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Abstract

Primary tumors often emerge within genetically altered fields of premalignant cells
that appear histologically normal but have a high chance of progression to malig-
nancy. Clinical observations have suggested that these premalignant fields pose high
risks for emergence of recurrent tumors if left behind after surgical removal of the pri-
mary tumor. In this work, we develop a spatio-temporal stochastic model of epithelial
carcinogenesis, combining cellular dynamics with a general framework for multi-stage
genetic progression to cancer. Using the model, we investigate how various properties
of the premalignant fields depend on microscopic cellular properties of the tissue. In
particular, we provide analytic results for the size-distribution of the histologically un-
detectable premalignant fields at the time of diagnosis, and investigate how the extent
and geometry of these fields depend upon key groups of parameters associated with
the tissue and genetic pathways. We also derive analytical results for the relative risks
of local vs distant secondary tumors for different parameter regimes, a critical aspect
for the optimal choice of post-operative therapy in carcinoma patients. This study
contributes to a growing literature seeking to obtain a quantitative understanding of
the spatial dynamics in cancer initiation.

1 Introduction

The term ‘field cancerization’ refers to the clinical observation that certain regions of
epithelial tissue have an increased risk for the development of multiple synchronous or
metachronous primary tumors. This term originated in 1953 from repeated observations
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by Slaughter and colleagues of multiple primary oral squamous cell cancers and local re-
currences within a single region of tissue [1]. The phenomenon, also known as the ‘cancer
field effect’ has been documented in many organ systems including head and neck (oral
cavity, oropharynx, and larynx), lung, vulva, esophagus, cervix, breast, skin, colon, and
bladder [2]. Although the exact underlying mechanisms of the field effect in cancer are not
fully understood, recent molecular genetic studies suggest a carcinogenesis model in which
clonal expansion of genetically altered cells (possibly with growth advantages) drives the
formation of a premalignant field [2, 3]. This premalignant field, which may develop in
the form of one or more expanding patches, forms fertile ground for subsequent genetic
transformation events, leading to intermediate cancer fields and eventually clonally diverg-
ing neoplastic growths. The presence of such premalignant fields poses a significant risk
for cancer recurrence and progression even after removal of primary tumors. Importantly,
these fields with genetically altered cells often appear histologically normal and are difficult
to detect; thus, mathematical models to predict the extent and evolution of these fields
may be useful in guiding treatment and prognosis prediction.

In this work we utilize a stochastic evolutionary framework to model the cancer field ef-
fect. Our model combines spatial cellular reproduction and death dynamics in an epithelial
tissue with a general framework for multi-stage genetic progression to cancer. Using this
model, we investigate how microscopic cellular properties of the tissue (e.g. tissue renewal
rate, mutation rate, selection advantages conferred by genetic events leading to cancer,
etc) impact the process of field cancerization in a tissue. We develop methods to char-
acterize the waiting time until emergence of second field tumors and the recurrence risk
after tumor resection. In addition we study the clonal relatedness of recurrent tumors to
primary tumors by assessing whether local field recurrences (second field tumors) are more
likely than distant field recurrences (second primary tumors). The key results of our study
are summarized as follows. (i) We provide analytic results for the size-distribution of the
histologically undetectable pre-cancerous fields at the time of diagnosis. (ii) We investigate
how the extent and geometry of these fields depend upon a key meta-parameter of the sys-
tem, Γ, which is defined through a specific relationship between kinetic parameters of the
tissue and genetic pathways. (iii) We derive analytical results for the relative risks of local
vs distant secondary tumors for different parameter regimes. These types of predictions
are important in clinical practice. For example, they help determining the optimal size
of excision margins at the time of surgery, and the appropriate choice of post-operative
therapy (which may depend on the type of recurrence expected).

The methodology developed in this work is generally applicable to early carcinogenesis
in epithelial cancers, and contributes to a growing literature on the evolutionary dynamics
of cancer initiation, see e.g. [4–13]. Since our work is concerned with analyzing spatial
premalignant field geometries during the genetic progression to cancer, here we briefly
describe some existing mathematical models of the stochastic evolutionary process of cancer
initiation from spatially structured tissue, e.g. [14–19]. In 1977 Williams and Bjerknes
proposed a spatial Moran model of clonal expansion in epithelial tissue [16] in which cells
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divide according to fitness and replace a neighboring cell at random on the rectangular
lattice. This model is closely related to the biased voter model from particle systems
theory [20], and in [21, 22] the growth properties and asymptotic shape of the process
were established. However, this model did not incorporate the possibility of mutations
occurring to produce new types in the population. In [14] Komarova proposed a 1D model
incorporating mutations with fitness advantages, where cells were allowed to divide in
response to the death of a neighboring cell in contrast to the models mentioned previously.
It was shown that the probability of mutant fixation and time to obtain two-hit mutants
differ from the well-mixed setting. Later, in [17,18] this model was extended to incorporate
motility, and the relationships between migration, mutation, selection and invasion in a
spatial stochastic evolutionary model were explored. In [19] the voter model considered in
[16] was generalized to incorporate neutral mutations, and the waiting time to produce two-
hit mutants was studied in a general dimension setting. Martens and colleagues considered
a similar model of mutation accumulation on a discrete time hexagonal lattice model, and
studied the speed of population adaptation [23,24]. In a recent work Antal and colleagues
consider a stochastic spatial model of cancer progression where cells acquire successive
fitness advantages along the edge of the tumor. In the context of this model they study
the shape of the evolving tumor front as well as the number of mutations acquired in the
tumor [25]. In a recent work, we studied the accumulation and spread rates of advantageous
mutant clones in a spatially structured population of general dimension [26]. Finally, we
note that there have also been some studies mathematically modeling the growth of pre-
cancerous cells via growth factors during early carcinogenesis utilizing reaction-diffusion
systems, e.g. [27].

Most of the evolutionary models proposed in the field utilize similar descriptions of
the fundamental processes of birth, selection, mutation and death in a spatially structured
population (modulo the occasional minor differences in lattice structure and the structure
of reproduction update rules). However, the studies described above have been aimed at
studying the rates of invasion, adaptation, and mutation accumulation in these populations.
In contrast, in this study we obtain analytical results for the spatial and temporal dynamics
of premalignant fields during carcinogenesis. We consider a generalized spatial Moran
process in which cells can acquire successive random mutations which confer selective
advantages, reproduction occurs at rates proportional to cellular fitness, and reproduction
results in neighbor replacement at random. We analyze this fundamental evolutionary
model to quantify how field cancerization dynamics and recurrence risks depend on the
kinetic parameters of the tissue and genetic progression pathway to cancer. To the best
of our knowledge, this is the first evolutionary modeling effort aimed at mathematically
predicting the cancer field effect and its consequences.

The article is organized as follows: in section 2 we introduce the stochastic mathemat-
ical model and describe basic properties regarding the survival and growth rate of mutant
clones. Using previously derived results on the spread of mutant clones, we introduce a
mesoscopic approximation to the model. In section 3 we analyze the model to investigate
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the characteristics and extent of local and distant premalignant fields at the time of ini-
tiation. In particular, we determine how the spatial geometry of the field (e.g. number
and size of lesions) depends on cellular and tissue properties such as mutation rate, tissue
renewal rate and mutational fitness advantages. In section 4 we analyze the model to un-
derstand the risk of recurrence due to local or distant field malignancies, as a function of
time and cellular parameters.

Throughout the paper we will use the following notation for the asymptotic behavior
of positive functions,

f(t) ∼ g(t) if f(t)/g(t)→ 1 as t→∞,
f(t)� g(t) if f(t)/g(t)→ 0 as t→∞,
f(t)� g(t) if f(t)/g(t)→∞ as t→∞.

Finally, we use the notation X =d F to denote that the random variable X has distribution
F .

2 Mathematical framework and basic properties

Cancer initiation is associated with the accumulation of multiple successive genetic or
epigenetic alterations to a cell [28]. A subset of these genetic events may give rise to a
fitness advantage (i.e. an increase in reproductive rate of the cell or avoidance of apoptotic
signals), and subsequently lead to a clonal expansion within the tissue. These expanding
mutant cell populations form the background for further independent genetic events which
eventually lead to carcinogenesis. As a result of this spatial evolutionary process, by the
time of cancer initiation or diagnosis the tissue field surrounding a tumor can be composed
of genetically distinct premalignant lesions of various sizes and stages.

