target downstream
effectors in cancer cells to require more growth factor. This would decrease the inflection
point D50(G) of the cancer cell dose-response curve (for fixed growth factor levels G) and
hence allow for negative growth rates at lower drug concentrations.

Figure 3(E) shows that, in contrast to the two previous approaches, this combination
treatment does not change the growth factor secretion dynamics of the stromal cells. It
rather changes the critical drug concentrationDcrit(G) for fixed growth factor concentrations
G and an increase of Ĝ shifts the corresponding curve to the left. This extends the window
of low successful drug concentrations (since it decreases Dcrit(0) and can even eliminate the
window of intermediate unsuccessful concentrations (if Dcrit(G

max(S)) drops below D̂).
The heat map in Figure 3(F) qualitatively shows similar effects to the first approach

of varying the maximal secreted growth factor concentration (Figure 3(B)). The picture is
simply flipped upside down since in this case an increased threshold Ĝ has a positive effect,
just like a decreased number of stromal cells S. One significant difference is that the minimal
successful drug dose can be pushed much lower here. The reason is that by decreasing the
(effective) secreted growth factor (as in the first two approaches), the minimal successful

drug dose can at best (for G = 0) be decreased to Dcrit(0) = D50(0)
k1√

rmax
C /|rmin

C |. By

increasing Ĝ however, we can arbitrarily decrease D50(G) = Dmax
50 (1+ e−k2(G−Ĝ))−1 (down

to almost 0) and hence Dcrit(G) = D50(G)
k1√

rmax
C /|rmin

C | itself. Whether this is possible

beyond the point of D50(0) corresponding to the original Ĝ (which would correspond to the
cancer cells being fully unresponsive to the growth factor) depends on the precise mechanism
of the combined therapy.

Note that the effect of this last approach is essentially similar to that of the original
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drug, which means that we see a direct payoff between the increase of Ĝ and the decrease of
necessary D in the sense of one replacing the other. The new approach would simply avoid
the side effect of triggering the stromal cells’ antagonistic growth factor secretion. If such a
treatment existed, it could theoretically fully replace the original drug but might have other
severe side effects, which would make it interesting to find the optimal combined dose.

4 Treatment optimization for long-term outcomes

So far, in Section 3, we have considered the dynamics of interacting cancer and stromal cells
under a constant drug concentration. To translate our observations into realistic treatment
protocols, we do however need to consider longer time frames and hence take into account
factors such as the degradation of the drug after its initial administration. Moreover, the
fact that the cancer cells’ response to drug treatment depends on the constitution of their
microenvironment naturally raises the question of potential improvements through modified
treatment protocols. Breaks, periods during which the accumulated drug concentration
drops below certain thresholds, may provide the opportunity for growth factor levels to
decrease and re-sensitize the cancer cells to the therapy.

In the following, we investigate the role of dosing schedules in such interdependent sys-
tems of cancer and stromal cells. To study specific treatment protocols, we return to the
full model in (1), which includes the effects of growth factor secretion and degradation, as
well as drug degradation. Since stromal cell growth dynamics (at least for our application)
are much slower than those of the cancer cells, we retain the assumption that stromal cells
do not proliferate significantly during the time scale of the model, and hence set rS(D) = 0,
which yields S ≡ S(0) for all times.

We consider dosing strategies in which the size of each dose and time between doses is
kept constant throughout each regimen. In Figure 4(A), we plot the fluctuating cancer cell
population size, drug and growth factor concentrations over time for a treatment protocol
administering a moderate drug dose once every ten days.

Note that the cancer cell population undergoes initial positive growth under drug ad-
ministrations, and later enters a negative growth regime before expanding again at lower
drug concentrations. This is due to the fact that we consider parameters for which a non-
monotonic response of the cancer cells to the drug concentration can be observed (see Sub-
section 3.1, and specifically Figure 2(C)). Moreover, in accordance with realistic scenarios
(like the example in Section 5), the dynamics of growth factor secretion and degradation are
assumed to be relatively fast compared to the drug decay. We can therefore observe that
the growth factor concentration essentially follows the current drug-induced equilibrium
concentration G(S,D).

After administration, the drug concentration initially lies above the threshold for trigger-
ing a microenvironment response (D̂) but below the critical concentration for negative cancer
growth rates corresponding to the maximum growth factor concentration (Dcrit(G

max(S))).
Hence the treatment only becomes effective once the drug concentration drops below D̂
and the growth factor concentration (and with it the critical drug concentration) decline as
well. The goal for treatment plan optimisation is to maximize the time of the system in the
negative growth rate regimen.
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Optimal dosing frequency

In order to investigate the effects of varying dosing schedules, we compare regimens in
which the average drug concentration in the plasma is conserved, but the frequency of drug
administration - and hence the administered dose to achieve this average concentration -
are varied. To study long-term success of the treatment, we consider a tumor that initially
consists of 108 cells over a total administration period of 180 days (6 months), and protocols
varying the time τ between administrations from one day to three weeks.

