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1 Introduction
sec-intro

All cancers and tumor types display a striking variability among the cancer cells within a
single tumor. Tumors are composed of a heterogeneous mixture of cell types with distinct
genotypes, morphologies, metabolic activities and behaviors such as proliferation rate, anti-
gen expression, drug response and metastatic potential [16, 20]. For example, molecular
and phenotypic analysis of cells from breast carcinomas reveal defined subpopulations with
distinct gene expression and (epi)genetic profiles [33]. Heterogeneity and subpopulations
within single tumors have also been demonstrated via flow cytometry in cervical cancers
and lymph node metastases [27]. Cytogenetic heterogeneity such as variation in ploidy and
chromosomal structure has been discovered among cells within breast tumors and leukemias
[35]. Genetic clonal diversity has also been observed in individual pre-malignant lesions in
Barrett’s esophagus, a condition associated with increased risk of developing esophageal ade-
nocarcinoma [21, 24]. Virtually every major type of human cancer and biological subtype
has been shown to contain distinct cell subpopulations with differing heritable alterations
[20, 16, 25].

Tumor heterogeneity has direct clinical implications on disease classification and prog-
nosis, as well as on treatment efficacy and drug target identification [25, 20]. The degree of
genetic clonal diversity in Barrett’s esophagus has been correlated to clinical progression to
esophageal cancer [24]. In prostate carcinomas, tumor heterogeneity has been cited as a key
factor in pretreatment underestimation of tumor aggressiveness and incorrect assessment of
DNA ploidy status of tumors [34, 15]. Heterogeneity has long been implicated in the devel-
opment of resistance to cancer therapies after an initial period of response [13, 25], as well
as in the development of metastases [11]. In addition, tumor heterogeneity has been shown
to hamper the precision of microarray-based analyses of gene expression patterns, which are
currently widely used for the identification of genes associated with specific tumor types [28].
These issues underscore the importance of obtaining a more detailed understanding of the
origin and temporal evolution of heterogeneity during tumorigenesis.

The clonal evolution model of carcinogenesis states that tumors are monoclonal, i.e.
originating from a single abnormal cell, and that over time the descendants of this ancestral
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cell acquire various combinations of mutations [20, 25]. Under this model, genetic drift and
natural selection drive the progression and diversity of the tumor. As the tumor progresses,
genetic instability and uncontrolled proliferation allow the production of cells with additional
alterations which may confer characteristics such as drug resistance, resistance to cell death
signaling, metastatic proclivity and increased mutation and proliferation rates. The resulting
distinct subpopulations evolve, in turn produce new mutations and subpopulations as time
progresses.

Mathematical models of tumor heterogeneity can be found in the literature, many of
which consider the dynamics of distinct subpopulations evolving under selective pressure
[26, 4, 5, 18, 14, 19, 31, 10, 3]. In many of these models, the subpopulations represent
predefined phenotypes, such as the drug -sensitive and -resistant cells of a tumor, and the
growth dynamics of these populations are explored. In this work we consider a stochastic
evolutionary model of tumorigenesis in an exponentially growing population, wherein ge-
netic alterations confer random fitness changes. Under this model, we address questions
surrounding the extent of genetic diversity in tumor subpopulations and its evolution in
time. This work is an extension of a previous paper in which we investigated the effect of the
random mutational fitness distribution on the growth kinetics of the tumor [8]. The paper is
organized as follows: in section 2 we introduce the model and discuss the different types of
subpopulations that emerge in simulations. In section 3, we state some useful results from
[10, 8] and use these results to investigate heterogeneity between populations which have
accumulated varying numbers of mutations. We also derive useful approximations for (i)
the size of the subpopulation of all individuals with k mutations and (ii) the waiting time
until we see the first individual with k mutations appear. In section 4, we analyze the effects
of our model parameters on the degree of genotypic heterogeneity within the population
of cells with a single genetic alteration by considering two quantitative measures of hetero-
geneity: Simpson’s index and the proportion of cells which come from the largest family of
genotypically identical cells. We conclude in Section 5 with a discussion of our results.

2 Model Description
sec-model

We consider a multi-type branching process model of tumorigenesis in which mutations confer
an additive change to the birth rate of the cell. This additive change is drawn according to
a probability distribution ν which we refer to as the fitness distribution. In our terminology,
type-i cells have accumulated i ≥ 0 mutations. The initial population consists entirely of
type-0 cells that give birth at rate a0 to new type-0 cells and produce type-1 cells at rate
u1. We refer to u1 as the mutation rate for type-0 cells. We assume that all cells in the
population die at rate b0 < a0, and that the population of type-0 cells starts at a sufficiently
large population V0 so that we can approximate its size by Z0(t) = V0e

λ0t, where λ0 = a0−b0.
When a type-0 cell produces a type-1 cell, the new cell gives birth to type-1 cells at rate
a0 + X, where X ≥ 0 is drawn according to the distribution ν and produces type-2 cells
at rate u2. In general, a type-(k − 1) cell with birth rate a produces a new type-k cell at
rate uk and the new type-k cell assumes an increased birth rate a + x where x ≥ 0 is drawn
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according to ν. We suppose that each type-k cell produced by a type-(k − 1) cell starts a
genetically distinct lineage of cells and we refer to the set of all of its type-k descendants as
its family. We also let Zk(t) denote the total number of type-k cells in the population at
time t and when we refer to the kth wave or generation of mutants, we mean the set of all
type-k cells. We denote the total population at time t by Z(t).