2.1 Cell-based model

To study the dynamics of this process, we consider a stochastic model which describes the
accumulation and spread of a clone of cells with genetic alterations throughout a spatially
structured tissue (e.g. stratified epithelium). Thus, we consider the model on a regular
lattice Zd ∩ [−L/2, L/2]d, where L > 0 and d is the number of spatial dimensions of the
tissue. Each location in the lattice is occupied by a single cell, and each cell reproduces at
a rate according to its fitness with exponential waiting times. Whenever a cell reproduces,
its offspring replaces one of its 2d lattice neighbors at random, see Figure 1A. The type
of each cell corresponds to its fitness, which is related to the number of genetic hits a
cell has accumulated in a multi-step genetic model of cancer initiation. For example,
type-0 cells have fitness normalized to 1 and are labeled as wild-type or normal (with no
mutations). Initially our entire lattice is occupied by type 0 cells. Type-0 cells acquire the
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first mutation at rate u1 to become type-1 cells. The type-1 cell will have a relative fitness
advantage to type-0 cells, given by 1 + s1, for some constant s1 ≥ 0. In general, type-i
cells have a fitness advantage of 1 + si relative to type-(i − 1) cells, and they acquire the
(i+ 1)−th mutation in the sequence at rate ui+1 to become type-(i+ 1) cells. The process
is stopped when a cell develops k mutations; we call this the time of cancer initiation.
The number of mutation k as well as the parameters ui, si for i = 1, . . . , k depend on the
specific cancer type. Although many (epi)genetic events are selectively disadvantageous
(i.e. they confer a selective disadvantage si < 0), the progeny of deleterious mutants die
out quickly so here we restrict our attention to the case si ≥ 0. Note that this process can
be thought of as a spatial version of the Moran process, a spatially well-mixed population
model that is commonly used to describe carcinogenesis (e.g. see [8–12]). In addition, the
spatial reproduction and death dynamics of this model (without mutation) correspond to
the biased voter process which has been well-studied in physics and probability literature.
In fact, a similar voter model approach was previously used to model cellular dynamics
in epithelial tissue and found to correlate well with experimental predictions of clone size
distribution in the mouse epithelium [29].

The total number of cells in the fixed-size population is N ≡ Ld; in most cancer initia-
tion settings this number is quite large (at least 106), while mutation rates are quite small
(orders of magnitude smaller than 1). Therefore we will, unless stated otherwise, restrict
our analysis to regimes where L � 1 and ui � 1. In Section 2.3, we will briefly discuss
the specific conditions that we impose on the relationship between these parameters. For
mathematical simplicity, the lattice is equipped with periodic boundary conditions; how-
ever in most relevant biological situations the domain size (i.e. cell number) is sufficiently
large so that boundary effects are negligible.

Note on dimension of the model. We analyze the general model in space dimensions
d = 1, 2, 3. While all epithelial tissues have an intrinsically three dimensional architecture,
in some situations considering d = 1, 2 may be a good approximation. For example, cancer
initiation in mammary ducts of the breast, renal tubules of the kidney, and bronchi tubes
of the lung could be viewed as approximately one-dimensional processes, due to the aspect
ratio of tube radius versus length. On the other hand, cancer initiation in the squamous
epithelium of the cervix, the bladder or the oral cavity can be viewed as two-dimensional
process, since initiation occurs in the basal layer of the epithelium which is only 1-2 cells
thick (see e.g. Figure 2). The validity of such approximations poses an interesting problem
in itself, but will not be addressed in this work.

2.2 Survival and growth of a single mutant clone

We first establish some basic behaviors of mutant cells and their clonal progeny within a
tissue. Of particular interest are: (i) the survival probability of a mutant clone, and (ii)
the rate of spatial expansion of the mutant clone through the tissue. In particular, how
are these characteristics influenced by tissue parameters and the cellular fitness advantage
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Figure 1: Lattice dynamics. (A) Schematic of spatial Moran model in d = 2: each cell
divides at rate according to its fitness and replaces one of its 2d neighbors: if the light
blue cell divides, its offspring replaces one of the dark blue neighbors, chosen uniformly at
random. Every lattice site is occupied at all times (not shown). (B) Simulation example of
the model: growth of an advantageous clone (light blue) starting from one cell with fitness
advantage s = 0.2 over the surrounding field (dark blue).

conferred by a mutation? We have addressed some of these questions in a previous work [26]
and restate the results here to make the paper self-contained. In addition, we perform new
simulations in this work to fill in gaps where theoretical results are currently not available.

Consider the probability that a mutant cell survives to form a viable clone (i.e. does not
die out due to demographic stochasticity). Let type-1 cells have fitness 1 + s and type-0
cells have fitness 1, and let φt(x) denote the type of cell at site x in the lattice at time t.
Define

ξt ≡ {x ∈ Zd ∩ [−L/2, L/2]d : φt(x) = 1}.

In other words, ξt is the set of all type-1 cell locations at time t. We initiate the model
with a single type-1 cell at the origin surrounded by type-0 cells in all other locations:

φ0(x) =

{
1, x = 0

0, otherwise,

and assume no further mutations are possible (ui = 0). This simplified model is known as
the Williams-Bjerknes model [16], and if L = ∞ then it corresponds to the biased voter
model, see e.g. [30]. Let |ξt| denote the number of type-1 cells in the model at time t. Then
we can define the extinction time of the process T0 ≡ inf{t > 0 : |ξt| = 0}. The probability
of survival of a single mutant clone with selective advantage s over the surrounding cells is
then the probability of the event {T0 =∞}. By looking at the the process |ξt| only at its
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Figure 2: Geometry of squamous epithelium. A Basal layer (vertical perspective)
before initiation with local field (left), and after initiation where the tumor is growing
within the local field (right). B Sideways view of the fields before and after initiation,
along the dashed lines in panel A. The proliferative cells inhabiting the two-dimensional
lattice in the model reside in the basal layer of the epithelium.
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jump times, we note that the embedded process is a discrete time random walk that moves
one up with probability s/(1 + s) or one down with probability 1/(1 + s). This can be
seen by observing that the process only changes at boundaries between type-0 and type-1
cells, and the only possible resulting events are that the type-0 gets replaced by a type-1
(resulting in a jump up in |ξt|) or the type-0 gets replaced by a type-1 (resulting in a jump
down in |ξt|). Analysis of the overall survival probability of this random walk can then be
calculated using elementary results for random walks, see Example 1.43 in [31],

P (T0 =∞) =
s

1 + s
≈ s,

where the approximation is valid for s � 1. Thus, the probability that a mutant clone
with fitness advantage s survives is s

1+s , and is independent of the dimension of the tissue.
To understand how the expansion rate of a mutant clone depends on the selection

strength s of the mutant, we first recall a result by Bramson and Griffeath [21, 22], which
establishes an asymptotic shape for the type-1 clone. More precisely, Bramson-Griffith
shape theorem says that conditional on the clone never going extinct, the clone has a
convex, symmetric shape whose radius expands linearly. In a previous work, we studied
how this linear rate of expansion depends on the selection strength s in the setting of weak
selection, see Theorem 1 of [26]. We found that if we denote by e1 the first unit vector in
Rd and define the growth rate cd(s) such that

D ∩ {ze1 : z ∈ R} = [−cd(s), cd(s)],

then as s→ 0,

cd(s) ∼


s d = 1√

4πs/ log(1/s) d = 2
√

4β3s d = 3,

(1)

where β3 is the probability that two simple random walks started at 0 and e1 = (1, 0, 0)
never hit. In other words, the radius of the asymptotic shape D approximating the type-1
clone grows linearly with rate on the order of cd(s).

The previous results hold only in the regime of weak selection or small s. For larger
values of the selective advantage s, simulations can be used to obtain cd(s) for d = 2, 3 (in
d = 1 the process can be analyzed directly through simple random walk analysis and we
obtain that c1(s) = s). For example, Figure 3 shows that the s-dependence of the growth
rate is approximately linear for s > 0.5; in this case simple regression yields the estimate
c2(s) ≈ 0.6s + 0.22 (s > 0.5). Thus, a combination of analysis and simulation gives us a
complete picture of how spatial expansion rate of mutant clones in a tissue depend upon
the selective advantage s for a wide range of selection strengths.
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Figure 3: Simulations of clonal expansion rate for large s. Dependence of the
growth rate c2 on the fitness advantage s. Statistics performed on M = 100 samples for
each s-value. The error bars represent 95% confidence intervals.

2.3 Approximating with a hybrid mesoscopic model

Our results regarding the survival and growth of a single mutant clone suggest a hybrid
mesoscopic model simplification that enables our analysis of the field cancerization pro-
cess. In particular, each successful mutant clone can be well-approximated as a growing
d-dimensional ball with expansion rate cd(s) as calculated in the previous section. Before
proceeding however, let us clarify the notion of clone ‘survival’ a.k.a. ‘success’ in the full
model, where multiple mutations can arise and compete in the same finite domain. In
particular, we consider a mutant clone with selective advantage s over the background to
be successful if it reaches size � 1/s. This criterion guarantees a negligible chance of ex-
tinction in an infinite domain with no interference. In particular, if we start with a single
type-1 cell with selective advantage s in a sea of type-0 cells, and if we define T0 to be
the extinction time of the type-1 progeny, one can use the embedded discrete time process
and standard results on biased random walks [31] to show that if the progeny reaches size
k � 1/s, then P

(
T0 =∞

∣∣|ξ0| = k
)
≈ 1− e−ks.

Consider the fate of an unsuccessful type-1 clone arising on a background of type-0 cells.
The clone evolves as a supercritical (s > 1) biased voter model conditioned on extinction.
In [26] we showed that unsuccessful type-1 mutations typically die out by a time of order

`(s) =


s−2 d = 1,

s−1 log (1/s) d = 2,

s−1 d = 3.