For an administered drug concentration of Dadm, we can compute the average drug
concentration as

Dav(Dadm) =
1

180

⌊180/τ⌋∑
i=0

∫ 180−iτ

0

Dadme
−dDtdt =

Dadm

dD180

⌊180/τ⌋∑
i=0

(
1− e−dD(180−iτ)

)
. (14)

Consequently, to obtain an average drug concentration of Dav through drug administration
every τ days, the administered concentration needs to be chosen as

Dadm = DavdD180

⌊180/τ⌋∑
i=0

(
1− e−dD(180−iτ)

)−1

. (15)

Note that conserving the average drug concentration is slightly different from conserving
the total administered drug amount (sum over all administered doses) due to variable decay
dynamics between regimens.

To compare the outcome of different dosing schedules, simply comparing the final number
of cancer cells after 180 days would not be sufficient. This is because the cancer cell number
fluctuates between drug administrations and the final number might hence suggest that a
treatment plan is more successful simply because it was sampled during a local minimum.
To avoid this effect, we instead compare average cancer cell numbers over the last 30 days
(1 month) of treatment, ensuring that at least one entire treatment cycle is covered for all
choices of times τ between drug administrations.

Figure 4(B) displays a heat map plot for the average cancer cell number, varying the av-
erage drug concentration and the treatment administration schedule. Figures 4(C) and (D)
show horizontal or vertical cuts through this heat map, where either the time between ad-
ministrations τ or the average drug concentration are kept constant and only the respective
other quantity is varied.

From a clinical perspective, both of these viewpoints are interesting to consider. While a
frequent administration of drug doses allows the most control over the drug concentration in
the plasma, keeping it relatively constant, logistics around treatment administration might
dictate a certain schedule of break times τ between drug administrations (i.e. fix a horizontal
axis in the heat map plot). Studying Figure 4(C), one can observe that for short breaks
(e.g. τ = 1 day), the behavior mirrors the results of Section 3, where both very high and
lower concentrations are effective but intermediate concentrations are not (compare Figure
2). This is because for short breaks administered doses are not too high and the drug
concentration does not fluctuate too much between administrations. Intermediate break
times (e.g. τ = 7 days) are still similar to shorter breaks in the sense that they show
success for both lower and very high administered doses. However, since the fluctuations
around the average drug concentration are much larger, the successful windows are narrower.
This is because both average concentrations at the upper and lower end of the successful
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concentration windows yield some time with unsuccessful drug concentrations. For long
break times (e.g. τ = 14 days and above), the drug concentration will eventually drop to
the intermediate and very low unsuccessful concentration windows either way and hence
only very high average (and hence administered) drug concentrations can be efficient by
maximizing the time of the successful high concentrations.

Switching perspectives, to avoid drug toxicity and other side effects, there are often
restrictions on the admissible average drug concentration, closely related to the total ad-
ministered drug dose over time. In these cases, it is of interest to find the best drug admin-
istration schedule for a fixed average concentration. Figure 4(D) demonstrates that for low
average concentrations (e.g. 0.1 µg/mL, within the window of successful lower concentra-
tions) shorter treatment breaks are most successful. In this case, also the administered drug
doses are lower and hence for longer breaks the concentration drops down to unsuccessful low
concentrations between administrations. In contrast, for intermediate concentrations (e.g. 3
µg/mL, within the window of unsuccessful intermediate concentrations) slightly longer treat-
ment breaks are advantageous since they allow for the drug concentration to drop down to
the lower successful window. Finally, for high concentrations (e.g. 50 µg/mL, within the
window of successful high concentrations) both short treatment breaks (that keep the drug
concentration in the high successful window) and longer treatment breaks (that let the con-
centration drop down to the low successful window) can be successful. In all cases, taking
too long of a break between administrations eventually becomes unsuccessful since the drug
concentration always drops below the lower successful range.

Notably, it is often also necessary to restrict the maximal drug concentration in the
plasma, which limits the admissible combinations of average drug concentrations and admin-
istration schedules. For example, it is not possible to arbitrarily increase the time between
administrations for a fixed average drug concentration, as it increases the administered drug
concentration.

The above considerations are summarized in Figure 5, which shows the drug concen-
tration over time for varying average drug concentrations and treatment administration
schedules, switching between successful and unsuccessful concentration windows. Within
one plot, one can observe that increasing the time between administrations increases fluc-
tuations around a common average drug concentration. On the other hand, comparing
between the three plots, fixing an administration schedule determines the shape of the drug
concentration curve and changing the average concentration shifts this curve up or down.
The goal of treatment optimization is to - within certain constraints on concentrations
and schedules - maximize the overlap of the drug concentration curve with the successful
concentration windows.

5 Application: CRC-CAF interactions

The previous two sections have investigated a general case of cancer treatment response,
modulated by stromal cells in the cancer microenvironment. Let us now turn to a specific
application and consider the case of colorectal cancer cells (CRC) treated with cetuximab
(CTX). CTX is an established anti-cancer drug that is targeting the cancer cells by blocking
the receptor for epidermal growth factor (EGF, EGFR respectively). This interferes with
the cells’ proliferation, inducing a negative tumor growth rate. However, CTX not only
impacts the cancer cells but, as experiments have shown, also affects the cells of the mi-
croenvironment [4]. Cancer associated fibroblasts (CAFs) show increased secretion of EGF
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when treated with CTX. This increased amount of EGF competes with the CTX molecules
for binding to EGFR, hence partially reversing the drug’s effects. As a result, in the presence
of CAFs, higher tumor growth rates are observed, making the treatment less efficient.