We will restrict our attention in this paper to fitness distributions concentrated on [0, b]
for some b > 0. If the fitness distribution is unbounded with tail ν(x,∞) ∼ Kxβe−γxα

, then
it is shown in [8] that the growth rate of the number of first generation mutants is super-
exponential and hence this choice of distribution is unrealistic for modeling tumorigenesis.
We shall discuss two distinct classes of distributions:

(i) ν is discrete and assigns mass gi to a finite number of values b1 < b2 < · · · < bN = b.

(ii) ν is continuous with a bounded density g(x) that is continuous and positive at b.

The special case of discrete distributions with N = 1 (i.e. deterministic fitness advances)
was first studied in [17, 14] and asymptotic results for this model were obtained in [10]. A
similar discrete time branching process model is considered in [3]. There, cells can accumulate
“driver” and “passenger” mutations. The former decrease the death rate of cells while the
latter provide no selective advantage. This essentially corresponds to a special case of (i)
above with N = 2 and b1 = 0. Asymptotic results for general continuous distributions were
obtained in [8]. Theorem 1 below contains a summary of results which are relevant for our
current discussion.

Figure 1 shows a snapshot of the population decomposition in a sample simulation of our
model in case (ii) with ν ∼ Uniform[0,0.05]. Here we have started with a single type-0 cell
that has birth rate a0 = 0.2 and death rate b0 = 0.1. The type-0 population is not shown, but
has reached O(106) cells at the time of the snapshot. This figure illustrates the complex geno-
typic variability present in the population of cells produced by our model. We observe that
there are two sources of heterogeneity present in the population: variability in the number
of mutations per cell (heterogeneity between generations) and genotypic variation between
members of the same generation (heterogeneity within a generation). Generations appear in
waves with a large number of different mutant families making significant contributions to
the generation size. Our goal here is to discuss these two sources of heterogeneity and derive
analytic results that quantify the relationship between the amount of genotypic variation
present in the population and our model parameters. Heterogeneity between generations is
discussed in Section 3 while heterogeneity within a generation is discussed in Section 4.

3 Heterogeneity between generations
sec-btwn

We begin with a summary of some previous results. We shall assume that ui ≡ u, define

λk = λ0 + kb
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Figure 1: A sample cross-section of tumor heterogeneity. (a) Each mutant family present
in the tumor at time t = 150 is represented with a circle, positioned on the horizontal axis
according to fitness (birth rate) and on the vertical axis according to family size. Colors
delineate families with differing numbers of mutational alterations (wave k cells have k
alterations). (b) Colorscale depicts time of creation of each family. In this simulation,
a0 = 0.2, b0 = 0.1, ν ∼ U([0, 0.05]), u = 0.001.wave_sample2
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to be the maximum growth rate that can be attained by generation k mutants, and let

pk = −k +
k−1∑
j=0

λk

λj

.

Throughout this paper, we shall also use ”⇒” to denote convergence in distribution.

th2B Theorem 1. If ν satisfies (i) above, then

(1/u)(k+pk)e−λktZk(t) ⇒ Vd, k

where Vd, k has Laplace transform

exp(−dk(λ0, b)V0θ
λ0/λk)

for all θ ≥ 0. If ν satisfies (ii) above, then

(t/u)k+pke−λktZk(t) ⇒ Vc, k

where Vc, k has Laplace transform

exp(−ck(λ0, b)V0θ
λ0/λk)

for all θ ≥ 0. Here, dk(λ0, b) and ck(λ0, b) are constants which depend on the indicated
parameters. Explicit formulas can be found in [8], Section 4.

The “d” and “c” in the constants and subscripts stand for discrete and continuous. In case
(ii), Theorem 1 follows from [8], Theorem 4. In case (i) when N = 1, Theorem 1 follows from
the discussion in [8], Section 4 (see also [10], Theorem 5 for a similar result when the number
of type-0 individuals is random), but these results can easily be extended to general finite
distributions because the exponential growth of generation k implies that one can ignore the
contribution of mutations which advance the fitness by bi < b. Note that in case (ii), there is
a polynomial correction to the exponential growth of generation k, but the limiting behavior
of the two systems is otherwise similar. This slowdown is due to the fact that when the
fitness distribution is continuous, it takes an additional amount of time until the birth of the
first individuals in generation k with near maximal growth rates (i.e. growth rates near λk

- see [8], Section 1.1).

3.1 Theoretical results: small mutation limit

Theorem 1 implies that in case (i), for example, we have the approximation

log Zk(t) ≈ λkt− (k + pk) log(1/u) + log Vd,k (3.1) Vkapprox

when t is large. Dividing both sides of this equation by L = log(1/u) and looking at the
process on a time-scale of order L, we can see that the log size of generation k approaches a
deterministic, linear limit as the mutation rate u → 0.
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linlim Theorem 2. As u → 0,

(1/L) log+ Zk(Lt) → zk(t) = [λkt− (k + pk)]
+ = λk(t− βk)

+

in probability where

βk =
k + pk

λk

=
k−1∑
j=0

1

λj

.

The convergence is uniform on compact subsets of [0,∞).

