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Abstract

We combine multi-element polynomial chaos with analysis of variance (ANOVA)
functional decomposition to enhance the convergence rate of polynomial chaos in
high dimensions and in problems with low stochastic regularity. Specifically, we
employ the multi-element probabilistic collocation method MEPCM [1] and so we
refer to the new method as MEPCM-A. We investigate the dependence of the con-
vergence of MEPCM-A on two decomposition parameters, the polynomial order µ

and the effective dimension ν, with ν ≪ N , and N the nominal dimension. Nu-
merical tests for multidimensional integration and for stochastic elliptic problems
suggest that ν ≥ µ for monotonic convergence of the method. We also employ
MEPCM-A to obtain error bars for the piezometric head at the Hanford nuclear
waste site under stochastic hydraulic conductivity conditions. Finally, we compare
the cost of MEPCM-A against Monte Carlo in several hundred dimensions, and
we find MEPCM-A to be more efficient for up to 600 dimensions for a specific
multi-dimensional integration problem involving a discontinuous function.

1 Introduction

Partial differential equations with uncertain or stochastic parameters arise in
many problems from engineering, biology, and various other fields. In many
cases, using standard Monte Carlo techniques to calculate moment statistics
of the solutions to these problems is prohibitively computationally expen-
sive. In this paper we concentrate on a class of methods, called stochastic

spectral methods, which are designed to efficiently calculate moments of solu-
tions to systems with parametric uncertainty (see, e.g. [2–14] and references
therein). These methods can provide considerable speed-up in computational
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time when compared to Monte Carlo (MC) simulation for many problems of
low to moderate random dimension. There are still, however, several important
computational limitations associated with these techniques. Since the random
inputs in many problems are stochastic processes approximated with trun-
cated Karhunen-Loève expansions, the dimensionality of these inputs is de-
pendent on the correlation length of these processes. For input processes with
relatively low correlation length, the number of dimensions required for accu-
rate representation can be extremely large. However, Karhunen-Loève inputs
with moderately high dimensionality (e.g., greater than 10 dimensions) pose
major computational challenges for stochastic spectral methods, which must
utilize approximation techniques in the high-dimensional stochastic space.
Low stochastic regularity of the solution poses another significant compu-
tational challenge. In this case, accurately capturing the solution requires a
prohibitively high-order representation in the random space.

To deal with low stochastic regularity of solutions, domain decomposition in
the random space for the stochastic Galerkin method was proposed in [2]. This
method was then generalized in [15] to deal with arbitrary probability distri-
butions with the numerical construction of generalized polynomial chaos bases
on the fly. This approach, called the Multi-Element Generalized Polynomial
Chaos (ME-gPC) method was found to effectively deal with problems exhibit-
ing low regularity in parametric space as well as for long-time integration
[15]. An analogous collocation-based method called the Multi-Element Prob-
abilistic Collocation Method (ME-PCM) was developed and analyzed in [1].
In addition, Galerkin-based methods utilizing multi-resolution wavelet expan-
sions [16,17] were developed to deal with solutions exhibiting discontinuities or
sharp variation in the stochastic space. However, in high random dimensions,
these methods remain too computationally expensive to be viable.

Collocation-based stochastic spectral methods were first introduced in [12],
[18]. The use of quadrature formulae was introduced by Le Maitre and col-
leagues in [19] and later considered in [4]. The use of Lagrange interpolants in
stochastic collocation was explored in [6] and [13], where convergence analysis
for elliptic equations was performed. Since moment estimation in stochastic
collocation essentially translates to numerical integration, this method ben-
efits directly from advances in the field of high-dimensional integration and
interpolation. In 2003, Matthies and Keese proposed the use of sparse grid

quadrature for stochastic collocation [20]. Classical sparse grids, introduced by
Smolyak [21] in 1963, are constructed from tensor products of one-dimensional
quadrature formulas. Of all possible combinations of one-dimensional formu-
las, only the ones whose corresponding indices fall within the unit simplex are
considered in the Smolyak construction. Sparse grids utilize the smoothness
of the integrand to weaken the “curse of dimensionality” for certain classes
of functions (e.g., functions with bounded mixed derivatives) in low to mod-
erate dimensions. The errors and efficiency of sparse grid integration and in-

2



terpolation have been investigated extensively in [22–25]. In particular, in
[22–24] the errors of integrating or interpolating functions with Sobolev regu-
larity are analyzed for Smolyak constructions based on one-dimensional nested
Clenshaw-Curtis rules. In [22] the degree of exactness of Smolyak quadrature
using Clenshaw-Curtis and Gaussian one-dimensional rules is investigated. In
[25] the integration error of sparse grids based on one-dimensional Kronrod-
Patterson rules is bounded for analytic integrands. Some of these results have
been used in recent works in analyzing the error bounds of sparse grid stochas-
tic collocation.

In 2005, Xiu and Hesthaven [4] numerically demonstrated the efficiency of
Clenshaw Curtis-based sparse grid stochastic collocation in comparison to
other methods on an elliptic problem with low to moderate (< 50) dimen-
sions. This method was extended to include adaptive refinement in stochastic
dimensions and applied to stochastic natural convection problems in [14]. The
method was also analyzed by Nobile et. al. [26] in 2006 for a linear elliptic PDE
with random input. There, the sparse grid interpolation error bound devel-
oped in [23] was used to bound the stochastic discretization error and strong
error estimates for the fully discrete solution were shown. Numerical experi-
ments performed on the stochastic elliptic problem with 1 to 11 dimensions
demonstrated the efficiency of this method in comparison to Monte Carlo and
tensor product stochastic collocation.

Despite the considerable improvements in efficiency of the sparse grid colloca-
tion method over Monte Carlo and tensor product methods, the complexity
estimate of sparse grids still depends heavily on the dimension and on the
regularity of the integrand [24]. Thus, if the number of dimensions grows be-
yond moderate levels the convergence rate suffers increasingly. Similarly, solu-
tions with low stochastic regularity will further hinder the convergence of the
method. To push the dimensionality limitation higher, some variations of the
sparse grid methods have been introduced.