To parameterize the general model for this specific application, we use data from two sets
of in vitro experiments. Monocultures of CRC cells treated with varying concentrations of
CTX and EGF allow us to determine the parameters associated to the dose-response curve
rC(D,G), while we obtain the parameters for the growth factor concentration G(S,D) from
monocultures of different CAF cell lines treated with varying CTX concentrations. More
details on this procedure and a table of all parameter values are provided in Appendix A.
As we observe, the choice of a constant maximal growth factor concentration (cf. (9)) best
depicts the dynamics of this application.

5.1 Short-term dynamics

As a first step, we consider the short-term dynamics of CRC-CAF interactions to identify
optimal drug concentrations, using the simplified model of Section 3. We investigate both
single drug treatment with CTX and a combination therapy with EGF-blockers.

5.1.1 Single drug treatment with CTX

Plugging the parameters from Appendix A.4 into (4), we obtain that, for a fixed EGF
concentration G, the critical drug concentration for therapy success, i.e. the minimal con-
centration above which a negative cancer growth rate is achieved, is

Dcrit(G) =
7.34

1 + e−0.0078(G−379.4)

0.93

√
0.0147

0.0079
≈ 14.31

1 + e−0.0078(G−379.4)
µg/mL. (16)

In particular, this yields that Dcrit(0) ≈ 0.71 µg/mL > D̂ = 0.0049 µg/mL. Thus criterion
(12) fails and the increased EGF secretion by the CAFs is triggered before a negative cancer
growth rate (according to the dose-response curve for no EGF) is obtained. We therefore see
no non-monotonic behaviour when increasing the CTX concentration, which is supported
by Figure 6(A).

The (in this case unique) fixed point of D = Dcrit(G(S,D)), which is the theoretic
minimal CTX concentration to induce a negative cancer growth rate, can be calculated as
0.86 µg/mL for the average maximal EGF concentration of Gmax = 27.1 pg/mL and ranges
between 0.82 and 0.91 µg/mL for the different patient-derived CAF cell lines studied in the
experiments. In this application, since high EGF secretion is triggered at small concentra-
tions of CTX, this fixed point coincides with Dcrit(G

max). To account for fluctuating CAF
numbers, uncertainty in the estimated parameters and to achieve a strictly negative growth
rate that causes the CRC cell population to shrink within a reasonable time span, a slightly
higher CTX concentration should be chosen in applications.

5.1.2 Combination therapy with EGF-blockers

As briefly mentioned in Section 2 and further discussed in Appendix A.2, there is no observed
correlation between the maximal secreted EGF concentration Gmax and the number of CAFs
in our specific CRC application. There are slight variations between different CAF cell lines
and experimental runs, but in general the secreted EGF levels remain at a stable, relatively
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low value. Hence, decreasing the number of CAFs does not seem to be a promising approach
to increase therapy success.

However, one potential combination candidate class is EGF-blockers (neutralising an-
tibodies) that can partially neutralise EGF molecules and hence weaken the effects of the
microenvironment on the CRC cells (see Figure 5 in [4]). Figure 6 shows the impact of a
varied effective equilibrium EGF concentration (e.g. through EGF-blockers). The amount
of naturally secreted EGF is generally quite low in comparison to the administered EGF in
mono-culture CRC experiments, where the most significant shift of the dose-response curve
for the CRC growth rate is observed for higher EGF concentrations (cf. Appendix A.1).
However, particularly for the typical CTX concentration of 1 µg/mL, we can see that a
variation of the maximal EGF concentration Gmax can make a substantial difference since
it is rather close to the critical CTX concentration for negative growth rates under base line
parameters.

Since we don’t have any non-monotonic behaviour for the CRC-CAF application, block-
ing EGF is mostly promising when combined with a CTX concentration that is close to
critical. For lower or higher concentrations, there is not much change in the growth rate.
For concentrations around the fixed point of Dcrit(G(S,D)) however, blocking EGF can
make the difference by decreasing the cancer growth rate below a threshold that leads to
observable tumour shrinking. This effect could become even more relevant under different
conditions. For example, if the EGF secretion was higher in vivo, this would increase the
range of CTX concentrations for which combination treatment is effective.

The window of CTX concentrations for which combination treatment can lead to an
improved therapy outcome is patient specific. As seen in Figure 6(B), it depends on the
individual base line maximum EGF concentration Gmax (depicted by the black solid line).
Hence, for different patients and the same CTX concentration, EGF-blockers might show a
much higher effect in some individuals than in others.

5.2 Long-term treatment

Having studied the short-term response to certain CTX concentrations and EGF-blockers,
we now return to the dynamic model in (1) to investigate long-term effects of different
treatment schedules with breaks between drug administrations. Due to the monotonic drug
response in this application, the situation is slightly easier than in Section 4 and we study
combination treatment with EGF-blockers (aEGF) in addition to the single drug treatment
with CTX.