(2)

As seen in the previous section, the survival probability in the biased voter model (starting
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with a single type 1 cell in a sea of type 0 cells) is s/(1 + s), but in the more complex
spatial Moran model with the possibility of multiple interacting type 1 clones, it is not
immediately clear that this survival probability is still given by s/(1 + s). However, it was
shown in [26] that the above survival probability remains a good approximation as long as

(A0) (1/u1)� `(s)(d+2)/2. (3)

If the total number of type-1 cells is always a negligible fraction of N and (A0) holds,
then successful type-1 mutations arrive as a Poisson arrival process with approximate rate
Nu1

s
s+1 , where N is the total number of cells in the tissue. In particular, these conditions

hold for biologically reasonable parameter sets, such as the ones used for the numerical
examples in this article.

We are now ready to introduce a hybrid mesoscopic model approximation as follows:
Type-1 mutations arrive in the healthy tissue as a Poisson arrival process with rate Nu1,
distributed uniformly at random in the spatial domain. Each mutation event has two
potential outcomes:

• with probability s/(1 + s), the mutation is successful and we approximate the subse-
quent clonal expansion with a ball whose radius grows deterministically. The macro-
scopic growth rate is cd(s), which was derived from individual cellular growth kinetics
as described in section 2.2. As a representative simulation in figure 1B suggests, the
ball in standard L2-norm in Rd will be utilized.

• with probability 1/(1+s), the mutation is unsuccessful, and the clone evolves accord-
ing to the full stochastic (cellular-level) model dynamics conditioned on extinction.

Note that the remainder of the paper discusses properties of this mesoscopic model.
It will be useful to define γd as the volume of a ball of radius 1 in d dimensions,

γ1 = 2, γ2 = π, γ3 = 4π/3.

Note that although the stochastic fluctuations of the shape of expanding clones are lost
in this approximation, one gains generality since the mesoscopic model can approximate a
whole class of microscopic models that admit a shape result.

2.4 Cancer initiation behavior

Although the methodology developed in this work can be generalized to the setting of
k-mutation carcinogenesis models, we will consider for simplicity the classic two-mutation
model of cancer initiation first introduced by Knudson [32]. Here, type-0 cells are wild-type
with fitness 1, type-1 cells are premalignant with fitness 1 + s1 relative to type-0 cells, and
type-2 cells are initiated cancer cells with fitness 1+s2 relative to type-1 cells. The time of
cancer initiation σ2 is defined as the time at which the first successful type-2 cell arrives.
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In [26], we studied the situation where s1 = s2 = s > 0 and found that the timing of cancer
initiation is strongly governed by the limiting value of the following meta-parameter:

Γ ≡ (Nu1s)
d+1(cddu2s)

−1.

Roughly speaking, Γ1/(d+1) represents the ratio of the rate of producing successful type-
1 cells to the subsequent time it take to acquire the first successful type-2. We found
that both the mechanisms and distribution of the cancer initiation time vary significantly
depending on the regime of Γ:

• Regime 1 (R1): When Γ < 1, the first successful type-2 mutation occurs within the
expanding clone of the first successful type-1 mutation (left panel of Figure 4). The
initiation time σ2 is exponential and does not depend on the spatial dimension.

• Regime 2: (R2) For Γ ∈ (10, 100), the first successful type-2 mutation occurs within
one of several successful type-1 clones (middle panel in Figure 4). The initiation time
is no longer exponential and depends explicitly upon the spatial dimension.

• Regime 3 (R3): When Γ > 1000, the first successful type-2 mutation occurs after
many successful type-1 mutations have occurred (right panel of Figure 4). The first
successful type-2 can arise from either a successful or an unsuccessful type-1 family;
the initiation time represents a mixture distribution of these two events.

• Note that for Γ ∈ [1, 10] and Γ ∈ [100, 1000] we say that we are in borderline regimes
R1/R2 and R2/R3 respectively.

We refer the reader to [26] for mathematical details of these statements. Note that these
‘regimes’ can be thought of as labels highlighting distinct types of initiation behaviors
that arise as Γ changes. In fact the system behavior continuously varies through the
parameter space, and borderline cases between these regimes do exist. Figure 5 shows
how the distribution of the waiting time σ2 varies with changing number of cells N in
d = 2. We note that as N increases, the waiting time distribution shifts to the left and
initiation occurs earlier. By comparing Figures 4 and 5 we see that early initiation times
are associated with a diffuse premalignant field with a large number of independent lesions,
whereas late initiation times are associated with a single premalignant field harboring the
initiating tumor cell.

To briefly summarize, we have described first a microscopic model of cellular division,
mutation and death within a regularly structured epithelial tissue. Analysis of the fine-
scale dynamics of this model leads to a more tractable hybrid mesoscopic model which
approximates the microscopic model. In the next section, we analyze this mesoscopic
model to study the characteristics and extent of premalignant fields at the stochastic time
of cancer initiation or diagnosis. In the analyses throughout, we will consider parameter
ranges spanning all three regimes of initiation behavior; however, for simplicity in regime
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Figure 4: The three dynamic regimes. Regime 1: first successful type-2 cell (arrow)
arises in the first premalignant clone, Γ = 0.055. Regime 2: several premalignant clones
are present at the time of the first successful type-2 cell, Γ = 54.47. Regime 3: a large
number of small premalignant clones are present by the time of the first successful type-2
cell, Γ = 5.45× 104. Simulations obtained with parameter values as in Figure 5.
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Figure 5: Waiting time until first successful type-2. Cumulative distribution function
(cdf) of σ2, the waiting time until the first successful type-2 mutation, for increasing N (see
(4)). Regime 1: u1 = 7.5 · 10−8, Regime 2: u1 = 7.5 · 10−7, Regime 3: u1 = 7.5 · 10−6. All
other parameters are fixed: d = 2, N = 2 · 105, s1 = s2 = 0.1, u2 = 2 · 10−5, c2(s1) = 0.16.
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3 we will restrict ourselves to the range of parameter space in which successful type-2
mutations arise from successful type-1 mutations (i.e. that do not later die out). The
behavior in the final remaining portion of the parameter space in regime 3 will be the
subject of further work.

3 Characterizing the premalignant field

The time between cancer initiation and diagnosis, which we label here as TD, is a subject
of great interest, see e.g. [33] for a review. In general, TD is itself a random variable and
may depend on the natural history of the disease until initiation. However, if we assume
that TD is independent of σ2, then we can characterize the premalignant field at time of
diagnosis, σ2 + TD, by means of the field characterization at time σ2, together with the
distribution of the delay time TD. For this reason, even though the clinically relevant time
is σ2 + TD, we focus here on characterizing the field at σ2. Note that mathematically, this
requires us to condition our analyses upon observing σ2 at some time t, i.e. condition upon
the event {σ2 = t}.

The starting time of the model (t = 0) is assumed to be at the end of tissue development
and the start of the tissue renewal phase. However for some tissues it is difficult to estimate
this time, and thus it may be difficult to ascertain the system time t at the time σ2. In such
cases, it is simple to adapt our analyses to this scenario and treat σ2 as an unobservable
quantity, by removing the conditioning on {σ2 = t} and integrating of our results against
the density of σ2, which is given by (see (24) in section 7.1 for derivation)

λetλ(φ(t)−1)
(

1− e−θtd+1
)
, (4)

where

φ(t) ≡ 1

t

∫ t

0
exp

(
−θrd+1

)
dr. (5)

The constants in (4) and (5) are the arrival rate of successful type-1 mutations

λ ≡ Nu1s̄1, (6)

and

θ ≡
u2s̄2γdc

d
d(s1)

d+ 1
, (7)

where we used the notation s̄i = si/(1 + si).
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3.1 Size of the local field at initation

We are first interested in characterizing the size of the local field, i.e. the region of the
premalignant type-1 clone that gives rise to the first successful type-2 clone (see Figure 6).
Following the nomenclature of [34], we note the distinction between two different types of
recurrent tumors: if the recurrence arises from a transformed cell in the premalignant field
that gave rise to the primary tumor, the recurrence is called a second field tumor, see Figure
6A. On the other hand, if the recurrence arises from a premalignant field that is clonally
unrelated to the primary malignancy, it is called a second primary tumor, see Figure 6B.
These two types of recurrent tumors vary in terms of their degree of clonal relatedness
to the primary tumor, and this may have some implications for treatment strategies in
primary vs. recurrent tumors.

We define now Rl(t) to be the radius of the local field at time t, and Xl(t) its corre-
sponding area (Xl = γdR

d
l ). Note that we will use the terminology ‘area’ to describe clone

sizes in all dimensions, and reserve the use of the term ‘volume’ for space-time quantities.
In the following, we are interested in determining the distributions of these two quantities
at time σ2, conditioned on the event {σ2 = t}. In other words, we are looking for the
distributions of (Rl(σ2)|σ2 = t) and (Xl(σ2)|σ2 = t), respectively.

At any given time, each clone produces initiating mutations at a rate proportional to
its area. Hence the probability that clone i (born at time Ti) gives rise to the initiating
mutation at time t is given by the ratio of clone i’s own area,

Xi(t) ≡ γdcdd(s1)(t− Ti)d,

divided by the total area of type-1 clones present. In other words, the size distribution
of the initiating clone is given by the distribution of a size-biased pick from the different
clones present at the time the initiated mutation arises.