The uniform convergence is a consequence of the continuity and monotonicity of the lim-
its. Note that the limiting process depends on λ0, the growth rate of type-0’s, and b, the
maximum attainable fitness increase, but is otherwise independent of the particular choice
of fitness distribution. An example of the limiting process is shown in Figure 2. In Section
3.2, we shall compare the limiting approximation given by Theorem 2, the approximation
given by the righthand side of (3.1), and the results of simulations.
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Figure 2: t vs. zk(t): λ0 = .1, b = .05. Left: First 20 waves started at t = 10 = 1/λ0,
the time that 1’s begin to be born. Right: Closer look at the firstseven waves showing the
changes in the dominant type. fig:bpwaves

As a consequence of Theorem 2, we obtain the following important corollary regarding
the birth time of type-k’s.

Corollary 1. Let Tk = inf{t ≥ 0 : Zk(t) > 0} be the first time a type-k individual is born.
Then as µ → 0,

Tk/L → βk

in probability for all k ≥ 0.

From the definition of βk, it is clear that

βk − βk−1 =
1

λk
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Figure 3: Left: Birth times for the first 20 generations plotted as a function of generation
number. Right: Dominant type as a function of time. Same parameters as Figure 2. fig:domtype

is decreasing so that the increments between the birth times for successive generations de-
crease as k increases, leading to an acceleration in the rate at which new mutations are
accumulated. This acceleration can be seen on the left side of Figure 3 and occurs regardless
of our particular choice of fitness distribution although since λ−1

k is inversely proportional to
b, distributions which allow for larger fitness increases will tend to exhibit shorter increments.

In [3], the authors observe a similar acceleration of waves, but based on approximations
in [2], they suggest that this acceleration is an artifact of the presence of both passenger
and driver mutations and does not occur when only driver mutations which confer a fixed
selective advantage are allowed (i.e. when the fitness increments are deterministic). In our
model, the cause of the acceleration of waves is due to the difference in growth rates between
the successive generations: type-k’s are born when generation k− 1 reaches size O(1/u) and
since the asymptotic growth rate of generation k is larger than the asymptotic growth rate
of generation k−1, generation k+1 will reach size O(1/u) faster than generation k. Another
example of this phenomenon can be found in [9] where the authors study a related stochastic
model of tumor growth in which the population of cells grows at a fixed exponential rate and
subpopulations of different cell types compete for space. There, the cause of the acceleration
is again related to growth rates: later generations take longer to achieve dominance in the
expanding population of cells and hence, new types are born with a higher fitness advantage
over the population bulk, allowing them to reach size O(1/u) more rapidly.

We conclude this section with a second useful consequence of Theorem 2: an asymptotic
result for the time at which type-k individuals become dominant in the population.

Corollary 2. Let Sk = inf{t ≥ 0 : Zk(t) > Zj(t), ∀ j 6= k} be the first time that type-k
individuals become the dominant type. Then

Sk/L → tk = b−1 + βk
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in probability as µ → 0 for all k ≥ 1.

The limit tk is the solution to

λk(tk − βk) = λk−1(tk − βk−1)

i.e. the time when zk(t) first overtakes zk−1(t). The right side of Figure 3 shows an example
of how the index m(t) of the largest generation at time t, defined by

zm(t)(t) = max{zk(t) : k ≥ 0},

changes over time. The transitions between periods of dominance are only sharp in the small
mutation limit and an interesting question for future investigations would be to determine
the time scale on which these transitions occur. Note also that because of the log scale,
at any given time the population consists primarily of members in the current dominant
generation, i.e.

(1/L) log Z(Lt) → zm(t)(t)

as µ → 0. Therefore, for small mutation rates, the amount of genetic heterogeneity present
in the population is determined by the amount of heterogeneity present in the dominant
generation.

3.2 Positive mutation rates: numerical simulations
sec-simvtheo

In this section we numerically investigate the heterogeneity between waves in the case of
positive mutation rates and deterministic fitness distributions. Given that there are approx-
imately 3 billion = 3×109 base pairs in the human genome and assuming a mutation rate per
base pair of O(10−8)−O(10−10), we expect that point mutations occur at a rate of between
.3 and 30 per cell division. However we assume that advantageous mutations constitute only
a fraction of the possible mutations and therefore that the mutation rate per cell division
for advantageous mutations should be in the approximate range of O(10−5)− O(10−2). We
shall use u = 10−5 in our investigations below (which also corresponds to the value used by
the authors in [3]).

Generation Mean Standard Deviation
1 4.7638 1.3738
2 10.6010 2.2434
3 17.0519 3.0282

Table 1: Means and standard deviations for log Vd, k, k = 1, 2, 3. table:Vdk

In Figure 5 (a) and (b), we compare the average log size of the kth generation in simula-
tions with the limiting approximation given by Theorem 2. We observe qualitatively similar
behavior, however the limiting approximation consistently underestimates the times at which
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Figure 4: Relative frequency histogram of 1000 random samples from the distribution of
log Vd,1. fig:logV1

new waves appear. To explain the source of this bias, we use the alternative approximation
given by righthand side of (3.1) which can be rewritten as