5.2.1 Single drug treatment with CTX

As an initial example, Figure 7(A) shows the number of CRC cells and concentration of
CTX and EGF over the course of 90 days for a dose of 1 µg/mL CTX administered every
7 days. We see an initial decay of the cancer cell number after every drug administration,
which turns to positive growth again once the drug concentration has decreased. Since the
drug concentration stays above the threshold value D̂ = 0.0049 µg/mL for increased EGF
secretion by the CAFs, the EGF concentration stays constant at its highest possible level
of Gmax = 27.1 pg/mL.

Due to the relatively slow decay of CTX, there is an initial accumulation of the drug
over the course of the first couple of drug administrations and successive treatment breaks,
until (fluctuation around) the steady state is reached. As a consequence, one can observe
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an initial positive net growth of the cancer cell population (averaged over one cycle) before
it eventually declines. To evaluate treatment success, one should not only consider the final
(averaged) cancer cell number but also take into account the maximal cancer cell number
during the entire time of treatment.

Due to drug accumulation, we can observe in Figure 7(D) that even average CTX concen-
trations below the predicted minimal successful concentration of 0.86 µg/mL from Section
3 can be successful for short breaks between administrations τ . This is because the average
is decreased by the small initial concentration but the higher concentrations later on lead to
cancer reduction. Comparing the heat maps in Figure 7(D) and (E), one can moreover see
that for treatment schedules (in terms of average CTX concentration and time τ between
administrations) that yield an overall decline in cancer cell numbers (blue areas in (D)),
the maximal cell number does also not significantly surpass the initial number of 108 cells.
Hence the effect of initial net growth during drug accumulation is not too severe.

Generally, for this application higher CTX concentrations are more successful for all
administration schedules. When fixing an average CTX concentration, for example the
maximal tolerable amount, we can determine the corresponding optimal time between ad-
ministrations τ , i.e. the administration schedule that minimizes the final (average) number
of CRC cells. Figure 7(F) shows how this optimal τ increases with the average drug con-
centration. This can be accredited to the fact that the drug concentration will not decay
to the unsuccessful levels as easily for higher doses and slightly longer cycle lengths yield
a higher administered dose, which temporarily pushes the system not just to any negative
but the lowest growth rate regime. Overall, the optimal τ lies at only few days. However,
we see that there is not much variation of the therapy outcome for values of τ between 1-10
days, i.e. the optimal administration schedule is not a very strict minimum and one could
choose longer treatment breaks to get similar results.

5.2.2 Combination treatment with EGF-blocker

Lastly, we consider combination treatment of CTX with anti-EGF neutralising antibodies
(aEGF). To this end, we need to extend the mathematical model by an additional component
B that tracks the concentration of this EGF-blocker. We prescribe an exponential decay
rate dB such that this concentration follows the dynamic

dB

dt
= −dBB

in between administrations. Moreover, we incorporate the effects of EGF-blockers into the
cancer cell dynamics by having them (partially) neutralise the effects of EGF. This impact
is scaled by a parameter nB and the formula for the D50 drug concentration becomes

D50(G,B) =
Dmax

50

1 + e−k2(G(1−nBB)+−Ĝ)
.

EGF blockers improve treatment success. As can be seen in Figure 7(B)&(C),
adding EGF-blockers to the therapy protocol leads to improved treatment success. For an
administered dose of 0.85 µg/mL CTX every 7 days (corresponding to an average concen-
tration of roughly 0.241 µg/mL), which would not be successful by itself, adding aEGF can
lead to a positive treatment outcome. This is even the case at an administered dose of 0.5
µg/mL (corresponding to an average concentration of 0.142 µg/mL), which neutralises less
than 15% of the secreted EGF for our parameter choices.
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Timing for combination treatment. In Figure 7(C), CTX and aEGF are adminis-
tered simultaneously. A natural question is to ask whether this is the optimal choice or if an
asynchronous administration would be more effective. As can be seen in Figure 7(G), which
is an example plot for varying the administration delay for a number of different aEGF
doses, the time point of aEGF administration does seem to have much impact on therapy
outcome. This is also supported by a more extensive numerical study for varying base pro-
tocols of CTX administration. When looking for the optimal delay, one can observe that a
slight delay of 2-3 days seems to be favourable (cf. Figure 7(G)). The reason is that directly
after CTX administration, its concentration is still high enough to induce a negative cancer
cell growth rate by itself. Administering the aEGF with a slight delay, shifts the CTX dose
response curve of the cancer cells at a time when the CTX concentration is already decaying
(below a concentration that would be successful without aEGF) and thus extends the time
until the cancer cell population starts to expand again. Administering aEGF too late on
the other hand would mean that the CTX concentration has already dropped to a level that
is ineffective either way.

Notably, even though the effect of a delayed growth factor blocker administration is
relatively small in this specific scenario, it might be much larger in cases where it varies the
effective EGF concentration around the critical value Ĝ (379.4 pg/mL) and not just at an
already low level (below 30 pg/mL), which might be the case in vivo.

6 Discussion

In this paper, we have provided a modelling framework for the interaction of cancer cells
and stromal cells in the microenvironment, which allows us to study the stromal impact on
therapeutic windows, the impact of combination therapy and the best timing and dosing
for long-term treatment with periodic drug administrations and breaks.