Definition 3.1 (Size-biased pick). Let L1, . . . , Ln be a family of n random variables. A
size-biased pick from L1, . . . , Ln is defined as a random variable L[1] with conditional prob-
ability distribution

P (L[1] = Li|L1, . . . , Ln) = Li/

n∑
j=1

Lj .

The following theorem is the main result of this section and characterizes the size-
distribution of the local field at the time of initiation. This is recognized as a size-biased
pick from the clones present at time t, conditioned on the event {σ2 = t}.
Theorem 3.2. The distribution of the area of the local field at time σ2, conditioned on
{σ2 ∈ dt}, is given by

P̂ (Xl(σ2) ∈ dx) = P̂
(
X[1] ∈ dx

)
=

u2s̄2x
1/d

dγ
1/d
d cd(s1)(1− e−θtd+1)

exp

[
−u2s̄2x

d+1
d

(d+ 1)γ
1/d
d cd(s1)

]
,

(8)
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Figure 6: Local and distant recurrences. Local (blue) and distant (green) premalignant
fields give rise to second field tumors and second primary tumors (both red), respectively.
In scenario A, there is only one premalignant field (the local field) present at time of cancer
initiation (middle panel), and the recurrence occurs inside the local field. In scenario B,
two unrelated precancerous fields are present at time of initiation (middle panel), and the
recurrence may occur as a second primary tumor in the distant field.
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for x ∈ [0, γdc
d
d(s1)td].

The proof of this result is found in section 7.1, and the distribution of the local field
radius follows easily as

P̂ (Rl(σ2) ∈ dr) =
u2s̄2 γd r

d

cd(s1)(1− e−θtd+1)
exp

[
− u2s̄2γdr

d+1

cd(s1)(d+ 1)

]
, (9)

for r ∈ [0, cd(s1)t].
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Figure 7: Size-distribution of local field. The size-distribution (8) of the local field is
shown for different scenarios, corresponding to different Γ-values and regimes R1, R2 and
R3 as explained in Section 2.4. A For varying arrival times t; B for varying type-1 mutation
rates u1; C for varying type-2 mutation rates u2; (D) for varying type-1 fitness advantages
s1. The non-varying parameters are held constant at d = 2, N = 2 · 105, u1 = 7.5 · 10−7,
u2 = 2 · 10−5, s1 = s2 = 0.1 and c2(s1) = 0.16.
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Note that the distribution of the local field size (8) depends on the rate of successful
mutations u2s̄2 and the growth rate cd(s1), but is independent of λ, the arrival rate of
type-1 mutations. In Figure 7A, we show how the distribution of the local field area (8)
changes with arrival time of the first successful type-2 clone. As expected, the support
of the distribution increases with increasing initiation time, and hence the likelihood of
having a large local field increases substantially. This suggests that that tumors appearing
later have a higher recurrence probability if only the malignant portion is removed during
surgery. The finite support of each probability density function reflects the fact that there
is a hard upper bound on the size of a premalignant field at finite time t in the system.

In Figure 7B,C we illustrate the sensitivity of the size-distribution of the local field to
varying mutation rates u1 and u2, conditioned on observing initiation at the expected time
t = E(σ2). The mutation rates are tuned to vary across parameter Regimes 1, 2, and 3
as described in the previous section. Observe that for lower mutation rates, the local field
size varies widely (and sometimes close to uniformly) over a large range of values, while
elevated mutation rates in both cases signify smaller local fields. For the u1 rate (Figure
7B), an intuitive explanation for this behavior is that as the mutation rate increases, the
system moves towards regimes 2 and 3, in which the premalignant field is comprised of
an increasing number of independent type-1 patches. With more type-1 patches present,
the space-time volume of type-1 cells that can give rise to the first successful type-2 cell
increases faster, and hence the size of the patch that eventually gives rise to the first type-2
decreases accordingly. For u2 (Figure 7C) on the other hand, an increase in the mutation
rate signifies a move towards regime 1: fewer type-1 clones are required to produce the
first successful type-2, and the size of the type-1 field that yields the first type-2 decreases
with increasing u2. Another observation to note is that the local field size varies across
the same range of orders of magnitude as the mutation rates. This suggests for example,
that carcinogen exposure or environmental causes changing mutation rates by one order of
magnitude could result in predicted field sizes impacted similarly by an order of magnitude.

Finally, we demonstrate the sensitivity of the local field size to the selective advantage
s of mutant cells, see Figure 7D. For a small fitness gain of s = 0.025, the distribution is
peaked at lower field sizes, but as s increases the field size distribution shifts to the right.
High fitness gains are usually associated with an aggressive tumor phenotype, and Figure
7D suggests that such tumors may also be associated with large surrounding premalignant
fields and thus higher recurrence risks.

3.2 Size of the distant field at initiation

Next we are interested in analyzing the size distribution of the distant field at initiation,
which is comprised of premalignant clones that are clonally unrelated to the tumor. Define
the vector of areas of the distant premalignant lesions at time t to be X̄d(t). This vector
holds the areas of all premalignant clones except for the local field clone from which the
tumor arises. Mathematically speaking, the goal of this section is to characterize the law of
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X̄d(σ2) conditioned on the event {σ2 = t}. Before stating the main result some additional
notation is needed. First, define the mapping αj(i) as follows:

αj(i) =

{
i, if j > i

i+ 1, if j ≤ i.

Then, we define the random variable X̃i ≡ Xα(i), where

α(i) ≡
M(t)∑
j=1

αj(i)1{X[1]=Xj}.

Note that using this definition, (X̃1, . . . , X̃M(σ2)−1) represents the vector of sizes of the
clones present at time σ2, omitting the entry corresponding to the size-biased pick X[1]

which represents the local field. In other words, the distribution of X̄d(σ2) is the joint
distribution of (X̃1, . . . , X̃M(σ2)−1), which characterizes the size distribution of the clones
in the distant field at time σ2. We obtain the following result (see section 7.2 for the proof).

Theorem 3.3. The size-distribution of the distant field clones at time σ2 of the first
successful type-2 mutation, conditioned on {σ2 = t}, is given by

L(X̄d| ∈ dt) =d P̂ (X̃1 ∈ dx1, . . . , X̃M(t)−1 ∈ dxM(t)−1)

=
1

1− e−λtφ(t)

∞∑
m=1

(λφ(t)t)me−λφ(t)t

m!

m−1∏
i=1

gt(xi),

where gt(x) is defined in (26).

Of note, from Theorem 3.3 and Corollary 3.5 below, we see that

L(X̄d|σ2 = t,M(t) = m) =d P̂ (X̃1 ∈ dx1, . . . , X̃m−1 ∈ dxm−1) =

m−1∏
i=1

gt(xi).

Figure 8 shows how the probability density function of the total distant field size (i.e. the
sum of all distant field patches) changes with increasing mutation rate u1. For a comparison
to the local field size distribution at the same parameter values, we refer to Figure 7B. We
note that in regimes 1 and 2 the total distant field size is on the same order of magnitude
as the local field size, but in regime three the distant field size is significantly larger than
the size of the local field. As will be investigated in more detail below, this suggests that
secondary tumor recurrences for cancer types in regime 3 are much more likely to stem
from the distant field, and thus are more likely to be clonally unrelated to the primary
tumor.
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Figure 8: The distribution of the total size of the distant field is shown for different
scenarios, corresponding to the three regimes R1, R2 and R3 illustrated in Figure 4 for
varying type-1 mutation rates u1. The non-varying parameters are held constant at d = 2,
N = 2 · 105, u2 = 2 · 10−5, s1 = s2 = 0.1 and c2(s1) = 0.16.

3.3 Number of field patches: evolution until initiation

We next analyze the total number of premalignant lesions over time until tumor initiation.
In particular, the following result holds (see section 7.3 for the proof).

Proposition 3.4. Conditioned on {σ2 = t}, we have that for all ζ ≤ t, the number of field
patches is distributed as a mixture of a Poisson and a shifted Poisson random variable. In
particular,

P (M(ζ) = m|σ2 = t) = p1(t, ζ)
λm [tφ(t)− (t− ζ)φ(t− ζ)]m

(m)!
e−λ[tφ(t)−(t−ζ)φ(t−ζ)]

+ p2(t, ζ)
λm−1 [tφ(t)− (t− ζ)φ(t− ζ)]m−1

(m− 1)!
e−λ[tφ(t)−(t−ζ)φ(t−ζ)],

where p1(t, ζ) + p2(t, ζ) = 1 and p1(t, ζ) = (1− e−θ(t−ζ)d+1
)/(1− e−θtd+1

). In particular,

E(M(ζ)|σ2 = t) = λ [tφ(t)− (t− ζ)φ(t− ζ)] + p2(t, ζ).

It is interesting to observe that as ζ → t we see that p1(t, ζ) → 0, therefore as ζ gets
closer to time t the process looks more like a shifted Poisson. This is stated in the corollary
below.
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Corollary 3.5.