One particularly interesting variation is the ‘dimension-adaptive tensor prod-
uct quadrature’ method introduced by Gerstner and Griebel [27] in 2003.
There it was recognized that in some applications the different dimensions of
the integration problem are of varying importance. This is often the case for
random inputs from Karhunen-Loève decompositions of random processes, or
parametric sensitivity analysis problems. In [27] the authors utilized a general-
ized sparse grid formulation introduced in [28–30], where the space of possible
combinations of one-dimensional formulas (index sets) was increased to include
indices outside the unit simplex, which weights all dimensions equally. These
generalized index sets can be chosen to provide greater resolution in selected
dimensions only, according to chosen weights. However, it is not always known
a priori which dimensions are of greater importance than others. The authors
also developed a dimension-adaptive method to assess the importance of each
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dimension by considering the selection of the index set as a binary knapsack
optimization problem, and they demonstrated its effectiveness on integration
problems with up to 256 dimensions.

The concept of dimensionally anisotropic sparse grids is certainly promising
for stochastic collocation methods. However, the optimization problem used in
the adaptive method of [27] involves calculating the integral for sparse grids
resolved at one higher level in each dimension in order to assess the rela-
tive importance. This can be costly for stochastic collocation problems, where
the calculation at each sample point involves the solution of a deterministic
PDE. Thus, other methods of assessing the relative importance of different
dimensions must be developed for use in conjunction with anisotropic sparse
grids. The general sparse grid formulation described above is used by Nobile
et. al. [31] for stochastic collocation of elliptic PDEs with random input data.
There, the known regularity of the solution in each random dimension is used
to provide the weighting of dimensions in the anisotropic grid, and estimates
of the interpolation error are provided. However, we note that as stated in
[27] these methods are not capable of accurately resolving solutions with large
discontinuities.

For general problems where information regarding the dimension-wise stochas-
tic regularity of the solution is unavailable, a variety of algorithms have been
developed in numerical complexity theory to aid in designating important di-
mensions. This is particularly important for reducing computational effort in
problems with high nominal random dimension. A 2005 report by Griebel [32]
reviews a number of algorithms, beginning with methods stemming from Kol-
mogorov’s superposition theorem [33], where it is proven that continuous func-
tions of several variables can be represented by superpositions of continuous
functions of fewer variables. Of particular importance to stochastic collocation
are analagous ideas found in statistics for regression problems and density es-
timation. The ANOVA (Analysis-of-Variance) decomposition, also described
in [32], was introduced by Fisher in 1921 (see e.g. [34]) and utilized for study-
ing U-statistics by Hoeffding in 1948 [35]. This approach involves splitting a
multidimensional function into its contributions from different groups of sub-
dimensions. This type of dimension-wise decomposition can effectively break
the curse of dimensionality in certain approximation problems. The underlying
idea involves the splitting of a one-dimensional function approximation space
into the constant subspace and the remainder space. The associated splitting
for multidimensional cases is formed via a product construction. In practice,
one essentially truncates the ANOVA-type decomposition at a certain dimen-
sion d, thereby dealing with a series of low-dimensional (≤ d) approximation
problems in lieu of one high-dimensional problem. This type of truncation
can make high-dimensional approximation tractable for functions with high
nominal dimension N but only low-order correlations amongst input variables
(i.e. low effective dimension d). However, it is important to note that with
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these types of decompositions, nothing is gained with respect to the curse
of dimensionality when the effective dimension is close or equal to the nom-
inal dimension of the problem. In other words, if the highest order terms in
the ANOVA decomposition make large contributions, then the computational
complexity of these methods is not smaller than that of the original high di-
mensional problem. This is not surpising as the same situation is well known
also in quasi Monte Carlo (QMC) simulation studies [36,37]; QMC is fast only
if the effective dimension is much smaller than the nominal dimension, i.e.,
d ≪ N .

In [38], Rabitz and colleagues introduced two High Dimensional Model Re-
duction (HDMR) techniques to capture input-output relationships of physical
systems with many input variables. These techniques (called ANOVA-HDMR
and cut-HDMR) are based on ANOVA-type decompositions. ANOVA-HDMR
utilizes the original ANOVA decomposition (which is also used statistics to
analyze the variance of a random multivariate quantity). In this approach,
multi-dimensional integrals must be evaluated to determine the component
functions. The orthogonality condition imposed in this formulation ensures
that the sum of variances of the component functions equals the full vari-
ance. Thus it can be used to provide information about the importance of dif-
ferent dimensions and of the correlations and interactions between groups of
dimensions. In 2001, Sobol used this formulation to define global sensitivity in-

dices [39] which reflect the relative variance contributions of different ANOVA
terms, thus giving insight into the influence of individual parameters or sub-
groups of parameters and their interactions on the output. This same approach
is explored by Griebel for use in numerical treatments of high-dimensional
problems in [32]. However, a main drawback to this type of approach is the
computational cost associated with evaluating the multi-dimensional integrals
necessary for determining the component functions.

Rabitz et. al. [38] also introduced the cut-HDMR technique, in which the com-
ponent functions are defined via hyperplane cuts through an anchor point in
the center of the domain. This approach was shown to be computationally
more efficient than the ANOVA-HDMR approach. However, in this formula-
tion the sum of variances of the component functions is no longer equal the
full variance. In 2006, Schwab and Todor [10] utilized the same approach to
introduce a sparse polynomial chaos approximation for elliptic problems with
stochastic coefficients, as an alternative to tensor product polynomial approx-
imation bases. A stochastic collocation method based on this sparse basis was
proposed and analyzed by Bieri and Schwab in 2008 [40], where the truncation
dimension of the ANOVA-type series is chosen based on the size of the eigen-
values in the Karhunen-Loève random input expansion. They showed that for
the stochastic elliptic model problem, random inputs of up to 80 dimensions
were successfully addressed numerically with very low computational cost.
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The Multi-Element Probabilistic Collocation Method (MEPCM) was shown in
[1] to efficiently treat problems with discontinuous dependence on parameters
and long time-integration. However, one main limitation of the MEPCM is
the fact that elemental decomposition of high-dimensional random spaces is
often prohibitively costly. Therefore, in this work we combine a cut-HDMR
type ANOVA approach (analagous to the sparse chaos formulation of Schwab
and colleagues) with the MEPCM and investigate its performance on high
dimensional elliptic problems; we will refer to this method MEPCM-A. The
use of the ANOVA-type decomposition reduces high-dimensional integration
problems (e.g., stochastic collocation) to a series of low-dimensional problems.
The MEPCM can then be applied to each of the low-dimensional problems
where domain decomposition is not computationally prohibitive.