As seen in Subsection 3.1, as a consequence of different drug concentration thresholds for
triggering a response in the cancer cell and stromal cell populations, a non-trivial relation be-
tween the drug concentration and the cancer cell growth rate might arise. In particular, the
complex interactions between tumor cells and their environment can lead to non-monotonic
drug response profiles, which impact effective therapeutic windows. We demonstrated how
these therapeutic windows can be estimated by studying the critical drug concentrations
corresponding to different growth factor concentrations. We also investigating how pairing
in combination with therapies acting via various mechanism (e.g. neutralising the secreted
growth factor or targeting the stromal cells’ drug response) has the potential to manipulate
these windows (Subsections 3.2-3.4).

Based on the results of Section 3 for constant drug concentrations, we computationally
studied the dynamic system of cancer cells growing under varying drug concentrations in a
therapy protocol with treatment breaks in Section 4. We have demonstrated how the specific
choice of the treatment schedule (duration of treatment breaks) and the administered drug
concentration can optimise treatment success (in terms of minimizing the final cancer cell
number) by keeping the drug concentration in the identified successful therapeutic windows
for as long as possible. This approach can easily be altered to account for limited feasibility
of some treatment protocols. By restricting the range of admissible parameters, constraints
such as a minimal time between drug administrations or a maximal overall or temporary
drug dose/concentration, which might be necessary to prevent significant side effects, can
be integrated.
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For our case study of colorectal cancer cell and cancer associated fibroblast interactions,
the relationship between the drug concentration and cancer growth rate is not as complicated
(in particular we do not observe non-monotonicity) and there is a single critical threshold
above which drug concentrations induce negative cancer growth (see Subsection 5.1). Never-
theless, the above framework can be used to optimise therapy outcomes by choosing shorter
treatment cycles, to avoid fluctuations of the drug concentration into the lower unsuccessful
regime, and administering epidermal growth factor blockers with a slight delay, to shift the
critical threshold down once the drug concentration starts to decrease significantly (as seen
in Subsection 5.2).

Our results suggest that stromal characteristics within a tumor’s microenvironment can
impact therapeutic windows and the treatment strategies required to achieve efficacy. How-
ever, to translate our approaches to a clinical setting in vivo, further work is neccessary.
For example, our model would need to be extended to include pharmacokinetic dynamics
of the drug distribution. There are additional interaction mechanisms that rely on different
molecular (growth) factors and/or the cancer cells themselves inducing a stromal response
[11]. To make quantitative choices about the best treatment strategies, random fluctuations
both between individual patients (leading to uncertainty in the system parameters) and of
the underlying dynamics (leading to stochastic rather than deterministic behaviour) need
to be taken into account. As a consequence, aiming for very specific successful strategies (in
the sense of hitting narrow successful drug concentration windows) may not be feasible in
practice and an additional goal of the optimisation process will be to find robust strategies.

As a subject of future work, we would like to study the impact of heterogeneity in the
population of stromal cells. Under the assumption of a non-expanding population of such
cells, this is not too relevant, as we can simply consider the average overall growth factor
secretion. However, in systems where the stromal cell population is dynamic or stromal
cells are targeted directly, it will be interesting to study the influence of different (e.g. fast
expanding or high secreting) stromal subpopulations [12].

A Parameter Estimates

In the following, we describe the parameter estimation for the concrete application of colorec-
tal cancer cells (CRC) and cancer associated fibroblasts (CAF) interactions under treatment
with cetuximab (CTX). Data is taken from experiments of the Mumenthaler lab, partially
published in [4]. A summary of all parameters for both the CRC-CAF application in Section
5, as well as the general model of Sections 3 and 4 is provided at the end of this section.

A.1 Dose-response curve and D50

As a first step, we determine the dose-response curve of CRC cell growth under varying
concentrations of drug (CTX) and growth factors (EGF), i.e. we determine the function
rC(D,G). In the specific case of CRC, this is based on mono-culture experiments monitoring
CRC cell growth under different concentrations of CTX and EGF (see Figure 8(A) for the
reduced model diagram and Figures 2, 4 in [4] for the original data).

We use this data to fit the dose-response curve

rC(D,G) = rmin
C +

rmax
C − rmin

C

1 +
(

D
D50(G)

)k1
, (17)
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where we choose the parameters rmin
C , rmax

C and k1 uniform across the eight different EGF
concentrations and separate values for D50(G). We apply a standard least square fitting
method. The results are shown in Figure 8(B). While a fit with varying slopes k1 (depending
on the EGF concentration) leads to a slightly better fit for the dose-response curves, there
is no clear trend in the dependence of k1 on G. Since the effects of a varying slope on the
results in Section 3 are minimal, we decide for a uniform choice across varying G to simplify
the model.

To parameterise the dependence of the inflection point D50(G) on the EGF concentra-
tion, we fit the logistic function

D50(G) =
Dmax

50

1 + e−k2(G−Ĝ)
(18)

to the values determined by the previous fitting of the dose-response curves. This determines
the parameters Dmax

50 , Ĝ and k2. Again, a standard least square fit is applied. The results
are shown in Figure 8(C). As can be seen, there is indeed a saturation effect of the D50-value
levelling off eventually for increasing EGF concentrations.