ẑL
k (t) = Lzk(t/L) + log Vd,k (3.2) zhat

where L = log(1/u). Using the expression for the Laplace transform of Vd,k and the numerical
algorithm of [30], we simulate 1000 random draws from the distribution of Vd,k. Table 1 shows
the sample mean and standard deviation for log Vd,k, k = 1, 2, 3. The distribution of log Vd,k

has a positive mean and is skewed right (see Figure 4 for an example with k = 1) implying
that the limit in Theorem 2 will in general underestimate the size of generation k for positive
mutation rates. The approximation obtained by replacing log Vd,k with the sample mean of
log Vd,k is plotted in Figure 5 (c). We note that after an initial period in which the number
of type-k individuals is small, this picture closely resembles the plot in (a). We also note
that the variance of log Vd,k tends to increase with k and hence, we should expect to see an
increasing amount of variability in simulations in the time when type-k individuals are born.
In Figure 5 (d), we plot the right hand side of (3.2) replacing log Vd,k with the value two
standard deviations above its mean to illustrate an extreme scenario.
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Figure 5: The log size of generations 1 through 4 as a function of time. Note that both
time and space are plotted in units of L = log(1/u) (a) (Top left) Average values over 106

simulations. (b) (Top right) Limiting approximation from Theorem 2. (c) (Lower left)
Approximation from (3.2) using the mean of log Vd,k. (d) (Lower right) Approximation from
(3.2) using the value two standard deviations above the mean of log Vd,k. The parameters
used in the simulation are u = 10−5, a0 = 0.2, b0 = 0.1, and b = .05. fig:het_finite
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4 First generation heterogeneity
sec-first

In this section, we study within generation heterogeneity by examining the amount of geno-
typic heterogeneity present in the first generation of individuals. We use two statistical
measures to assess heterogeneity: (i) Simpson’s Index, which gives the probability that two
randomly chosen individuals from the first generation come from the same clone, and (ii) the
fraction of individuals in the first generation which come from the largest family of individu-
als. To obtain these results, we will rely on Theorem 3 below which gives us insight into how
the limit in Theorem 1 comes about: the limit is the sum of points in a nonhomogeneous
Poisson process. Each point in the limiting process represents the contribution of a different
mutant lineage to Z1(t) so that it suffices to calculate (i) and (ii) for the limiting process.
Before stating this result, we need to introduce some terminology. Here and in what follows,
we use |A| to denote the number of points in the set A. We say that Λ is a Poisson process
on (0,∞) with mean measure µ if Λ is a random set of points in (0,∞) with the following
properties:

(i) For any A ⊂ (0,∞), N(A) = |Λ ∩ A| is a Poisson random variable with mean µ(A).

(ii) For any k ≥ 1, if A1, ..., Ak are disjoint subsets of (0,∞), then N(Ai), 1 ≤ i ≤ k are
independent.

We also let α = λ0/λ1 ∈ (0, 1) denote the ratio of the growth rate of 0’s to the maximal
growth rate of 1’s and note that 1 + p1 = 1/α.

th1C Theorem 3. Let Λ be a Poisson process on (0,∞) with mean measure

µ(A) =

∫

A

αz−(α+1)dz

and let S denote the sum of the points in Λ. Then there exist positive constants Ad, Ac =
Ad(λ0, b), Ac(λ0, b) which depend on the indicated parameters so that in case (i) as t →∞

(AduV0)
−(1+p1)e−λ1tZ1(t) ⇒ S,

and in case (ii) as t →∞
(AcuV0))

−(1+p1)t1+p1e−λ1tZ1(t) ⇒ S.

For more details, see [8], Theorem 3 and [10], Corollary to Theorem 3. Note that the mean
measure for Λ has tail µ(x,∞) = x−α.

Let Xn denote the nth largest point in Λ, and let Sn =
∑n

i=1 Xi denote the sum of the
n largest points. To determine the dependence of Xn on n we first note that if we define
Λ′ = f(Λ) where f(x) = x−α, then Λ′ is a Poisson process and after making the change of
variables y = x−α, we can see that the mean measure is

µ′(A) =

∫

f−1(A)

αx−(α+1)dx =

∫

A

dy = |A|.

11



In other words, Λ′ is a homogeneous Poisson process with constant intensity and hence, the
spacings between points are independent exponentials with mean 1. If we let Tn denote
the time of the nth arrival in Λ′, then the law of large numbers implies that Tn ∼ n as
n → ∞. Since Xn = T

−1/α
n , we obtain Xn ∼ n−1/α as n → ∞. This already suggests how

the behavior of Xn depends on α: smaller α corresponds to a quicker decay in Xn and hence,
less heterogeneity. In addition we have the following Lemma. Although this result holds
for general α > 0, we recall that we are assuming here and throughout this section that
α ∈ (0, 1).

meansum Lemma 1.
EXn = Γ(n− 1/α)/Γ(n).

Furthermore, if we define S∞ =
∑∞

i=1 Xi, then

ES∞ < ∞.

Proof. Since Tn has a Gamma(n,1) distribution, we have EXn = ET
−1/α
n = Γ(n−1/α)/Γ(n).

Stirling’s approximation implies that Γ(n − 1/α)/Γ(n) ∼ n−1/α and the second conclusion
follows.

4.1 Simpson’s Index

One common measure of heterogeneity in a population is Simpson’s index which is the
probability that two randomly selected individuals come from the same family. Recalling
that Xi is the contribution of the ith largest family of generation 1 individuals to the total
size of generation, we define Simpson’s index for our point process by

R =

∑∞
i=1 X2

i

(S∞)2
=

∞∑
i=1

(
Xi

S∞

)2

.

The formula for the mean ER is remarkably simple.

simpmean Theorem 4. ER = 1− α

This result shows that the average amount of heterogeneity present in the first generation
depends only on α, the ratio of the growth rate of type-0’s to the maximum attainable growth
rate of type-1 individuals. The key to our proof is a result in [12] which considers

Rn =
n∑

i=1

(
Yi

Sn

)2

where Yi are iid random variables in the domain of attraction of a stable law with index α
and Sn = Y1 + · · ·+ Yn and shown that

lim
n→∞

ERn = 1− α.
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To explain the connection between the two results, we note that if we have P (Yi > x) = x−α,
for x ≥ 1 and let Yn,i = Yi/n

1/α, then

nP (Yn,i ∈ A) → µ(A).