P̂ (M(t) = m) =
(λ t φ(t))m−1

(m− 1)!
e−tλφ(t), m ≥ 1, (10)

and P̂ (M(t) = m) = 0. In particular,

Ê(M(t)) = 1 + E(M(t)|σ2 > t) = 1 + λtφ(t), (11)

where E(M(t)|σ2 > t) is discussed in Lemma 7.2.

Using Proposition 3.4, we can study the expected number of field patches of a certain
size over time. Figure 9 shows the temporal dynamics of clone-size distribution in each
regime. In regime 1 the expected number of small clones peaks and then declines as larger
clones begin to dominate (consistent with the notion that a single premalignant clone exists
prior to initiation), whereas in regimes 2 and 3 we see longer coexistence of large and small
clones over time.
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Figure 9: Dynamic clone-size distribution. For each of the three regimes in Figure 5,
the expected number of type-1 clones of sizes comprised in the corresponding intervals Ij
are shown as functions of time up to E(σ2) (expectations are conditioned on {t = E(σ2)}).
The intervals are defined as I1 = [0, 1500), I2 = [1500, 3000), I3 = [3000, 4500) and I4 =
[4500,+∞). Parameter values as in Figure 5.

Finally, we would like to point out that the result in Proposition 3.4 can be extended
to a result about the entire process {M(r) : 0 ≤ r ≤ t} conditioned on σ2 = t. The details
are provided in section 7.4.

4 Recurrence predictions

Tumor recurrence due to field cancerization poses a substantial clinical problem in many
epithelial cancers [3]. We next aim to use the results of the previous section to develop a
methodology for assessing the risk of tumor recurrence (as well as the likely type of tumor
recurrence) after surgical removal of the primary tumor.
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4.1 Local vs. distant field recurrence?

As discussed above, a recurring tumor can either arise in the same premalignant field (a
second field tumor), or it can arise in a clonally unrelated field (second primary tumor).
In this section we characterize the recurrence time distribution for each of these secondary
tumor types, and study how the relative likelihood of local vs. distant recurrence depends
upon parameters of the tissue and cancer type.

To this end, we first study the recurrence time distribution for second field tumors,
which arise from the local premalignant field. Denote the second field recurrence time by
T fR, measured in time units τ starting from τ = 0 at time σ2. The time is reset at the
tumor initiation time σ2, rather than the tumor resection time σ2 + TD, to accommodate
the possibility that a recurrence occurs prior to detection of the primary tumor. Thus if
recurrence occurs at some time τ < TD, then a secondary tumor already exists at the time
of diagnosis of the primary tumor (but may be too small to be detectable). We assume
that the primary tumor node is completely resected once it becomes detectable at time
TD, leaving the surrounding field intact (i.e. there are no excision margins).

At time σ2 a successful type-2 cell arises from a premalignant clone of radius Rl(σ2),
whose distribution is characterized in (9). If Rl(σ2) = r, the incidence rate of successful
type 2 mutations within this field is given by

η(r, τ) ≡ u2s̄2γd

[
(r + cd(s1)τ)d − cdd(s2) (τ ∧ TD)d

]
, (12)

where cd(s2) is the rate of expansion of the malignant cells into the type-1 field. The proof
of the following result can be found in section 7.5.

Corollary 4.1. The probability of a second field tumor having formed before time τ (mea-
sured from σ2), conditioned on {σ2 = t}, is given by

P̂ (T fR < τ) = 1− γdu2s̄2

cd(s1)(1− e−θtd+1)

∫ cd(s1)t

0
rd exp

[
− uss̄2γd
cd(s1)(d+ 1)

rd+1 −
∫ τ

0
η(r, s)ds

]
dr.

In particular, P̂ (T fR < TD) is the probability that smaller, possibly undetectable second field
tumors exist at the time of diagnosis.

In Figure 10A the cumulative distribution function of T fR as calculated in Corollary
4.1 is shown, for varying values of type-2 mutation rates u2. As one might expect, higher
mutation rates yield a decreased time to recurrence (the curves shift to the left for increasing
u2). However, considering that the size of the premalignant field at initiation of the primary
tumor is inversely proportional to the mutation rate u2, see Figure 10B, the decrease in
time to recurrence is a priori not obvious: a bigger precancer field increases the chance of
fast recurrence. This example illustrates how a quantitative model enables us to assess the
relative importance of competing aspects of the system - in this case, the impact of larger
premalignant field versus higher mutation rates on recurrence likelihood.
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Figure 10: Time to local recurrence. A The cumulative distribution function of the time
to recurrence of a second field tumor is shown for three different scenarios, corresponding
to u2 = 2 · 10−3 (Regime 1), u2 = 2 · 10−5 (Regime 2) and u2 = 2 · 10−3 (Regime 2/3),
respectively. The remaining parameters are d = 2, N = 2·105, u1 = 7.5·10−7, s1 = s2 = 0.1,
t = E(σ2). B Schematic of the relative initiation times of the primary tumor (yellow) and
sizes of the local fields (blue), for the three scenarios in panel A. The numerical values
for expected initiation time and local field size are: (a) E(σ2) = 123, Ê(Rl) = 8; (b)
E(σ2) = 281, Ê(Rl) = 31; (c) E(σ2) = 474, Ê(Rl) = 55.

If the recurrence does not take place in the local field giving rise to the first successful
type-2 clone, then it either arises from one of the type-1 clones already present at time of
initiation (i.e. the distant field), or it arises in a type-1 clone formed after initiation. In
the latter case, the waiting time is again distributed as σ2, and hence we focus here on the
distribution of the waiting time T pR, defined as the time from σ2 until a second primary
tumor arises from the distant field already existing at σ2. We have the following result,
proved in section 7.6.

Corollary 4.2. The probability that the distant field at the time of initiation gives rise to
a second primary tumor by time τ (measured from σ2), conditioned on {σ2 = t}, is given
by

P (T pR > τ |σ2 = t) = exp [−λtφ(t) (1− dγdΦ(τ, t))]

where

Φ(τ, t) =

∫ ∞
0

exp

(
−
∫ τ

0
η (r, s) ds

)
rd−1gt(r

d
i γd)dr,

and gt is defined in (26).
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Thanks to the results in this section, it is now possible to evaluate the probability of
local versus distant tumor recurrences in each parameter regime. Corollary 4.1 explicitly
provides the probability density function P̂ (T fR ∈ dτ), which is the probability that a second
field tumor arises at time τ from the same field that gave rise to the primary tumor. To
obtain the corresponding probability density function for recurrence as a second primary
tumor, we have to consider recurrences due to distant field lesions that have arisen before
and after σ2. While Corollary 4.2 characterizes the recurrence risk due to distant lesions
already present at initiation, the time to a successful second primary tumor from a distant
field not yet present at initiation is distributed as σ2, see (4). Therefore, the distribution
of interest is that of T̃ pR = min{T pR, σ2}, which is the time of the first distant recurrence
event.

In Figure 11 we study how the comparison between the probability density functions
of T fR (second field tumor, local) and T̃ pR (second primary tumor, distant) varies in regimes
1, 2 and 3. The likelihood of local vs. distant recurrences depends strongly upon both the
timing and parameter regime of the system In regime 1, local recurrence is significantly
more likely overall, but at late times the probability of distant recurrences is slightly higher
than for local recurrences. In contrast, in regimes 2 and 3 the overall probability of local
and distant recurrences are comparable. However, in regime 2, at early times distant
field recurrences are more likely, whereas the opposite is true at later times. The same
observation, but even more pronounced, holds in regime 3.

5 Conclusions and outlook

In this study we performed a quantitative analysis of the cancer field effect by means
of a spatial stochastic model of cancer initiation, which had previously been introduced
in [26]. Using this model, we studied the characteristics of premalignant fields at the time
of tumor initiation. In particular, we derived the size-distributions of the local field (the
premalignant lesion that gives rise to the tumor) and the distant field (the premalignant
lesions that are unrelated to the primary tumor). We also investigated how the extent and
geometry of these fields depend upon Γ, a key combination of parameters of the tissue and
genetic pathway leading to cancer. We calculated the dynamic clone size distribution at
times leading up to initiation, and derived the probability density functions of local and
distant recurrence times. Finally, we compared the relative likelihood of second field versus
second primary tumors, and demonstrated how the clonal relatedness between primary and
recurrent tumors depends explicitly upon tissue and cancer type parameters.

Using an example set of biologically realistic parameters in two space dimensions (which
is appropriate for describing the cancer initiation process in the basal layer of a stratified
epithelium), we found that lower mutation rates (such as in regime 1) were associated with
larger local field sizes, whereas higher mutation rates (regimes 2 and 3) led to smaller local
fields. We also found that higher mutation rates resulted in larger distant fields, while more
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Figure 11: Local vs. distant recurrence. A For each of the three regimes in Figure
5, we show: the distribution of time to local recurrence P̂ (T fR ∈ dτ), and the distribution

of time to distant recurrence P̂ (T̃ pR ∈ dτ). The distribution of T fR is given in Corollary
4.1 and we set T̃ pR = min{T pR, σ2} to account both for contributions from type-1 clones
already existing at σ2 as well as contributions from type-1 clones born after σ2 (for which

time to recurrence is distributed as σ2). Expected times to recurrence: Ê(T fR) = 81 and

Ê(T̃ pR) = 733 (Regime 1); Ê(T fR) = 98 and Ê(T̃ pR) = 86 (Regime 2); Ê(T fR) = 149 and

Ê(T̃ pR) = 34 (Regime 3). The parameter values are as in Figure 5.

aggressive cancers (high selective advantage) led to larger local fields at diagnosis. Finally,
we investigated the risk of recurrence after surgical resection of the malignant portion, and
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found that for low mutation rates (regime 1), local recurrence is much more likely, whereas
for larger mutation rates (regimes 2 and 3), the overall probability of local and distant
recurrences are comparable. However, in regimes 2 and 3, early recurrences are more likely
to be a second primary tumor, whereas the late recurrences are more likely to be second
field tumors.