This paper is organized as follows. In Section 2 we introduce the general model
problem and assumptions on the random inputs. In Section 4 the formulation
of the MEPCM-A is given, and in Sections 5 and 6 we perform a variety of
simple numerical studies to analyze the efficiency and accuracy of this method
in comparison to other existing methods suitable for high-dimensional prob-
lems. To investigate convergence properties, we use moderate dimensional test
integrands and a stochastic elliptic problem. We also investigate the conver-
gence of the ANOVA-based single element collocation method (which we refer
to as PCM-A) and its dependence on decomposition parameters. Next, we
investigate the convergence of the MEPCM-A and compare the efficiency of
MEPCM-A with and without a priori adapted meshes to sparse grid PCM
as well as the PCM-A. For both PCM-A and MEPCM-A methods, we ob-
serve that the convergence is non-monotonic with respect to the computa-
tional costs, so the decomposition parameters must be chosen judiciously. We
test the MEPCM-A method for integration of discontinuous functions in 100
to 500 dimensions using the GENZ package of testing functions for high di-
mensional integration. Lastly, in Section 7 we apply the MEPCM-A to aid in
modeling subsurface contaminant transport through heterogeneous media at
the U.S. Department of Energy’s Hanford Site in southeastern Washington
state. We conclude that for problems with prohibitively high nominal dimen-
sion and possibly low stochastic regularity, the MEPCM-A can be a useful
tool in solving otherwise computationally intractable problems, provided the
solution has relatively low effective dimension or a decay in its interaction
weights.

2 Model problem and assumptions

Let (Ω,A, P ) be a complete probability space, where Ω is the space of events,
A ⊂ 2Ω is the σ-algebra of sets in Ω, and P is the probability measure. Also,
define D to be a subset of R

d(d ∈ {1, 2, 3}) with boundary ∂D. Let L and R
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be operators on D and ∂D, respectively, where L may depend upon ω ∈ Ω.
In this work we consider the following problem: find u : D×Ω → R such that
P -almost everywhere (a.e.) in Ω the following equation holds:











L(x, ω; u) = f(x, ω), x ∈ D,

R(x; u) = g(x), x ∈ ∂D.
(1)

We assume that the boundary has sufficient regularity and that f and g are
imposed so that the problem is well-posed P -a.e. We also assume that for
P -a.e. ω ∈ Ω, the solution u(·, ω) takes values in a Banach space, W(D), of
functions over the physical domain taking values in R. We assume additionally
that the solution u is in L2(Ω;W(D)). Note that the boundary operator R
may also have a random dependence, but for simplicity in this work we assume
that R is deterministic. In general, the various sources of randomness (e.g.
random parameters in L, initial/boundary conditions, driving terms) may arise
from physically unrelated phenomena; thus, they can be independent and non-
identically distributed.

In order to apply the methods that will be discussed later, the random de-
pendence of operators L and f must satisfy a few important properties. The
first requirement, commonly known as a “finite dimensional noise assumption”
[13,4], is that the random input can be represented with a finite-dimensional
probability space. More specifically, the random input can be represented by
a finite set of random variables {Y1(ω), Y2(ω), ...YN(ω)}, with a known joint
density function ρ. With this assumption on the random input, the problem
(1) can be restated as follows. Find u : D × Ω → R such that

L(x, Y1(ω), Y2(ω), ...YN(ω); u) = f(x, Y1(ω), Y2(ω), ...YN(ω))

holds ∀x ∈ D and for P -a.e. ω ∈ Ω, with corresponding boundary conditions.
Using the Doob-Dynkin Lemma [41] we can assert that the solution u(x, ω) can
be written as u(x, Y (ω)) with Y = (Y1, Y2, ..., YN). Then, the problem may
be recast from the space Ω into the target space of the N random variables.
Let y = (y1, y2, ...yN) ∈ Γ ≡

∏N
j=1 Γj, where Γj is the image of Yj(Ω) for

j = 1, ..., N . Let ρ(y) be the probability density function (PDF) of Y . The
problem can be restated: Find u : D × Γ → R such that ρ-almost everywhere
for y ∈ Γ the following equation holds:











L(x, y; u) = f(x, y), x ∈ D,

R(x, u) = g(x), x ∈ ∂D.
(2)

Thus, the original problem (1) is recast as a fully deterministic problem in
equation (2). It is sometimes useful to think of the solution u as a function
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on Γ, taking values in W(D). In this case we would denote u(y) to be the
Banach-valued solution to the problem for a particular y ∈ Γ.

3 ANOVA decomposition

The ANOVA decomposition dating back to Hoeffding in [35] states that an
N -dimensional function f can be decomposed as follows:

f(x1, x2, ..., xN )= f0 +
N
∑

j1

fj1(xj1) +
N
∑

j1<j2

fj1,j2(xj1, xj2)

+
N
∑

j1<j2<j3

fj1,j2,j3(xj1, xj2 , xj3) + · · · + fj1,···,jN
(xj1 , · · ·, xjN

),

(3)

where f0 is a constant, fj1 is a one-dimensional function, and so on.

Based upon the decomposition idea of (3), a ‘sparse FEM’ method proposed in
[40] deconstructs the N -dimensional polynomial chaos approximation problem
into a series of approximation problems on ‘sparse’ polynomial chaos bases
spanning different groups of subdimensions. If the high-dimensional problem
has low effective dimension (i.e. it can be sufficiently approximated by a series
of low-dimensional subproblems), this type of approach can greatly alleviate
the computational burden. In the following we formulate the MEPCM-A which
combines this subset decomposition approach with the MEPCM.

4 MEPCM-A Formulation

The formulation of MEPCM-A basically involves performing the standard
MEPCM [1] on a series of low-dimensional problems using the aforementioned
ANOVA decomposition. Therefore, we describe the MEPCM portion of the
formulation briefly and refer the reader to [1] for more detail. The point we
emphasize here is the subset decomposition of the high-dimensional integration
problem into a series of low-dimensional integration problems.

Let u : D×Γ → R be the exact solution to our general problem (2). Here Γ =
[ai, bi]

N is a rectangular hypercube in R
N . For every subset K ⊂ {1, ..., N}, let

ΓK be the tensor product of the slices of Γ restricted to each dimension in K.