This implies that if we let ∆n = {Yn,i : i ≤ n} be the point process associated with the Yn,i

and define the measures ξn ≡
∑

x∈Λn
δx and ξ =

∑
x∈Λ δx, then we have

ξn ⇒ ξ.

so that we should expect ER to agree with lim ERn. We make this argument rigorous in
Appendix A.

In Figure 6, we plot the sample mean of Simpson’s index of Z as a function of time for
different values of α and compare with 1− α, the expected value of Simpson’s index for the
limiting point process. We observe that initially, the sample mean tends towards 1− α. For
larger values of b, the sample mean overshoots the limiting value. Our theory guarantees
that eventually the values of the sample mean will converge, however we were not able to
simulate far enough out in time to see this occur.
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Figure 6: Expected value of Simpson’s Index for the first wave. We compare the sample
mean (dots) of Simpson’s index at times t = 60 to 120 with the expected value of Simpson’s
Index for the limiting point process (lines), for two different values of α. Parameters: λ0 =
0.2, a0 = 0.1, ν ∼ U([0, b]), where b = 0.01 (left) and b = 0.05(right). fig:SI_diffa

We can further exploit the previously discussed connection between ∆n and Λ to gain
additional insight into the distribution of Simpson’s index. For example, one can obtain
expressions for higher moments of R (see [1]). In [22], it is established that as n →∞,

Sn(2) = R−1/2 =

∑n
i=1 Yi

(
∑n

i=1 Y 2
i )

1/2

has a limiting distribution with a density f that satisfies

f(y) ∼ ae−by2

, as y →∞,
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for some constants a, b > 0 (see [22], equation (5.7) and [32], Theorem 6.1 for more details).
Therefore, after making the change of variables x = y−1/2, we can see that the density of R
near the origin has the form

g(x) ∼ ax−3/2e−bx−1

, as x → 0, .

In Figure 7, we perform simulations of Simpson’s index for the first wave mutants in the
branching process Z. We use parameters u = 10−3, λ0 = 0.2, a0 = 0.1 and mutations
confer an additive fitness change drawn according to ν ∼ U([0, 0.01]). In the simulations we
observe convergence of the empirical distribution of Simpson’s Index to the distribution for
the limiting point process. Curiously, in the plot at t = 70, we observe a few noticeable bumps
in the distribution (e.g. around 0.5). These bumps can be explained by a few families with
similar size dominating the population; this occurs with enough probability to be apparent
in the density.

4.2 Largest clones
sec-largest

To further investigate heterogeneity properties of the point process, let

Sn =
n∑

i=1

Xi

be the total contribution from the largest n points. Let

Vn = X1/Sn

be the fraction of individuals descended from the largest family of first generation mutants.
Our next result shows that 1/Vn converges to a non-trivial limit and provides us with an
explicit formula for the characteristic function of the limit.

charfunc Theorem 5. As n → ∞, V −1
n ⇒ W where W has characteristic function ψ satisfying

ψ(0) = 1 and

ψ(t) =
eit

fα(t)

for all t 6= 0 with

fα(t) = 1 + α

∫ 1

0

(1− eitu)u−(α+1)du.

The form of the characteristic function is the same as the characteristic function for
limn→∞ Tn/Y(1) where the Yi are iid random variables with power law tails, Y(1) = maxi≤n Yi,
and Tn =

∑n
i=1 Yi (see, for example, [6]). Again, this agreement is a consequence of the

previously discussed connection between ∆n and the limiting Poisson point process.
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Figure 7: Empirical distribution of Simpson’s Index for the first wave. We include plots of
Simpson’s Index for the branching process at times t = 70, 90, 110, 130 along with Simpson’s
Index for the limiting point process (t = ∞). The histograms show the average over 1000
simulations. For the limiting point process, we approximate Simpson’s index by looking at
the largest 104 points in the process. Parameters: λ0 = 0.2, a0 = 0.1, ν ∼ U([0, 0.01]). fig:SI_dist
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It is interesting to note that the characteristic function in Theorem 5 is not integrable.
The problem is that the density of V −1

n blows up near 1. As an explanation for this, we note
that with probability

exp(−(1− x−α)) exp(−x−α)x−α = e−1x−α

there is a point in the process bigger than x and no points in [1, x). When this happens,

V −1
n = Sn/X1 ≤ 1 + n/x

and so
Fn(y) = P (V −1

n ≤ y) ≥ e−1n−α(y − 1)α.

If we had Fn(y) ∼ (y−1)α, then the density would blow up like (y−1)α−1 as y → 1. We will
confirm that this gives the right asymptotic by providing an explicit formula for the density
of W .

Vdensity Corollary 3. W has a density on (1,∞) given by

f(y) = lim
M→∞

∫ M

−M

eit(1−y)

fα(t)
dt.

Note that integral expression above does not converge absolutely so part of the proof will
consist of showing that the limit exists. If we apply the change of variable s = t(y − 1) in
the definition of f , we see that

f(y) = (y − 1)α−1

∫ ∞

−∞

e−it

(y − 1)α +
∫ (y−1)−1

0
1−eiut

uα+1 du

thus confirming the intuition that the density blows up like (y − 1)α−1 as y approaches 1.
Differentiating ψ leads to simple expressions for the mean and variance of the limit.