A.2 EGF secretion and varying CAF number/type

As a second step, we study the growth factor (EGF) secretion by stromal cells (CAFs). This
is based on CAF mono-culture experiments monitoring cell growth and EGF secretion of
CAFs under varying concentrations of CTX (see Figure 9(A) for the reduced model diagram
and Figures 1, 3, S8 in [4] for most of the original data).

Over the course of the experiments (5 days), there was no significant growth of the CAF
cell number. As seen in Figure 9(B), the concentration of EGF reaches a high level very
fast and stays (almost) stable over the duration of five days. Thus, to model the short-
term dynamics, we do not specifically study the rate of EGF secretion but rather assume an
equilibrium concentration that depends on the CTX dose and possibly the CAF cell number

G(S,D) =
Gmax(S)

1 + e−k3(D−D̂)
. (19)

We start by fitting the function G for a fixed CAF scenario, i.e. a specific cell line and cell
number during one experimental run, with varying administered CTX concentration. To do
so, we estimate uniform parameters D̂ and k3 across experiments and individual parameters
Gmax for the separate experiments. Since the standard least square method overfits for the
high data points, we use a slight variation, where the difference between function value and
data point are normalised by the function value itself. We thus study the least square fit
for the relative error. The resulting curves are shown in Figure 9(C).

To study the dependence of the maximum secreted EGF concentration Gmax(S) on the
number of CAF cells S, we turn to Figure 9(D). We observe that in this specific case, there
does not seem to be a linear dependence but rather a certain low range of EGF concentrations
(compared to the up to 700 pg/mL administered in the CRC mono-culture experiments)
that is obtained independent of the cell number. Hence for the CRC-CAF application we
choose the second version of the model from Section 2, i.e.

Gmax(S) = Gmax1S>0. (20)

As the value of Gmax we choose the least square mean of the four data points.
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A.3 Secretion and degradation for treatment with breaks

To determine the parameters for EGF, CTX and anti-EGF (aEGF) degradation, we turn
to the literature. CTX has an average half life of 112 hours [13], which yields a degradation
rate of 0.006 per hour.

EGF has a short circulating half life of 8 minutes according to [14], which corresponds
to a degradation rate of 5.2 per hour. There generally is a wide range of suggested values
in the literature, depending on the specific experimental conditions. For our model, where
a fixed equilibrium EGF level is maintained due to the structure of the secretion rate, the
dynamics are not sensitive to the exact value of the degradation rate, as long as secretion
and degradation occur fast in comparison to the drug decay. Hence we choose a rate of 5
per hour.

In experiments, the impact of EGF is blocked with neutralising antibodies of IgG type.
IgG antibodies have a half life ranging between 7-21 days [15], while monoclonal antibodies
have a half life of 11-30 days [16]. This yields a degradation rate of 0.0009-0.004 per hour,
where we consider the worst case (i.e. the fastest degradation) for our simulations.

We cannot accurately estimate the secretion rate of EGF. From experiments, we only
know that the equilibrium concentration is obtained within at most one day (see Figure
9(B)). However, due to the form of the secretion rate

bG(S,D,G) = aG (G∗(S,D)−G)+ ,

where

G∗(S,D) =
aGS + dG

aGS
G(S,D),

a small value of aG automatically gets balanced out by a large G∗ and vice versa (for fixed
equilibrium concentration G(S,D). Simulations confirm that the dynamics are not sensitive
to the specific parameter choice and hence we choose aG = 0.001. For a number of 1000
CAFs in our simulations, aGS is hence of the same order of magnitude as dG and G∗ is of
a similar size than G.

Finally, we set the impact of the EGF blocker as nB = 1. In experiments, a dose of 0.5
µg/mL partially but not fully neutralises the EGF in CAF-conditioned medium (see Figure
5 in [4]). With our parameter choice, this dose neutralises half of the present EGF in its
impact on shifting the D50 drug concentration.

A.4 Parameter summary

The following table summarises the estimated model parameters for the CRC and CAF
experiments and the chosen parameters for the simulations of the general model. For the
maximal secreted EGF concentration both the range and chosen mean are shown.
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Parameter Description Estimated value General case
rmax
C maximal cancer net growth rate 0.0147 [1/h] 0.015 [1/h]
rmin
C minimal cancer net growth rate -0.0079 [1/h] -0.005 [1/h]
k1 slope param. cancer net growth rate 0.93 2

Dmax
50 maximal D50 drug concentration 7.34 [µg/mL] 10 [µg/mL]

Ĝ D50 inflection point GF concentration 379.4 [pg/mL] 300 [pg/mL]
k2 slope param. D50 drug concentration 0.0078 0.03

D̂ equil. GF infliction point drug conc. 0.0049 [µg/mL] 0.7 [µg/mL]
k3 slope param. equil. GF conc. 65.7 5