One important limitation of our approach is that the model captures a specific sequence
of genetic alterations with specified ui and si, and does currently not allow for permuta-
tions of genetic events and divergent pathways. Nevertheless, our model may provide a
useful framework for comparing different biological hypotheses and disentangling divergent
genetic pathways among cancer subtypes. In particular, it enables us to predict differences
in observable dynamics such as initiation times and prognoses between different molecular
models. Such an approach could help elucidating the sequence of genetic events during car-
cinogenesis, and will be the subject of future work. Another limitation of our framework is
that we have assumed a static, uniform microenvironment within the tissue. The local mi-
croenvironment is in reality determined by a variety of time- and space-dependent factors
such as glucose, oxygen, growth factors, drugs and cytokine concentrations. In addition
to impacting the growth and mutation rates of cells within the tissue, the local microen-
vironment is increasingly being recognized as playing an important role in carcinogenesis
through stromal signaling.

As mentioned before, field cancerization poses various clinical challenges, especially in
the case of head and neck, where multifocal primary cancers as well as recurrences are
common [35]. In particular, the optimal size of excision margins and assessment of the
recurrence risk after surgery are largely unsolved problems arising in everyday clinical
practice. In a forthcoming study, we will discuss how our analysis can be used to address
some of the most pertinent clinical questions in head and neck cancer care.

In summary, the analyses performed in this work contribute towards a quantitative
understanding of how organ-specific physiological parameters and pathway-specific param-
eters influence the process of field cancerization and the associated risk of recurrence. We
demonstrate that tumor recurrence dynamics and premalignant field characteristics are
strongly dependent upon these parameters, which vary across different tissue and can-
cer types. Once properly calibrated for a specific tissue and cancer type, the proposed
methodology can potentially be used to provide insights into key prognostic factors such
as risk of multifocal lesions and tumor recurrence, surveillance guidelines, and treatment
design. For example, we are able to assess the likelihood and timing of local versus distant
recurrences after surgical resection. Since this distinction provides information on the level
of clonal relatedness between primary and recurrent tumors, the model predictions may
provide insights into whether treatment strategies effective for primary tumors will be use-
ful for recurrent tumors in particular cancer types. In addition, our methodology can be
utilized to assess the relative benefits of surgical excision margins, and to help determine
the minimal margins necessary to prevent recurrence in each tissue type.
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7 Appendix: Proofs

7.1 Proof of Theorem 3.2

To prove Theorem 3.2, we first need a few new definitions and preliminary results. Define
V (t) to be the random total space-time volume covered by successful type-1 families until
time t,

V (t) =

M(t)∑
i=1

γdc
d
d(s1)

(t− Ti)d+1

d+ 1
, (13)

where Ti represents the arrival time of the i-th family, and M(t) is the total number of
successful arrivals by time t, which is a Poisson process with rate λ. Let VEt represent the
space-time volume conditioned on the event

Et(t1, . . . , tm) ≡ {M(t) = m,T1 ∈ dt1, . . . Tm ∈ dtm},

where 0 < t1 < · · · < tm < t. In other words,

VEt ≡
γdc

d
d(s1)

d+ 1

m∑
i=1

(t− ti)d+1. (14)

For ease of notation we replace VEt(t1,...,tn) with the more compact version VEt . Since
E[V (t)] = E[E[V (t)|M(t)]] and the conditioned process is a compound Poisson process,
we obtain that

E[V (t)] =

∞∑
m=0

P (M(t) = m)
mγdc

d
d(s1)

d+ 1
E[(t− Ti)d+1] = λγdc

d
d(s1)

td+2

(d+ 2)(d+ 1)
.

Similarly, we define A(t) to be the total area of clones covered by successful type-1 families
at time t,

A(t) ≡
M(t)∑
i=1

γdc
d
d(s1)(t− Ti)d, (15)

and we define AEt to be this quantity conditioned on Et(t1, . . . , tm),

AEt ≡
m∑
i=1

γdc
d
d(s1)(t− ti)d. (16)
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Note that

E[A(t)] =
∞∑
m=0

P (M(t) = m)mγdc
d
d(s1)E[(t− Ti)d] = λγdc

d
d(s1)

td+1

d+ 1
. (17)

By considering the space-time volume of type-1 clones we can calculate P (σ2 > t|Et(t1, . . . , tm)
and P (σ2 > t|M(t) = m). Combining these two formulas and using Bayes rule we get the
following result for the joint distribution of the arrival times of successful type-1 mutations,
conditioned on the total number of mutations by time t.

Lemma 7.1. Conditioned on {σ2 > t} and {M(t) = m}, the arrival times of successful
type-1 clones (T1, . . . , Tm) are distributed as order statistics of iid random variables as
follows:

P (T1 ∈ dt1, . . . , Tm ∈ dtm|σ2 > t,M(t) = m) =
m!

tmφ(t)m

m∏
i=1

e−θ(t−ti)
d+1

where 0 < t1 < · · · < tm < t.

Proof. The arrival process of successful type-1 mutations is represented by M(·), which is
a Poisson process with rate λ = Nu1s1/(1 + s1) and arrival times T1, T2, . . .. Then for any
t > 0 and sequence 0 < t1 < · · · < tm < t we have that

P (Et(t1, . . . , tm)) = λme−λt. (18)

Since

P (σ2 > t|Et(t1, . . . , tm)) = exp(−u2s̄2VEt), (19)

we find using Bayes’ rule

P (σ2 > t, Et(t1, . . . , tm)) = λme−λt exp(−u2s̄2VEt).

It follows then that

P (T1 ∈ dt1, . . . , Tm ∈ dtm|σ2 > t,M(t) = m) =
P (σ2 > t, Et(t1, . . . , tm))

P (σ2 > t|M(t) = m)P (M(t) = m)

=
λme−λt exp (−u2s̄2VEt)

P (σ2 > t|M(t) = m)e−λt(λt)m/m!

=
m!

tm
exp (−u2s̄2VEt)(

E exp
(
−u2s̄2γdc

d
d(s1)(t− T )d+1/(d+ 1)

))m
= m!

m∏
i=1

(
1

t

)
exp

(
−u2s̄2γdc

d
d(s1)(t− ti)d+1/(d+ 1)

)
E exp

(
−u2s̄2γdc

d
d(s1)(t− T )d+1/(d+ 1)

) ,
where T is a uniform random variable on [0, t]. .
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The distribution in Lemma 7.1 is an exponential twist of the uniform distribution.
Note that if the conditioning was placed on the set {σ2 = t} instead of {σ2 > t}, then
the conditional distribution would no longer have product form because of the term d

dtVEt ,
and the arrival times would not be the order statistics from an iid collection of random
variables.

Next, we show that the random variable M(t) is Poisson if conditioned on {σ2 > t}.

Lemma 7.2. Conditioned on {σ2 > t}, M(t) =d Pois (λtφ(t)) .

Proof. First we note that

P (σ2 > t) =
∞∑
m=0

1

m!

∫
[0,t]m

P (σ2 > t|Et(t1, . . . , tm))P (Et(t1, . . . , tm))dt1 . . . dtm

=

∞∑
m=0

1

m!

∫
[0,t]m

exp (−uss̄2VEt)λ
me−λtdt1 . . . dtm

=
∞∑
m=0

1

m!
tmλm e−λt

(
1

t

∫ t

0
exp

(
−
u2s̄2γdc

d
d(s1)(t− r)d+1

d+ 1

)
dr

)m
=
∞∑
m=0

(tλφ(t))m

m!
e−λt = etλ(φ(t)−1).

(20)

From this, we find using Bayes’ rule

P (Et(t1, . . . , tm)|σ2 > t) =
P (σ2 > t|Et(t1, . . . , tm)P (Et(t1, . . . , tm))

P (σ2 > t)

=
λme−λt exp(uss̄2VEt)

etλ(φ(t)−1)
,

(21)

and hence

P (M(t) = m|σ2 > t) =
1

m!

∫
[0,t]m

P (Et(t1, . . . , tm)|σ2 > t)dt1 . . . dtm

=e−λtφ(t)) (tλφ(t))m

m!
.

.