Vmean Corollary 4. EW = 1
1−α

and var( W ) = 2
(1−α)2(2−α)

.

Figure 8 suggests that the rate of convergence is slow for α close to 1.
Returning to the study of Vn = X1/Sn, we note that Theorem 5 implies that Vn converges

to a non-trivial limit V = W−1 and Jensen’s inequality applied to the strictly convex function
1/x implies that E(lim X1/Sn) > 1−α. Simulations suggest that despite this fact, deviations
of the mean from 1− α are small as illustrated in Figure 8.

5 Discussion
sec-disc

In this work we have investigated the evolution of diversity in a stochastic model of tumor
expansion incorporating random mutational advances. In Section 3 we considered hetero-
geneity between tumor subpopulations with varying numbers of mutations. In the limit as
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Figure 8: Left: Comparison of Monte Carlo estimates for EV −1
n and the limit (1 − α)−1.

Right: Comparison of the Monte Carlo estimates for EVn and the curve (1− α)+. Number
of simulations = 100. fig:snmean

the mutation rate approaches zero, we obtained estimates of the contribution of each wave
of mutants to the total population. These limiting approximations depend on the maximum
attainable fitness advance for mutants, but not on the specific form of the fitness distribu-
tion. We also obtained estimates of the time of arrival of the first cell of each wave which
showed that the accumulation of new genetic alterations will accelerate over time due to the
increasing growth rates of successive generations. Simulations demonstrate that for small,
but positive mutation rates, the behavior of the system is qualitatively similar to the limiting
predictions (see Figure 5). These simulations also suggest that as time increases, multiple
waves of mutants coexist without a single, largely dominant wave.

In Section 4 we investigated the genotypic diversity within the first wave of mutants. In
particular, we considered two measures of diversity: the Simpson’s Index and the fraction
of individuals in the first generation which come from the largest family of individuals. We
analyzed these diversity measures in a limiting regime where the first generation of mutants
can be described by an inhomogeneous point process. For this point process, we obtained the
exact mean of Simpson’s Index as well as the form of its density near the origin. Interestingly,
the mean of Simpson’s index is given by the quantity 1−α, where α is the ratio between the
fitness of the unmutated ancestral population and the maximum possible fitness of the first
wave of mutants. Next, we observed that as time increases the mass of the distribution of
Simpson’s Index moves closer to 0, indicating higher levels of diversity in the tumor at later
times (see Figure 7). This is also observed via direct numerical simulation of the branching
process; we observed convergence of the distribution and mean of Simpson’s Index to the
predicted limiting values.

In Section 4.2 we investigated the ratio between the total population size of the first wave
of mutants and the size of the largest family. We show that this ratio can be approximated
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by a random variable with mean (1− α)−1. The density of this random variable is given in
Corollary 3. We note that as α approaches 1 the mean of this ratio grows to infinity. In
other words, as α approaches 1 the largest family constitutes a vanishing proportion of the
total wave one population.

Our results indicate that tumor diversity is strongly dependent upon the age of the tumor
and the quantity 1 − α, but is otherwise unaffected by changes to the fitness distribution.
Investigations of Simpson’s Index and the ratio Sn/X1 indicate that if α is close to one
(i.e. fitness advances are small) we expect the tumor population to have a higher diversity.
In addition, our results on Simpson’s Index and inter-wave heterogeneity indicate that a
longer lived tumor will have a higher level of diversity. An open problem which could lead to
additional insights into how tumor heterogeneity changes over time is to quantify the amount
of heterogeneity present in later generations by obtaining an explicit formula for the mean
of Simpson’s Index for generation k ≥ 2. We conjecture that the mean of Simpson’s Index
will be a decreasing function of the generation number, indicating higher levels of diversity
in later generations and a further increase in the total amount of heterogeneity present in
the tumor at later times.

A Proofs of results on first generation heterogeneity
sec-proofs

We will use the following notation in this appendix. For a real number t, we define the
function

sgn(t) =





−1, t < 0

0, t = 0

1, t > 0.

For a complex number z we denote the real part of z by Re[z] and its imaginary part by
Im[z].

A.1 Simpson’s Index

To prove Theorem 4, let

Rn =

∑n
i=1 Y 2

n,i

(
∑n

i=1 Yn,i)
2

denote the value of Simpson’s index for the point process Λn. The following lemma is a
restatement of Theorem 5.3 in [12] applied to the Yi.

iidsimp Lemma 2. ERn → 1− α as n →∞.

We will prove Theorem 4 by showing that we also must have ERn → ER. To this end,
let

Rn(ε) =

∑n
i=1 Y 2

n,i1Yn,i>ε(∑n
i=1 Y 2

n,i1Yn,i>ε

)2
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denote the truncated value of Simpson’s index for Λn and

R(ε) =

∑∞
i X2

i 1Xi>ε

(
∑∞

i=1 Xi1Xi>ε)
2

denote the truncated value for Λ. Then for any ε > 0, we have

|ERn − ER| ≤ E|Rn −Rn(ε)|+ E|Rn(ε)−R(ε)|+ E|R(ε)−R| (A.1) tribnd

We will complete the proof by deriving appropriate bounds for each of the three terms on
the righthand side of (A.1). For the first term, we have

Rnerror Lemma 3.
lim sup

n→∞
E |Rn −Rn(ε)| ≤ hε

where hε → 0 as ε → 0.