For example, if K = {1, 4}, ΓK = [a1, b1] × [a4, b4]. We define {Ai,K}
NK

e

i=1 to be
a nonoverlapping rectangular mesh of each ΓK . Then, let Bi,K = Ai,K × ΓK ′
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where K ′ is the complement of K in {1, ..., N}. The MEPCM-A stochastic
semidiscrete solution is given by the following:

IN,µ,νu(x, y) =
∑

K⊂{1,...,N}, |K|≤ν

γN,|K|,ν





NK
e
∑

i=1

Iy∈Bi,KIµ
Bi,K u(x, y)



 (4)

where
Iµ

Bi,K u(x, y) =
∑

k∈NN
0

,ki≤µ, supp(k)=K

u(x, qi
k
)li

k
(y) (5)

and

γN,j,ν =
ν
∑

r=j

(−1)r−j







N − j

r − j





 . (6)

Here, µ represents the number of points used in the interpolation rule in each
dimension and thus governs the order of polynomial interpolation (it does
not need to be the same in each dimension but we assume this for simplic-
ity). In addition, ν is the highest dimension of each subproblem, and N is
the total number of dimensions in the problem. The interpolation abscissas
qi

k
= (qi

1,k1
, · · ·, qi

N,kN
) are chosen to be the roots of tensorized orthogonal

polynomials in Ai,K of order µ. More specifically, for n ∈ K, the points qi
n,m,

m = 1, · · · , µ are the µ roots of the orthogonal polynomial of corresponding
order in dimension n of Ai,K , and qi

n,0 equals the midpoint of [an, bn] for any
n ∈ K ′. (Note here that we choose the midpoint as the anchor point for the
ANOVA cuts. In future work we investigate techniques for choosing optimal
anchor points to increase accuracy [?], preprint). The interpolating polyno-
mials in each element are given by: li

k
(y) =

∏N
n=1 lin,kn

(yn). Here, if n ∈ K,
then lin,kn

(yn) is the Lagrange interpolation polynomial of degree µ through
the point qi

n,kn
restricted to Bi,K satisfying:

lin,kn
(qi

n,jn
) = δkn,jn

, jn = 1, ..., µ.

Otherwise, if n ∈ K ′, lin,kn
(yn) = 1. The γN,j,ν are the weights associated with

each subproblem and derived from Proposition 5.1 in [10].

Remark: Some results regarding the error and convergence rate associated
with this discretization in the single-element case (NK

e = 1 for all subsets K)
are presented in [40] for an elliptic boundary value problem with a stochastic
diffusion coefficient possessing a piecewise analytic two-point correlation. Fur-
ther analysis of the truncation error associated with ν in the full multi-element
formulation is the subject of ongoing work ([?]).

Remark: We note that a Smolyak sparse grid interpolation operator can be
used instead of full tensor product interpolation in (5), just as in the for-
mulation of the MEPCM. In this case, the parameter µ governing the order

9



of polynomial interpolation in each dimension would be replaced by s, the
sparseness parameter. As s increases, the sparsity of the grid decreases and
thus the size of the point set increases. We refer the reader to [1,?] for a more
detailed description of the use of Smolyak grids in stochastic collocation and
the sparseness parameter.

The moments of u are then calculated as in the MEPCM using whichever
quadrature rule is associated with the choice of points, either Gaussian quadra-
ture or Smolyak sparse grid quadrature. The dimension of each MEPCM-A
subproblem is bounded by ν, thus introducing an additional stochastic trun-

cation error not dealt with in the standard MEPCM. The interplay of the
two decomposition parameters ν and µ will be investigated in the following
numerical examples.

5 PCM-A numerical studies

We begin by numerically demonstrating the ANOVA-type approach within
the framework of the standard one-element probabilistic collocation in order
to provide an understanding of the (ν, µ) relationship to integration errors.

5.1 Approximation of integrals

We first demonstrate this method on a few simple integrals to elucidate some
basic behaviors. As a preliminary example we construct the 10-dimensional
test function u : [−1, 1]10 → R.

u =
10
∑

i=1

x2
i +

9
∑

i=1

x2
i x

2
i+1

and approximate the integrals

I :
∫

[−1,1]10
udx

and
II :

∫

[−1,1]10
u2dx

The reference solutions (obtained using Mathematica) are I : 4.43733(10)3

and II : 2.16476(10)4. Varying parameters µ and ν we obtain relative errors
for integral I. PCM-A is performed using a tensor product Gauss-Legendre
collocation grid. The relative error is defined as ǫ = |Inum−Iexact|

Iexact
. Table 1 pro-

vides the MEPCM-A integration errors of function I for various µ and ν. We
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Table 1
Relative errors for integral I, for various parameters ν, µ. Since the function is
second-order polynomial and utilizes interactions of degree at most two, the choice
ν, µ = 2 provides an exact solution.

ν µ = 1 µ = 2 µ = 3

1 1.308 0.231 0.231

2 3.385 4.3(10)−15 2.7(10)−15

3 3.385 2.19(10)−14 2.85(10)−14

Table 2
Relative errors for integral II. As expected, the mininum parameters for exactness
are µ = 3 and ν = 4 since the squaring of the integrand has the effect of increasing
the effective dimension of the function and Gauss quadrature with µ points is exact
for polynomials of degree 2µ − 1.

ν µ = 1 µ = 2 µ = 3 µ = 4

2 5.859 0.133 0.302 0.302

3 13.4 0.147 0.0327 0.0327

4 16.076 0.180 4.369(10)−14 1.160(10)−14

note that since the function is second-order and utilizes interactions of degree
at most two, the choice ν, µ = 2 provides an exact solution. Table 2 provides
the analagous errors for integral II. As expected, the mininum parameters for
exactness are µ = 3 and ν = 4 since the squaring of the integrand has the ef-
fect of increasing the effective dimension of the function and Gauss quadrature
with µ + 1 points is exact for polynomials of degree 2(µ + 1) − 1.

Next we investigate the function u : [−1, 1]10 → R

u = x2
1 + 3x2

1x
2
2 + 3x2

3x
2
4 + cx2

5x
2
6x

2
7.

If we choose c = 9 the relative error using µ = 2, ν = 2 is 0.25, and for the
choice µ = 2, ν = 3 we have relative error O(10−16). Now, suppose we let
c = 0.1 instead; then, the error for µ = 2, ν = 2 is just 3.7(10)−3 as we would
expect, since this choice of c has an effect similar to lowering the effective
dimension of the function.

5.2 Stochastic elliptic problem

Next we move on to the following classic example of a stochastic elliptic prob-
lem. Here we consider the following problem: find u : D × Ω → R such that
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P -almost everywhere (a.e.) in Ω the following equation holds:











−∇ · (a(x; ω)∇u(x; ω)) = f(x) in D,

u(x; ω) = g(x) on ∂D,
(7)

where f(x) is assumed to be deterministic for simplicity and a(x; ω) is a
second-order random process satisfying the following assumption:

Assumption. Let a(x; ω) ∈ L∞(Ω; DW(D)) be strictly positive with lower

and upper bounds amin and amax, respectively,

0 < amin < amax and P (a(x; ω) ∈ [amin, amax], ∀x ∈ D) = 1.