For subsequent considerations, it will be useful to define the two conditional probability
measures P̂ (·) = P (·|σ2 = t) and P̃ (·) = P (·|σ2 > t), and their corresponding expected
values, Ê(·) = E(·|σ2 = t) and Ẽ(·) = E(·|σ2 > t), respectively. In particular, we can
compute the Radon-Nikodym derivative between these two measures.
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Lemma 7.3. The Radon-Nikodym derivative of P̂ with respect to P̃ is given by

dP̂

dP̃
=

AEtu2s̄2

λ(1− e−θtd+1)
. (22)

Proof. First, note that

P (Et(t1, . . . , tm)|σ2 = t) =
P (Et(t1, . . . , tm))P (σ2 = t|Et(t1, . . . , tm))

P (σ2 = t)
. (23)

By differentiating (19) and (20) we obtain

P (σ2 = t|Et(t1, . . . , tm)) = u2s̄2AEt exp(−u2s̄2VEt)

and

P (σ2 ∈ dt) = − d

dt
etλ(φ(t)−1) = λ

(
1− e−θtd+1

)
etλ(φ(t)−1). (24)

Hence (23) becomes

P (Et(t1, . . . , tm)|σ2 = t) = λme−λt
u2s̄2AEt exp(−u2s̄2VEt)

λetλ(φ(t)−1)(1− e−θtd+1)
,

and comparing this to (21) yields the desired result.

Recall now that M(t) is the number of successful type-1 mutations that have arrived
by time t, and we denote their arrival times by T1, . . . , TM(t). At time t, the area of a clone

created at time r < t is γdc
d
d(s1)(t − r)d, and hence the area of the i-th clone at time t is

given by the random variable

Xi(t) ≡ γdcdd(s1)(t− Ti)d.

Using the above results together with definition 3.1 of a size-biased pick we can now prove
Theorem 3.2.

Proof of Theorem 3.2. Using basic properties of conditional expectations and Definition
3.1 we find

P̂ (X[1] ∈ dx) = Ê
[
P̂ (X[1] ∈ dx|X1, . . . , XM(t),M(t))

]
= Ê

M(t)∑
i=1

Xi1{Xi∈dx}

SM(t)

 =

∞∑
m=1

Ê

[
m∑
i=1

Xi1{Xi∈dx}

Sm
1{M(t)=m}

]
,
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where Sm = X1 + . . .+Xm. Using the Radon-Nikodym derivative (22) we can rewrite this
as

=

∞∑
m=1

Ẽ

1{M(t)=m}u2s̄2

λ(1− e−θtd+1)

(
m∑
i=1

Xi1{Xi∈dx}

Sm

)
m∑
j=1

Xj


=

u2s̄2

λ(1− e−θtd+1)

∞∑
m=1

Ẽ

[
1{M(t)=m}

m∑
i=1

x1{Xi∈dx}

]

=
xu2s̄2

λ(1− e−θtd+1)

∞∑
m=1

E

[
m∑
i=1

1{Xi∈dx}|M(t) = m,σ2 > t

]
P (M(t) = m|σ2 > t)

=
xu2s̄2

λ(1− e−θtd+1)
P (X1(t) ∈ dx|M(t) = m,σ2 > t)E [M(t)|σ2 > t] ,

(25)

where we have used the fact that P (X1(t) < x|M(t) = m,σ2 > t) is independent of m,
which we will show below. Using Lemma 7.1 and differentiating the cumulative distribution
function

P (X1(t) < x|M(t) = m,σ2 > t) = P

(
T1 > t−

(
x

γdc
d
d(s1)

)1/d ∣∣∣M(t) = m,σ2 > t

)
,

we determine that

P (X1(t) ∈ dx|M(t) = m,σ2 > t) =
x1/d−1

dγ
1/d
d cd(s1)tφ(t)

exp

[
−u2s̄2x

d+1
d

(d+ 1)γ
1/d
d cd(s1)

]
≡ gt(x)

(26)

for x ∈ [0, γdc
d
d(s1)td]. Note that (26) is indeed independent of m. From Lemma 7.2 it

follows that
E [M(t)|σ2 > t] = λtφ(t),

and combined with (25) and (26) this yields the desired result.

7.2 Proof of Theorem 3.3

Using Definition 3.1 of a size-biased pick we find

P̂ (X̃1 ∈ dx1, . . . , X̃M(t)−1 ∈ dxM(t)−1)

= Ê[P̂ (X̃1 ∈ dx1, . . . , X̃M(t)−1 ∈ dxM(t)−1|X1, . . . , XM(t),M(t))]

= Ê

M(t)∑
j=1

Xj

SM(t)

M(t)−1∏
i=1

1{Xαj(i)∈dxi}


=

u2s̄2

λ(1− e−θtd+1)

∞∑
m=1

P (M(t) = m|σ2 > t)E

 m∑
j=1

Xj

m−1∏
i=1

1{Xαj(i)∈dxi}

∣∣∣σ2 > t,M(t) = m

 ,
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where the final equality follows from the same sequence of arguments as used in the proof
of Theorem 3.2. Next, we note that

E[Xj(t)|σ2 > t,M(t) = m] =

∫ ∞
0

xP (Xj(t) ∈ dx|M(t) = m,σ2 > t) =

∫ ∞
0

x gt(x)dx

=

∫ γdc
d
d(s1)td

0

x1/d

dγ
1/d
d cd(s1)φ(t)t

exp

[
−u2s̄2x

d+1
d

(d+ 1)γ
1/d
d cd(s1)

]
dx

=
1

φ(t)tu2s̄2

[
1− exp

(
−
u2s̄2γdc

d
d(s1)td+1

d+ 1

)]
,

and

m∑
j=1

E

[
Xj

m−1∏
i=1

1{Xαj(i)∈dxi}

∣∣∣σ2 > t,M(t) = m

]
=

m∑
j=1

E[Xj |σ2 > t,M(t) = m]

m−1∏
i=1

gt(xi).

Together with Lemma 7.2 the result follows.

7.3 Proof of Proposition 3.4

First, we use Bayes’ rule to find

P (Eζ(t1, . . . , tm)|σ2 = t) =
P (σ2 ∈ dt|Eζ(t1, . . . , tm))P (Eζ(t1, . . . , tm))

P (σ2 ∈ dt)
. (27)

Since P (σ2 ∈ dt) is given in (24) and P (Eζ(t1, . . . , tm)) = λme−λζ , it remains to calculate
P (σ2 ∈ dt|Eζ(t1, . . . , tm)). It is easy to see that

P (σ2 > t|Eζ(t1, . . . , tm)) = exp (−u2s̄2VEt) q(ζ, t), (28)

where q(ζ, t) is the probability that a type-2 mutation arises in a clone that is born in the
interval (ζ, t). We find

q(ζ, t) =E
[
e−θ

∑M(t−ζ)
i=1 (t−Ti)d+1

]
=E

[
E
[
e−θ

∑M(t−ζ)
i=1 (t−Ti)d+1

∣∣∣M(t− ζ)
]]

=E
[
φ(t− ζ)M(t−ζ)

]
= eλ(t−ζ)(φ(t−ζ)−1),

where the last expression is the generating function for the Poisson process. Together with
(28) this yields now

P (σ2 ∈ dt|Eζ(t1, . . . , tm)) =− d

dt
P (σ2 > t|Eζ(t1, . . . , tm))

=eλ(t−ζ)(φ(t−ζ)−1)e−u2s̄2VEt
[
uss̄2AEt + λ

(
1− e−θ(t−ζ)d+1

)]
31



Together with (24) and (18), we find now

P (Eζ(t1, . . . , tm)|σ2 = t) = λm−1 e
−λ[tφ(t))−(t−ζ)φ(t−ζ)](

1− e−θtd+1
) e−u2s̄2VEt

[
uss̄2AEt + λ

(
1− e−θ(t−ζ)d+1

)]
,

and hence performing the integration in

P̂ (M(ζ) = m) =

∫
[0,ζ]m

1

m!
P (Eζ(t1, . . . , tm)|σ2 = t)dt1 . . . dtm

yields the desired result.

7.4 Joint distribution of the process {M(r) : 0 ≤ r ≤ t}

We present here the joint distribution of the process {M(r) : 0 ≤ r ≤ t}, conditioned on
σ2 = t, at multiple time points. Since the proof is similar to Proposition 3.4 we do not
include it. For 0 ≤ r ≤ r′ ≤ t define

φ̂(t; r, r′) =

∫ r′

r
e−θ(t−y)d+1

dy.