Proof. Let ε > 0 and write An,k =
∑n

i=1 Y k
n,i, An,k(ε) =

∑n
i=1 Y k

n,i1Yn,i>ε, and Ān,k(ε) =
An,k − An,k(ε) for k = 1, 2. Since

EY k
1 1Y1≤εn1/α =

∫ εn1/α

1

kyk−1y−αdy ≤ Cεk−αnk/α−1

for k = 1, 2, we have the bound
EĀn,k(ε) ≤ Cεk−α. (A.2) errorbnd

After noting that An,2 ≤ A2
n,1, An,2(ε) ≤ A2

n,1(ε) ≤ A2
n,1, and Ān,1(ε) + An,1(ε) = An,1, we

have for any δ > 0,

E|Rn −Rn(ε)| = E

∣∣∣∣
Ān,2(ε)

A2
n,1

+ Rn(ε)

(
A2

n,1(ε)− A2
n,1

A2
n,1

)∣∣∣∣
≤ δ−2EĀn,2(ε) + P (An,1 ≤ δ)

+ δ−1E

(
|2An,1(ε)Ān,1(ε) + Ā2

n,1(ε)|
An,1

)
+ P (An,1 ≤ δ)

= δ−2E|Ān,2(ε)|+ δ−1E

(∣∣∣∣Ān,1(ε)

(
2 +

An,1(ε)

An,1

)∣∣∣∣
)

+ 2P (An,1 ≤ δ)

≤ δ−2EĀn,2(ε) + 3δ−1EĀn,1(ε) + 2P (An,1 ≤ δ)

≤ ε2−α/δ2 + 3ε1−α/δ + 2P (An,1 ≤ δ) (A.3) Rndiff

where we have used (A.2) in the last line. To control the third term on the right, let φ denote
the Laplace transform of Y1. Then

1− φ(t) = α

∫ ∞

1

(1− e−ty)y−(α+1)dy

= αtα
∫ ∞

t

(1− e−x)x−(α+1)dx ∼ Ctα
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as t → 0 since 1 − e−x ∼ x as x → 0 implies that
∫∞
0

(1 − e−x)x−(α+1)dx < ∞. We can
conclude that

E exp(−tAn,1) = (1− (1− φ(t/n1/α))n → exp(−Ctα)

as n →∞. In particular, An,1 ⇒ A1, where A1 has the above Laplace transform. Since

1− exp(−Ctα) → 1

as t →∞, we have P (A1 = 0) = 0 so that taking δ = ε(1−α)/2 in (A.3) yields the result.

To bound the second term on the righthand side of (A.1), we need some notation. Let Mp

denote the class of all point measures on (0,∞). In a slight abuse of notation, we write v ∈ ν
when ν ∈ Mp and v ∈ supp(ν). We shall equip Mp with the topology of vague convergence
(see, for example, Section 3.4 in Resnick [29]) and take as our σ-algebra the one generated
by open sets in this topology. Associated with any random set of points, we can associate
a measure ξ which is a random variable with values in Mp. We will write Λn ⇒ Λ to mean
that the associated random measures ξn ⇒ ξ.

Lemma 4. Λn ⇒ Λ and if we define the maps Fk,ε : Mp → [0,∞) by

Fk,ε(µn) =
∑
x∈µn

xk1x>ε

for k = 1, 2, then
(F1,ε(Λn), F2,ε(Λn)) ⇒ (F1,ε(Λ), F2,ε(Λ)).

Proof. Since

nP (Yn,i ∈ A) = n

∫

n1/αA

αy−(α+1)dy =

∫

A

αx−(α+1)dx = µ(A)

for all Borel sets A, the first claim follows from Proposition 3.21 in [29]. The second claim
follows from the Continuous Mapping Theorem (see, for example, page 152 in [29]), the fact
that Fk,ε is continuous away from measures ν with ε /∈ ν, and the fact that the random
measure associated with Λ has no point masses with probability 1.

As a consequence of this lemma, the fact that Rn(ε) ≤ 1, and the bounded convergence
theorem, we have

Rep Corollary 5.
E |Rn(ε)−R(ε)| → 0

as n →∞ for any ε > 0

It thus remains to establish the following
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Rerror Lemma 5.
lim sup

ε→0
E |R(ε)−R| = 0.

Proof. We can establish this result using the same results as in the proof of Lemma 3. In
particular if we define Ak =

∑∞
n=1 Xk

n and Āk(ε) =
∑∞

n=1 Xk
n1Xn<ε for k = 1, 2. Then

following the display in A.3 we have for any δ > 0

E |R−R(ε)| ≤ δ−2EĀ2(ε) + 3δ−1EĀ1(ε) + 2P (A1 ≥ δ).

It is obvious that P (A1 = 0) = 0 and EĀ2(ε) ≤ EĀ1(ε) for ε < 1, so it only remains to
establish that

EĀ1(ε) → 0,

as ε → 0. However this result follows immediately from Lemma 1. Therefore taking δ =(
EĀ1(ε)

)1/4
completes the proof.

We can now complete the proof of Theorem 4 by letting n →∞ and then ε → 0 in (A.1)
and applying Lemmas 3 and 5 and Corollary 5.