We assume that the random input a(x; ω) can be expressed as a finite
expansion of independent random variables. In the first example we choose
D = [0, 1], u(0) = 0 and u(1) = 1 with random input

a(x; ω) = 20 +
10
∑

i=1

10

2i−1
sin(ix)Yi(ω), (8)

where the Yi are independent uniform random variables on [−1, 1]. Note that
strong ellipticity is preserved ∀ω ∈ Ω.

The (single-element) PCM-A method is used with a full tensor product Gauss-
Legendre grid of (µ+1) points in each dimension for every subset. The spatial
discretization error is negligible. The parameter µ = 3 is kept constant while ν
is increased, and the solution is compared with the Monte Carlo solution with
25 million samples. Figure 1 shows the spatial L∞ errors in mean solution
obtained. The L∞ error of two numerically integrated functions f(tj) and
g(tj), j = 1 . . . nt is defined to be ǫL∞ = maxj=1...nt

{|f(tj) − g(tj)|}. It can
be seen in Figure 1 that the error is dominated by MC standard error for
ν > 2. In Figure 2 we plot the error between the PCM-A and a reference
PCM solution with 1, 048, 576 Gauss-Legendre tensor product points. Here we
observe convergence to the reference solution as ν is increased. To illustrate
the computational cost of these calculations, Table 3 shows the total number
of points used at each level of ν and also the number of subproblems required
for the computation.

Next, we investigate the relationship between parameters µ and ν on the
convergence of the PCM-A method for this problem. Again, a Gauss-Legendre
tensor product grid is used in each subset. To test convergence, ν is increased
from 1 to 4, and for each ν, µ is increased from 1 to 5. We define the L2 error
between two numerically integrated functions g(tj) and f(tj), j = 1...nt as:
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Fig. 1. Error in mean between PCM-A solutions of the stochastic elliptic problem
with a 10-dimensional random input (8), at varying ν and a reference MC solution
with 25 million samples. The Monte Carlo computed standard error is also plotted.

1 1.5 2 2.5 3 3.5 4
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

ν

L ∞
 e

rr
or

 o
f m

ea
n

PCM−A
standard error of MC (95% confidence)

Fig. 2. Error between PCM-A solutions of stochastic elliptic problem with a
10-dimensional random input (8), at varying ν and a reference PCM solution with
1, 048, 576 points. The Monte Carlo computed standard error is also plotted for 25
million samples.

ǫL2 =

1
nt

√

∑nt

j=1(g(tj) − f(tj))2

1
nt

√

∑nt

j=1 f(tj)2
, (9)

where f is considered to be the reference solution. A reference solution is
calculated using sparse grid PCM with sparseness parameter s = 17 and
652,065 nested Clenshaw-Curtis points.

Table 4 shows the number of points used for each parameter set as well as
the L∞ errors for the mean and variance of the solution. For a more visual
representation of results, Figure 3(left) shows the L2 errors for each (ν, µ)
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ν total # of points # of subproblems

1 41 11

2 761 56

3 844 176

4 62201 386

Table 3
Total number of points and number of subproblems used for the PCM-A computa-
tions for the 10-dimensional random input (8) whose error is plotted in Figures 1
and 2.

parameter set. We observe that for each ν, there exists a lower bound on
the error beyond which increasing µ does not improve the solution. This is
therefore error the of truncating the stochastic interaction dimension of the
problem to ν. We also note that the optimal path to convergence for this
case is achieved by choosing µ = ν + 1 and increasing ν. However, the same
convergence rate (but lower accuracy) is also achieved using the choice µ = ν.

• This suggests that µ and ν should be simultaneously increased to achieve
monotonic convergence.

The errors are clearly the highest when µ is chosen to be 1 for any ν. This
can be seen more clearly in Figure 3(right) where the errors are plotted as a
function of computational work (total number of points sampled). There, it
is clear that the relationship between computational effort and error is non-
monotonic. Therefore, it is important to make a judicious choice for (ν, µ)
when using this method.

We also consider the case where the order of the coefficients of a(x, ω) is
reversed so that the largest coefficient multiplies the highest order sinusoidal
function:

a(x; ω) = 20 +
10
∑

i=1

10

210−i
sin(ix)Yi(ω), (10)

where the Yi are independent uniform random variables on [−1, 1]. In Figure
4 we compare the PCM-A variance errors for the stochastic elliptic problem
with exponentially decaying and exponentially increasing coefficients. Once
again, Gauss-Legendre points are used for each subset and a sparse grid PCM
solution is used as the reference. Choosing µ = ν and µ = ν +1 and increasing
ν ensures a monotonic convergence. As expected, the errors for the exponen-
tially increasing coefficients case are larger since the high-order spatial basis
functions are given heavier weights.
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Table 4
PCM-A is performed using Gauss-Legendre tensor product grid points in each subset
for the stochastic elliptic problem (7) using a 10-dimensional random input with
exponentially decaying coefficients (8). This table shows the computational costs
associated with each (ν, µ) pair along with the L∞ errors in mean and variance. The
reference solution is calculated using sparse grid PCM with sparseness parameter
s = 17 and 652,065 nested Clenshaw-Curtis points.

ν µ number of points Mean error(L∞) Variance error (L∞)

1 1 21 1.0625e-02 2.5084e-03

2 31 1.4125e-04 7.5214e-05

3 41 2.8307e-04 1.4376e-04

4 51 2.8617e-04 1.4559e-04

5 61 2.8625e-04 1.4564e-04

2 1 201 1.3488e-02 3.9159e-03

2 436 2.1277e-04 1.0289e-04

3 761 6.0328e-06 1.6686e-06

4 1176 6.1993e-06 3.7767e-06

5 1681 6.3043e-06 3.8624e-06

3 1 1161 1.3712e-02 4.0607e-03

2 3676 2.1687e-04 1.0794e-04

3 8441 6.6734e-06 3.9882e-06

4 16176 2.4737e-07 1.0209e-07

5 27601 7.7124e-08 8.2200e-08

4 1 4.521 1.3714e-02 4.0652e-03

2 20686 2.1688e-04 1.0803e-04

3 62201 6.6994e-06 4.0743e-06

4 14743 2.7190e-07 1.8437e-07

5 299761 1.2529e-08 8.9012e-09

6 MEPCM-A numerical studies

In this section we study how the convergence of MEPCM-A is affected by
ν, µ and the adapted mesh discretization of the random space. We will also
compare the errors of using several methods including MEPCM-A, sparse grid
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Fig. 3. L2 error of PCM-A solution of the stochastic elliptic problem (7) using a
10-dimensional random input (8) with Gauss-Legendre tensor product grids in each
subset. Left: Varying colors indicate different levels of ν, and for each line, µ is
increased from left to right in the range 1 to 5. The reference solution is calculated
using sparse grid PCM with q = 17. Right: Errors are are plotted versus the number
of points used in each computation. The points corresponding to the cases µ = ν

and µ = ν + 1 are labeled.