Gmax maximal secreted GF concentration 27.1 (20.8-34.4) [pg/mL] -
k4 slope param. max. secreted GF conc. - 0.35
dD drug degradation rate 0.006 [1/h] 0.03 [1/h]
aG GF secretion rate 0.0001 [1/h] 0.001 [1/h]
dG GF degradation rate 5 [1/h] 5 [1/h]
dB aEGF degradation rate 0.004 [1/h] -
nB aEGF neutralising impact 1 -
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(A)

(B) (C)

(D) (E)

Figure 1: General setup of the mathematical model. (A) Interaction diagram sum-
marising the dynamics of the general model in (1). Each solid or dashed arrow corresponds
to an event that changes the system state. Dotted arrows mark the influence of D and G on
the dynamics of C and S. (B) Dose-response curve for the cancer cell growth rate rC(D,G),
depending on drug concentration D, for a fixed low growth factor concentration G (solid
line). Increasing G shifts the response curve right (dashed line). (C) Drug concentration
for 50% efficacy D50(G) (dose-response curve inflection point), depending on the growth
factor concentration G. (D) Equilibrium growth factor concentration G(S,D), depending
on drug concentration D, for fixed number of stromal cells S. (E) Growth factor secretion
rate bG(S,D,G) ·S (blue), depending on growth factor concentration G, for fixed number of
stromal cells S and drug concentration D. Total growth factor decay rate dG ·G (orange).
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(A) (B)

(C)

Figure 2: Determining thresholds for successful drug concentrations. (A) and (B)
Equilibrium growth factor concentration G(S,D), depending on the drug concentration D
(solid line), and critical drug concentrationDcrit(G), depending on the growth factor concen-
tration G (dashed line, axes flipped). To determine the critical concentration induced by an
administered drug concentration Da, find the induced equilibrium growth factor concentra-
tion G(S,Da) (1.) and then the corresponding critical drug concentration Dcrit(G(S,Da))
(2.). Combining these steps yields the orange arrows that compare the administered and cor-
responding critical drug concentrations (3.). (A) Successful therapy, where the administered
drug concentration D1

a is higher than the critical concentration Dcrit(G(S,D1
a)) correspond-

ing to its induced microenvironment. (B) Failed therapy, where the administered drug
concentration D2

a is lower than the critical concentration Dcrit(G(S,D2
a)) corresponding to

its induced microenvironment. (C) Direct mapping of administered drug concentration Da

to the corresponding critical drug concentration Dcrit(G(S,Da)) (combining the steps of
(A)/(B)). Successful treatment is characterized by the Dcrit line falling below the diagonal
(blue), while unsuccessful treatment corresponds to the line lying above the diagonal (red).
The windows of (un)successful concentrations are bounded by the approximate thresholds
Dcrit(0), D̂, and Dcrit(G

max(S)). Arrows correspond to the two example concentrations D1
a

and D2
a from (A) and (B).
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Figure 3: Effects of three possible combination treatments. Left panels: Plots as in
Figure 2(A), which allow to compare an administered drug concentration Da to the critical
drug concentration Dcrit corresponding to its induced growth factor concentration G(S,Da).
Crossings of solid and dashed lines mark the windows of successful and unsuccessful drug
concentrations. Blue lines correspond to the original regime while intensifying orange lines
depict increasing the efficacy of combination treatment (decreasing stromal cell numbers,
stromal drug response or growth factor efficacy). Right panels: Heat maps showing the
cancer growth rate for varying drug concentrations D and stromal cell numbers S, threshold
drug concentration D̂, or threshold growth factor concentration Ĝ. Red areas correspond
to failed treatment, i.e. positive cancer growth rates, blue areas to successful treatment, i.e.
negative cancer growth rates. White areas correspond to a sign change in the growth rate
and the black lines mark the original original regime (solid), varying Dcrit(0) (dotted) and
Dcrit(D