Then for any positive integer `, sequence of time points 0 < r1 ≤ . . . ≤ r` < t and
non-negative integers k1 ≤ k2 ≤ . . . ≤ k` we have that

P̂ (M(r1) = k1, . . . ,M(r`) = k`)

=

(∑̀
i=1

ki − ki−1

φ̂(t; ri−1, ri)
pi + λp`+1

)
1

λ

∏̀
j=1

(
λφ̂(t; rj−1, rj)

)kj−kj−1

(kj − kj−1)!
e−λφ̂(t;rj−1,rj),

where for 1 ≤ i ≤ `+ 1,

pi =
e−θ(t−ri)

d+1 − e−θ(t−ri−1)d+1

1− e−θtd+1 ,

r0 = 0, k0 = 0, and r`+1 = t. Note that for each i, 0 < pi < 1 and
∑`+1

i=1 pi = 1, i.e. the pi’s
form a probability vector. The above joint distribution is rather difficult to parse, so we
describe how one would generate samples of the increments of the process. For 1 ≤ i ≤ `,
set Xi = M(ri) − M(ri−1), then we can generate the values of the vector X1, . . . , X`

under the measure P̂ as follows. For each 1 ≤ i ≤ ` sample Xi according to a Poisson
distribution with mean λφ̂(t; ri−1, ri). Choose an integer I according to the probability
vector (p1, . . . , p`+1), if I = i < `+ 1 replace Xi with Xi + 1. Note that in contrast to the
setting of a Poisson process the random variables X1, . . . , X` are not independent under P̂ .
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7.5 Proof of Corollary 4.1

P̂ (T fR > τ) =P
(
T fR > τ |σ2 = t

)
=

∫ cd(s1)t

0
P (T fR > τ,Rl(σ2) ∈ dr|σ2 = t)dr

=

∫ cd(s1)t

0
P (T fR > τ |Rl(σ2) ∈ dr, σ2 = t)P (Rl(σ2) ∈ dr|σ2 = t)dr,

where Rl(t) is the radius of the local field surrounding the tumor at time t. The result
follows from

P (T fR > τ |Rl(σ2) ∈ dr, σ2 = t) = exp

(
−
∫ τ

0
η(r, s)ds

)
(29)

and the conditional density of Rl(σ2) in (9).

7.6 Proof of Corollary 4.2

First, we note that

P (T pR > τ |M(t) = m,σ2 = t)

=

∫
Rm−1
+

P
(
T pR > τ |R̃1 ∈ dr1, . . . , R̃m−1 ∈ drm−1,M(t) = m,σ2 = t

)
· · ·

· · ·P
(
R̃1 ∈ dr1, . . . , R̃m−1 ∈ drm−1|M(t) = m,σ2 = t

)
,

(30)

where R̃i are the radii of the distant field clones, corresponding to their respective areas
X̃i defined in Section 3.2. Recalling the definition of η in (12), we find

P
(
T pR > τ |R̃1 ∈ dr1, . . . , R̃m−1 ∈ drm−1,M(t) = m,σ2 ∈ dt

)
= exp

(
−
m−1∑
i=1

∫ τ

0
η (ri, s) ds

)
.

(31)

Recalling the Radon-Nikodym derivative dP̂ /dP̃ from Lemma 7.3, it is straight-forward to
verify that

dP (t1, . . . tm|M(t) = m,σ2 = t)

dP (t1, . . . tm|M(t) = m,σ2 > t)
=
dP̂

dP̃

P (M(t) = m|σ2 > t)

P (M(t) = m|σ2 = t)
=

AEtu2s̄2tφ(t)

m(1− e−θtd+1)
,

which allows us to derive the following expression (proceeding as in the proof of Corollary
3.3),

P
(
X̃1 ∈ dx1, . . . , X̃m−1 ∈ dxm−1|M(t) = m,σ2 = t

)
=

m−1∏
i=1

g(xi)dxi.
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Switching from the clone-areas X̃i back to the corresponding radii R̃i, we find

P
(
R̃1 ∈ dr1, . . . , R̃m−1 ∈ drm−1|M(t) = m,σ2 = t

)
= (d γd)

m−1
m−1∏
i=1

rd−1
i g(rdi γd)dri

From this, (31) and (30) we find

P
(
T pR > τ |M(t) = m,σ2 = t

)
= (d γd Φ(τ, t))m−1 , (32)

Finally, using Lemma 7.2,

P̂ (T pR > τ) =
∞∑
m=1

P
(
T pR > τ |M(t) = m,σ2 = t

)
P̂ (M(t) = m)

= exp (−λtφ(t) (1− dγdΦ(τ, t)))
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Ruud H Brakenhoff. A genetic explanation of slaughter’s concept of field cancerization
evidence and clinical implications. Cancer Research, 63(8):1727–1730, 2003.

[3] Hong Chai and Robert E Brown. Field effect in cancer–an update. Annals of Clinical
& Laboratory Science, 39(4):331–337, 2009.

[4] P. Armitage and R. Doll. A two-stage theory of carcinogenesis in relation to the age
distribution of human cancer. Br. J. Cancer, 11, 1957.

[5] G. Luebeck and S. Moolgavkar. Multistage carcinogenesis and the incidence of col-
orectal cancer. PNAS, 99:15095–15100, 2002.

[6] N.L. Komarova, A. Sengupta, and M.A. Nowak. Mutation-selection networks of cancer
initiation: Tumor suppressor genes and chromosone instability. Journal of Theoretical
Biology, 223:433–450, 2003.

[7] F. Michor, Y. Iwasa, and M.A. Nowak. The age incidence of chronic myeloid leukemia
can be explained by a one-mutation model. Proc. Natl. Acad. Sci. USA, 103:14931–
14934, 2006.

[8] J. Schweinsberg. Waiting for n mutations. Electronic Journal of Probability, 13:1442–
1478, 2008.

34



[9] Y. Iwasa, F. Michor, N. Komarova, and M. Nowak. Population genetics of tumor
suppressor genes. Journal of Theoretical Biology, 233:15–23, 2005.

[10] D. Wodarz and N.L. Komarova. Can loss of apoptosis protect against cancer? Trends
Genet., 23:232–237, 2007.

[11] R. Durrett, D. Schmidt, and J. Schweinsberg. A waiting time problem arising from
the study of multi-stage carcinogenesis. Annals of Applied Probability, 19:676–718,
2009.

[12] J. Foo, K. Leder, and F. Michor. Stochastic dynamics of cancer initiation. Physical
Biology, 8:54–69, 2011.

[13] Niko Beerenwinkel, Tibor Antal, David Dingli, Arne Traulsen, Kenneth W Kinzler,
Victor E Velculescu, Bert Vogelstein, and Martin A Nowak. Genetic progression and
the waiting time to cancer. PLoS Computational Biology, 3(11):e225, 2007.

[14] N. Komarova. Spatial stochastic models for cancer initiation and progression. Bull.
Math. Biol., 68:1573–1599, 2006.

[15] M. Nowak, Y. Michor, and Y. Iwasa. The linear process of somatic evolution. PNAS,
100:14966–14969, 2003.

[16] T. Williams and R. Bjerknes. Stochastic model for abnormal clone spread through
epithelial basal layer. Nature, 236:19–21, 1972.

[17] C. Thalhauser, J. Lowengrub, D. Stupack, and N. Komarova. Selection in spatial
stochastic models of cancer: Migration as a key modulator of fitness. Biology Direct,
5:21, 2010.

[18] N. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Math-
ematical Biosciences and Engineering, 10:761–775, 2013.

[19] R. Durrett and S. Moseley. A spatial model for tumor growth. Annals of Applied
Probability, in press, 2013.

[20] T. Liggett. Stochastic interacting systems: contact, voter and exclusion processes.
Springer, 1999.

[21] M. Bramson and D. Griffeath. On the Williams-Bjerknes tumour growth model: I.
Annals of Probability, 9:173–185, 1981.

[22] M. Bramson and D. Griffeath. On the Williams-Bjerknes tumor growth model: II.
Mathematical Proceedings of the Cambridge Philosophical Society, 88:339–357, 1980.

35



[23] Erik A Martens and Oskar Hallatschek. Interfering waves of adaptation promote
spatial mixing. Genetics, 189(3):1045–1060, 2011.

[24] Erik A Martens, Rumen Kostadinov, Carlo C Maley, and Oskar Hallatschek. Spatial
structure increases the waiting time for cancer. New journal of physics, 13(11):115014,
2011.

[25] T. Antal, P. L. Krapivsky, and M. A. Nowak. Spatial evolution of tumors with
successive driver mutations. ArXiv e-prints, 2013.

[26] R. Durrett, J. Foo, and K. Leder. Spatial Moran models II. Tumor growth and
progression. in revision, 2013.

[27] R. Bertolusso and M. Kimmel. Modeling spatial effects in early carcinogenesis:
Stochastic versus deterministic reaction-diffusion systems. Math. Mod. Nat. Phenom.,
7:245–260, 2012.

[28] R.A. Weinberg. The Biology of Cancer [With DVD ROM]. Taylor & Francis Group,
2013.

[29] A.M. Klein, D. P. Doupe, P. H. Jones, and B. D. Simons. Mechanism of murine
epidermal maintenance: Cell division and the voter model. Physical Review E, 77(3),
2007.

[30] T.M. Liggett. Interacting Particle Systems. Classics in Mathematics Series. Springer-
Verlag Berlin and Heidelberg GmbH & Company KG, 2005.

[31] R. Durrett. Essentials of Stochastic Processes. Springer Texts in Statistics. Springer,
2012.

[32] A. Knudson. Two genetic hits (more or less) to cancer. Nature Reviews Cancer,
1:157–161, 2001.

[33] Camille Stephan-Otto Attolini and Franziska Michor. Evolutionary theory of cancer.
Annals of the New York Academy of Sciences, 1168(1):23–51, 2009.

[34] Boudewijn JM Braakhuis, Maarten P Tabor, C René Leemans, Isaac van der Waal,
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