1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ν

L2  e
rr

or
 in

 v
ar

ia
nc

e

µ=ν, exponential decay
µ = ν+1, exponential decay
µ=ν, exponential growth
µ = ν+1, exponential growth

Fig. 4. Comparison of PCM-A L2 error in variance for the stochastic elliptic prob-
lem with exponentially decaying and exponentially increasing coefficients of a. A
Gauss-Legendre collocation grid is used in each element. Errors are shown for in-
creasing ν, for cases µ = ν and µ = ν + 1.

PCM and PCM-A with the same computational costs. For these purposes, we
will revisit the example one-dimensional stochastic elliptic problem in (7) with
the stochastic input given in (8).
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6.1 Adapted mesh

We are especially interested in investigating how adaptive mesh refinement of
MEPCM affects the efficiency of the method. In the first example, we use an
adapted mesh in which only the two dimensions with highest coefficients are
discretized. In these top two directions, two elements per side are used, and
in the remaining dimensions only one element is used. A Gauss-Legendre grid
is used to prescribe collocation points in each element in each subset.

Table 5
MEPCM-A is performed using Gauss-Legendre tensor product grid points in each
subset for the stochastic elliptic problem (7) using a 10-dimensional random input
with exponentially decaying coefficients (8). The first two dimensions (with highest
coefficients) are discretized in the MEPCM mesh. This table shows the computa-
tional costs associated with each (ν, µ) pair along with the L∞ errors in mean and
variance. The reference solution is calculated using sparse grid PCM with sparseness
parameter s = 17 and 652065 nested Clenshaw-Curtis points.

ν µ number of points Mean error(L∞) Variance error (L∞)

1 1 25 2.9383e-04 1.4956e-04

2 37 2.8631e-04 1.4568e-04

3 49 2.8625e-04 1.4565e-04

4 61 2.8625e-04 1.4565e-04

2 1 281 1.5423e-05 9.4854e-06

2 613 6.3832e-06 3.9240e-06

3 1073 6.3094e-06 3.8668e-06

4 1661 6.3085e-06 3.8660e-06

3 1 1881 1.1368e-05 6.3268e-06

2 6013 1.8814e-07 1.9281e-07

3 13873 8.0918e-08 9.3400e-08

4 26661 8.0219e-08 9.1476e-08

4 1 8377 1.1369e-05 6.2687e-06

2 38899 1.5636e-07 1.0251e-07

3 117809 3.2357e-09 2.6457e-09

4 280411 5.2590e-10 7.4695e-10

Table 5 shows the computational cost associated with each choice of (ν, µ) as
well as the L∞ errors in mean and variance of the solution. Once again the
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reference solution here is calculated using sparse grid PCM with sparseness
parameter s = 17 and 652065 nested Clenshaw-Curtis points. In Figure 5(left)
we plot the L2 errors using MEPCM-A on this adapted mesh. We observe a
similar type of convergence as ν and µ vary and again conclude that µ and
ν should simultaneously be increased for fast convergence. Figure 5(right)
shows the L2 error in variance versus the amount of work performed for each
computation. We observe similar convergence behavior as in the PCM-A case,
wherein there exists a truncation dimension error associated with each ν and
a point beyond which increasing µ has little improvement on the error. Other
cases including refining only the first and first three dimensions were also
considered and results will be shown in section 6.3.
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Fig. 5. L2 error of MEPCM-A solution of the stochastic elliptic problem (7) using
a 10-dimensional random input (8) with Gauss-Legendre tensor product grids in
each element of each subset. The first two dimensions (with highest coefficients) are
discretized in the MEPCM-A mesh. Left: Varying colors indicate different levels of
ν, and for each line, µ is increased from left to right in the range 1 to 4. Right:
L2 error of the variance vs. computational cost. The points corresponding to the
cases µ = ν are labeled along with selected other points. The reference solution is
calculated using sparse grid PCM with q = 17.

6.2 Uniform mesh

Next we investigate the case where all dimensions are discretized equally with
two elements on each side. In Figure 6 we compare the performance of the
sparse grid MEPCM-A with two different types of grids in each element:
Clenshaw-Curtis sparse grids versus full tensor product Gauss-Legendre grids.
For sparse grids, the sparseness parameter s used in each subproblem is the
same level above the dimension of each subset. We observe that the full ten-
sor product grids are actually slightly more efficient than the nested sparse
grids – and conclude that in the regime where MEPCM-A is most useful (when
small ν is sufficient), sparse grids do not provide a significant advantage. Since
Gaussian quadrature grids offer much more robust integration and the number
of points between consecutive sparseness levels is large, we prefer to use this
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choice for MEPCM-A.
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Fig. 6. Error versus work for full and sparse grid MEPCM-A performed on the
stochastic elliptic problem (7) using a 10-dimensional random input (8) with
Gauss-Legendre tensor product grids in each element of each subset. Every dimen-
sion is discretized with two elements in the MEPCM-A mesh.

6.3 Comparison with other methods

In this section we compare the efficiency of MEPCM-A and PCM-A to the
standard probabilistic collocation method (PCM) using nested sparse grids for
the 10-dimensional elliptic problem. We use tensor product Gauss-Legendre
grids for MEPCM-A and PCM-A, and sparse Clenshaw Curtis grids for the
PCM. MEPCM-A is calculated using three meshes wherein the top one, two,
and three dimensions (in importance) are discretized, and also using one mesh
where all dimensions are discretized. We see in Figure 7 that we achieve con-
vergence of the ANOVA-type methods by increasing µ and ν simultaneously,
using either µ = ν or µ = ν +1. Convergence for PCM is achieved by increas-
ing the sparseness parameter s, and a reference solution is calculated using
sparse grid PCM with s = 17.