max(S)) (dashed) and D̂ (dashdotted). (A),(B) Targeting stromal cell numbers
S. (C),(D) Targeting stromal drug response, in terms of the threshold drug concentra-
tion D̂. (E),(F) Targeting growth factor efficacy, in terms of the threshold growth factor
concentration Ĝ for a cancer cell response.
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Figure 4: Treatment outcomes vary with dosing regimen. (A) Example simulation
of cancer cell number, drug concentration and growth factor concentration over the course
of 90 days for an initial number of 108 cancer cells and an administered drug concentration
of 1.4 µg/mL every 10 days. (B) Heat map of average tumor size over the last 30 days after
180 days of treatment, for varying average drug concentration (x-axis) and drug adminis-
tration schedule (i.e. days τ between administered doses, y-axis). Fixing the average drug
concentration on the x-axis and the time between doses on the y-axis automatically fixes
the corresponding administered dose. Red regions mark protocols where the cancer cells
number increases over time, i.e. failed treatment, while blue regions correspond to protocols
that induce a decrease in cancer cells, i.e. more successful treatment. (C) Horizontal cuts
through the heat map, exploring the dependence of the average cancer size on an increasing
average drug concentration (and hence increasing administered and total drug dose), for
fixed intervals of τ = 1, 7, 14 days between administrations. The dashed line indicates the
initial cancer cell number. (D) Vertical cuts through the heat map, exploring the depen-
dence of the average cancer size on the administration schedule (increasing number of days
τ between administrations), for fixed average drug concentrations 0.1, 3, 50 µg/mL. The
dashed line indicates the initial cancer cell number.
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Figure 5: Optimizing treatment protocols. Plots display drug concentration (log10)
over time for varying lengths of treatment break (within one plot; 1, 7, 14 or 21 days) and
fixed average drug concentrations of (A) 0.1 (B) 3 (C) 50 µg/mL. Blue areas correspond to
concentration ranges yielding tumor reduction and red areas to concentration ranges leading
to tumor growth, as identified in Subsection 3.1.
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Figure 6: Successful CTX concentrations for CRC therapy. (A) Equilibrium EGF
concentrationG(S,D), depending on the CTX concentrationD (solid line), and critical CTX
concentration Dcrit(G), depending on the EGF concentration G (dashed line, axes flipped).
Blue lines reflect base parameters, while intensifying orange lines depict increasing effects
of EGF-blockers decreasing the maximal (effective) EGF concentration Gmax. The minimal
CTX concentration to induce negative CRC growth rates is determined by the intersection
of the solid and dashed lines, i.e. the fixed point concentration D of Dcrit(G(S,D)). (B)
Heat map showing the CRC growth rate for varying CTX concentrations D and maximal
EGF concentration Gmax. Red areas correspond to failed treatment, i.e. positive CRC
growth rates, blue areas to successful treatment, i.e. negative CRC growth rates. White
areas correspond to a sign change in the growth rate and the black horizontal line marks
the original original regime.
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Figure 7: Optimizing protocols for single drug and combination treatment of
CRC Example simulations of CRC cell number, CTX, EGF and aEGF concentration over
the course of 90 days for an initial number of 108 cancer cells and (simulatneous) drug
administration every 7 days of (A) 1 µg/mL CTX, (B) 0.85 µg/mL CTX, (C) 0.85 µg/mL
CTX and 0.5 µg/mL aEGF. Heat map plots of (D) average tumor size over the last 30 days
and (E) maximal number of CRC cells for 180 days of treatment, for varying average CTX
concentration (x-axis) and drug administration schedule (i.e. days τ between administered
doses, y-axis). Fixing the average CTX concentration on the x-axis and the time between
doses on the y-axis automatically fixes the corresponding administered dose. In (D), red
regions mark protocols where the CRC cells number increases over time, i.e. failed treatment,
while blue regions correspond to protocols that induce a decrease in CRC cells, i.e. more
successful treatment. (F) Vertical cuts through the heat map, exploring the dependence of
the average CRC cell number on the administration schedule (increasing number of days τ
between administrations), for fixed average CTX concentrations 0.4, 0.6, 1.1 µg/mL. The
dashed line indicates the initial cancer cell number. Red dots mark the administration
schedule that leads to the minimal CRC cell number for the respective CTX concentration.
(G) Average CRC cell number for and administered dose of 0.85 µg/mL CTX every 7 days
and varying delay of aEGF administration, for fixed average aEGF concentrations 0.01, 0.2,
0.5, 0.8 µg/mL. The dashed line indicates the initial cancer cell number. Red dots mark the
administration delay that leads to the minimal CRC cell number for the respective aEGF
concentration.
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Figure 8: Parametrizing CRC cell growth (A) Interaction diagram summarising the
dynamics of the reduced model for CRC mono-culture experiments. Each circle corresponds
to an agent in the system (CRC cells C, drug (CTX) D, growth factor (EGF) G) and
each solid or dashed arrow corresponds to an event that changes the system state (cell
birth/death). Dotted arrows mark the influence of D and G on the dynamics of C. (B)
Dose-response curve for CRC net growth rate rC(D,G) depending on the CTX concentration
D (x-axis), for varying EGF concentration G (different color plots). Single points correspond
to experimental data, replotted from [4], curves correspond to fitted functions. Experiments
were run for 5 days, with cells seeded on day -1 and CTX and EGF administered on day 0.
Images were taken on days 0, 3, and 5 to determine the growth rates. (C) Inflection point
D50(G) of the dose-response curve for varying EGF concentration G. Individual fit results
for fixed concentrations as points and fitted function as a curve.
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Figure 9: Paramerizing EGF secretion (A) Interaction diagram summarising the dy-
namics of the reduced model for CAF mono-culture experiments. Each circle corresponds to
an agent in the system (CAF cells S, drug (CTX) D, growth factor (EGF) G) and each solid
or dashed arrow corresponds to an event that changes the system state (cell birth/death,
EGF secretion). Dotted arrows mark the influence of D and G on the dynamics of S.
Reduced model for CAF mono-culture experiments. (B) Experimental data for EGF se-
cretion over time for two different CAF cell lines, replotted from [4]. CTX concentration of
1 µg/mL is administered at time 0. (C) Equilibrium secreted EGF concentration G(S,D)
depending on the CTX concentration D, for different CAF cell lines and experimental runs.
Points correspond to experimental data, replotted from [4], curves to fitted functions. (D)
Maximum secreted EGF concentration Gmax for varying CAF cell numbers. Individual fit
results for experimental runs as points and mean value as solid line.
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