A.2 Largest Clones

We begin with the

Proof of Theorem 5. Theorem 5.1 in [6] implies that we have

E exp
(
itTn/Y(1)

) → ψ(t)

as n → ∞ where as in Section 4, Y(1) = maxi≤n Yi and Tn =
∑n

i=1 Yi. To conclude that
Tn/Y(1) ⇒ V , we need to show that ψ is continuous at 0. To establish this fact, we make
the change of variables v = tu to conclude that

fα(t) = 1 + α

∫ 1

0

(1− eitu)u−(α+1)du = 1 + α|t|α
∫ |t|

0

(1− eivsgn(t))v−(α+1)dv. (A.4) altpsi

Since 1− exp(iv) ∼ −iv as v → 0, the integral on the right-hand side of (A.4) is finite and
hence,

ψ(t) = eitf−1
α (t) → 1

as t → 0. Since Tn/Y(1) ⇒ V , the fact that Sn/X1 ⇒ V follows from the arguments in the
previous section.

Proof of Corollary 3. We first establish that there are no point masses in the distribution
of V . By the inversion formula we have for any a ∈ R,

P (V = a) = lim
T→∞

1

2T

∫ T

−T

e−iatψ(t)dt

= lim
T→∞

1

2T

∫ T

−T

eit(1−a)

fα(t)
dt.
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If we focus on the positive axis and use the change of variable s = t/T ,

1

2T

∫ T

0

eit(1−a)

fα(t)
dt =

1

2

∫ 1

0

eisT (1−a)

fα(sT )
ds.

From display (A.4) it follows that for every s ∈ (0, 1) we have eisT (1−a)/fα(sT ) → 0 as
T →∞. Note that

Re[fα(t)] = 1 + α

∫ 1

0

1− cos ut

uα+1
du > 1,

which implies |fα(t)| ≥ 1 for all t. Therefore
∣∣eisT (1−a)/fα(t)

∣∣ ≤ 1 for all t and it follows via
the Dominated Convergence Theorem that

lim
T→∞

1

2

∫ 1

0

eisT (1−a)

fα(sT )
ds = 0.

A similar result holds for the integral on the negative axis and we conclude that

P (V = a) = 0.

We can therefore conclude for x > 1 and h > 0 via the inversion formula (see [7], (3.2)) and
Fubini’s Theorem that

P (V ∈ (x, x + h)) = lim
T→∞

1

2π

∫ T

−T

∫ x+h

x

e−ityψ(t)dydt

= lim
T→∞

1

2π

∫ x+h

x

∫ T

−T

e−ityψ(t)dtdy.

Therefore in order to establish the result we need to show that

lim
T→∞

1

2π

∫ x+h

x

∫ T

−T

e−ityψ(t)dtdy =
1

2π

∫ x+h

x

∫ ∞

−∞
e−ityψ(t)dtdy.

This follows if we show that limT→∞
∫ T

−T
e−ityψ(t)dt is a convergent integral, and that there

exists a bounded function h defined on (x, x + h) such that

|hT (y)| =
∣∣∣∣
∫ T

−T

e−ityψ(t)dt

∣∣∣∣ ≤ h(y).

We first use integration by parts to see

hT (y) =

∫ T

−T

eit(1−y)

fα(t)
dt =

i

1− y

(
eiT (1−y)

fα(T )
− e−iT (1−y)

fα(−T )
+

∫ T

−T

eit(1−y)f ′α(t)

fα(t)2
dt

)
.

Recalling that |fα(T )| → ∞ as T → ±∞, it follows that if we establish that f ′α(t)
fα(t)2

is

integrable on (−∞,∞), then the convergence of the integral and the existence of a bounded
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dominating function will be established. Since fα is bounded away from 0, it suffices to check
that the function decays fast enough. Recalling the definition of fα

f ′α(t) = −iαtα−1

∫ t

0

eiv

vα
dv,

which follows by passing the derivative inside the integral in the definition of fα. We can
establish that

sup
T<∞

∣∣∣∣
∫ T

0

eiv

vα
dv

∣∣∣∣ < ∞

by observing ∫ ∞

0

eiv

vα
dv = e−iπ(1−α)/2Γ(1− α)

which can be found in many places, e.g. [23]. Thus,

|f ′α(t)| ≤ αtα−1 sup
T<∞

∣∣∣∣
∫ T

0

eiv

vα
dv

∣∣∣∣ ≤ C0t
α−1.

We can similarly establish that for t sufficiently large

|fα(t)|2 ≥ C1t
2α,

for a positive finite constant C1. Thus for t sufficiently large

∣∣∣∣
eit(1−y)f ′α(t)

fα(t)2

∣∣∣∣ ≤
C

tα+1
,

establishing the result.

Proof of Corollary 4. Using the Taylor series expansion of exp(iu) about 0 in (A.4) above
implies that

1 + fα(t) = 1−
∞∑

n=1

α (it)n

(n− α)n!
.

and therefore,

f (k)
α (t) =

∞∑

n=k

αintn−k

(n− α)(n− k)!

so that in particular,

f (k)
α (0) =

ikα

k − α

for all k ≥ 1. Let S(t) = log ψ(t) = it− log fα(t). Then dropping the α subscript on fα, we
have

S ′(t) = (i− f ′(t)/f(t)) = (i− (log f(t))′)
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which yields the desired result for the mean:

EY = iS ′(0) = i(i− f ′(0)) =
1

1− α
.

Now

S
′′
(t) = −(log f(t))

′′
= −f

′′
(t)f(t)− (f ′(t))2

f 2(t)
so

var(Y ) = S
′′
(0) = −f

′′
(0) + (f ′(0))2 =

α

2− α
+

α2

(1− α)2
=

α

(1− α)2(2− α)

completing the proof
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