We observe in Figure 7 that while all of these methods converge to the
correct solution, MEPCM-A provides an improvement over PCM-A for the
adapted mesh cases and performs quite poorly for a uniform mesh, as expected.
MEPCM-A with the top few dimensions discretized is competitive with sparse
PCM computational efficiency for all error levels. Note that MEPCM-A pro-
vides the ability to deal with solutions with low stochastic regularity, a feature
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that is not highlighted here since this example problem is smooth. These re-
sults suggest that with the coupling of an ANOVA-type decomposition to
mesh-adaptive MEPCM, we may be able to address problems with low reg-
ularity in high dimensions, while still preserving the computational efficiency
of single-element sparse grid methods which scale well with dimension.

10
1

10
2

10
3

10
4

10
5

10
6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Work (number of points)

L2  m
ea

n 
er

ro
r

Error vs. work: Comparison of MEPCM−A, PCM−A, PCM

MEPCM−A1 (µ=ν)

MEPCM−A2 (µ=ν)

MEPCM−A3 (µ=ν)

PCM−A (µ=ν)

MEPCM−AU (µ=ν)
Sparse grid CC PCM
PCM−A (µ=ν+1)

Fig. 7. L2 error in mean versus computational cost for the stochastic elliptic problem
with 10-dimensional random input. MEPCM-A1: Adapted mesh refined in top di-
mension, MEPCM-A2: Adapted mesh refined in top two dimensions, MEPCM-A3:
Adapted mesh refined in top three dimensions, MEPCM-AU: Uniform mesh refined
in all dimensions. All MEPCM-A and PCM-A computations use full tensor product
Gauss-Legendre grids in each element of each subset. PCM is calculated using a
sparse Clenshaw Curtis grid.

6.4 Random process inputs

We also consider a higher-dimensional case when a is defined to be a second-
order random process with covariance kernel:

Cov(x, y) = exp

{

−
|x − y|

b

}

. (11)

For this covariance kernel, exact forms for the Karhunen-Loève (KL) eigen-
functions and eigenvalues can be found [42]. We utilize these eigenpairs to de-
fine a truncated expansion (with the same form as a KL expansion) in terms
of independent uniform random variables on [−1, 1]. Note that this cannot
technically be termed a KL expansion since the distributions of the random
variables in a KL expansion are derived from the random process itself, and
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here we specify only the covariance kernel of the process. Here we define the
process a to be a truncated expansion in terms of uniform random variables
having the desired covariance structure, by utilizing the KL expansion form
and eigenpairs. We use a correlation length b = 0.5 and truncate the expan-
sion after 50 terms. The random variables in the expansion are taken to be
uniformly distributed on [−1, 1]. MEPCM-A is performed with an adapted
mesh discretizing the first two dimensions and a Gauss-Legendre collocation
grid is used in each element (12, 073 points are used in total). The variance of
the solution in plotted in Figure 8. To calculate the error, sparse grid PCM
with 171, 901 points was performed. The L∞ error in mean and variance are
3.2(10)−8 and 3.2(10)−10, respectively, and the L2 error in mean and variance
are 3.9(10)−8 and 3.6(10)−6 respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5

x

V
ar

ia
nc

e 
of

 u

Fig. 8. Variance of MEPCM-A solution to the stochastic elliptic problem (7) with
random input given by a 50-dimensional truncated Karhunen Loève expansion of
a random process with exponential covariance kernel. The two dimensions with
highest eigenvalues are discretized, ν = 2, and µ = 2. 12073 Gauss-Legendre points
are used in total.

We also consider the two-dimensional stochastic elliptic problem on D =
[0, 1]2. We use a non-zero force term with homogeneous boundary conditions

f(x) = sin(x1) cos(x2) and E[a](x) = 1. (12)

Assume that the random field a(x, ω) satisfies the Gaussian correlation func-
tion:

K(x1, x2) = δ2e
−|x1−x2|

2

A

with A = 1 being the correlation length and δ = 0.3 the standard deviation.
Due to the analyticity of the Gaussian kernel, the eigenvalues decay exponen-
tially [9]. The decay rate is determined by the value of the correlation length,
where a larger A corresponds to a faster decay rate. Since the Gaussian kernel
is analytic, high-order element methods for spatial discretization convergence
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quickly, resulting in highly accurate numerical solutions for the eigenvalue
problem in the Karhunen-Loève expansion. Once again, using the KL eigen-
pairs calculated for the Gaussian kernel, the random input a is defined to be
a truncated expansion in terms of uniform independent random variables on
[−1, 1].

Spectral/hp discretization with 64 quadrilateral elements is used in the phys-
ical space [43]. In each element, an 8-th order Jacobi polynomial basis is used
to construct the approximation space. Errors from spatial discretization are
negligible relative to the stochastic discretization errors.

In Figure 9 we show the errors of the H1
0 norm of the solution of MEPCM-A

on two examples of this problem. This norm is defined as the standard Sobolev

norm on the space D: ‖f‖H1

0
(D) =

(

∫

D

(

|f |2 + |∇f |2
)

)1/2

. In the left plot, the

random input is taken to be the expansion truncated after N = 10 terms, and
in the right plot 50 expansion terms are retained. The reference solution for
each case is calculated via sparse grid PCM with sparseness level s = N + 3.
MEPCM-A is performed using tensor product Gauss-Legendre grids in each
element, and the two dimensions with highest eigenvalues are discretized. We
observe that as expected, the errors decrease as both µ and ν are increased.
We note that this behavior is not modified by greatly increasing the dimension
of the problem.
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Fig. 9. Errors of MEPCM-A solution to the two-dimensional stochastic elliptic prob-
lem (7) on D = [0, 1]2 where a is a random process with a Gaussian covariance
structure. The process a is defined using Karhunen-Loève eigen-pairs calculated
for the Gaussian kernel as an expansion in terms of independent uniform random
variables on [−1, 1] (left: A 10-dimensional truncation of the expansion. right: a
50-dimensional truncated expansion of the same process). The two dimensions with
highest KL eigenvalues are discretized.
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6.5 Integration of Genz test functions

In this section we consider the some integrands in the multiple integration test
suite of Genz [44]. We concentrate in particular on the integrands from this
suite called ‘CONTINUOUS’ and ‘DISCONTINUOUS’ to compare the effi-
ciency of the MEPCM-A to sparse grid PCM for problems with low stochastic
regularity.

The Genz function f6 (DISCONTINUOUS) is defined as:

f6(x) =











0, ifx1 > w1 or x2 > w2

exp
∑N

i=1 cixi, otherwise
(13)

where x is an N -dimensional vector in [0, 1]N , the wi and ci are constants
between zero and 1.

Figure 10 shows the relative errors as a function of the computational effort for
the MEPCM-A and sparse grid Clenshaw Curtis PCM methods. The random
dimension N here is 10, the ci are chosen to decay exponentially (ci = 10/2i)
and wi = 0.5. MEPCM-A is performed with Gauss-Legendre points on an
adapted mesh where the first two dimensions are discretized so that the dis-
continuity falls on the boundary of the elements. The sparse grid PCM fails
to converge with this example.
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Fig. 10. Comparison of the relative errors between MEPCM-A and Clenshaw Curtis
sparse grid PCM on the DISCONTINUOUS test function f6. The total number of
random dimensions N = 10 and MEPCM-A is performed using Gauss-Legendre
points on a mesh adapted to the discontinuity.

To contrast, we also consider the CONTINUOUS test function f5, using the

23



same coefficients ci and wi as for f6. This function is defined as:

f5(x) = exp

(

−
N
∑

i=1

ci|xi − wi|
2

)

In this case, the sparse grid PCM converges to the correct solution with very
good efficiency. We perform MEPCM-A with the first three dimensions dis-
cretized and a Gauss-Legendre collocation grid in each element. In Figure 11
we observe the MEPCM-A still performs just as well as the highly efficient
sparse grid PCM for this moderate dimensional problem. In the next section
we consider high dimensional cases where N ≥ 100.
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Fig. 11. Comparison of the relative errors between MEPCM-A and Clenshaw Curtis
sparse grid PCM on the CONTINUOUS test function f5. The total number of
random dimensions N = 10 and MEPCM-A is performed using Gauss-Legendre
points on a mesh discretized in the first 3 dimensions.

6.5.1 High dimensional integration

We next perform several high-dimensional integrations of f6 where N = 100,
200, and 300 using MEPCM-A. Once again an adapted mesh discretizing
the first two dimensions is used, and the ci are chosen to decay as ci =
exp(−(35.0/(N−1))i) (so that the coefficients are bounded away from zero). Table
6 shows the computational costs and errors for various choices of (ν, µ). We see
that for the 100 dimensional case, error on the order of 10−2 is achieved with
just 5 million points. For comparison, using either tensor product or sparse
grid PCM in 100 dimensions with just one element, with a bare minimum
of just 3 points in each dimension would be computationally intractable, re-
quiring on the order of 1047 points to compute. As N increases, the number

24



of dimensions contributing to the integrand also increases; thus the error as-
sociated with addressing only subproblems of dimension less than or equal
to ν increases as N increases. The number of points required for each (µ, ν)
discretization increases with increasing N as well. This example suggests that
MEPCM-A can be a powerful tool for problems with high nominal dimension
N but low effective dimensionality.

Table 6
MEPCM-A errors and computational costs for 100 to 500-dimensional integration
of test function f6 (DISCONTINUOUS).

N (ν, µ) relative error number of points

100 (1, 1) O(1) 103

(2, 2) 0.0197 20801

(3, 3) 0.0098 4677148

200 (1, 1) O(1) 203

(2, 2) 0.067 81601

(3, 3) 0.047 36714298

300 (1, 1) O(1) 303

(2, 2) 0.12 182401

(3, 3) 0.09 123111448

400 (1, 1) O(1) 403

(2, 2) 0.22 323201

(3, 3) 0.07 290868598

500 (1, 1) O(1) 503

(2, 2) 0.43 504001

(3, 3) 0.21 566985748

As another illustrative example, we now focus on the DISCONTINUOUS in-
tegrand f6 given in (13). We choose: ci = exp(−Ai), A = 0.2, and wi = 0.5, and
we set a relative error tolerance of ǫ = 10−4. As the dimension is increased,
relative contributions from additional dimensions decrease in importance as
would be expected in a Karhunen Loève input, for example. In Figure 12 we
compare the minimum number of points required to achieve an error less than
the tolerance for various random dimensions. The MC estimates are achieved
by calculating the standard error of the estimator for the mean; we plot the
number of samples required so that the MC sample mean is within ǫ relative
error of the true solution with 95% confidence. The PCM and PCM-A methods
both fail to converge for this problem due to the discontinuities. The MEPCM
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is performed with an adapted mesh in which only the first two dimensions are
discretized, with full Gauss-Legendre and sparse Clenshaw Curtis grids. Lastly,
the MEPCM-A is computed with an adapted mesh in which only the first two
dimensions are discretized, and full Gauss-Legendre grids are used in each ele-
ment. We note that for the MEPCM-A, the choice ν = 4, µ = 2 approximates
the function with sufficient accuracy at any dimension, due to the decaying
nature of the coefficients. Beyond 100 dimensions, the exact reference solution
is difficult to compute. Thus, the dashed line represents estimation of the con-
tinued MEPCM-A line by calculating the number of points required for the
same (ν = 4, µ = 2) choice.

Remark: We note that this example illustrates the fact that boundary issues
should be considered when making a choice of grids. In this case, the MEPCM
with sparse grids is less efficient than with tensor product grids at low dimen-
sions due to the fact that Clenshaw Curtis points fall on the boundary of the
the elements, which meet at the discontinuities of f6. Thus, it is important
to consider that any single grid point of a collocation grid is given a non-
negligible weight, as opposed to a probability measure of zero, so care must
be taken not to place points directly on discontinuities or singularities where
the function is not indicative of surrounding points.

From this illustration we observe that the crossover point beyond which Monte
Carlo is favorable to MEPCM-A (approximately 600 dimensions) is signifi-
cantly higher than the crossover point for MEPCM full and sparse grid meth-
ods (less than 50 dimensions).

6.6 Hierarchical nature of the subset decomposition

Finally, we observe that all subsets used in the calculation of a solution with
parameters (ν − 1, µ) are also used in the calculation of our solution with
parameters (ν, µ). Thus, it is possible to retain the moments calculated in
each subset and recompute the solution that would have been obtained with all
lower values of ν. Then, the percentage difference between the (ν, µ) solution
and solutions with lower values of ν can be calculated. This can be useful in
determining when a particular level of ν is not sufficient for a given problem;
if the percentage difference between the solutions at levels ν−1 and ν is large,
it is likely that the effective dimension of the problem is higher than ν.

We demonstrate this on the function f6 (DISCONTINUOUS) in 10 dimensions
with exponentially decaying ci in figure 13. For this problem the choice ν = 2
is sufficient for a fairly good approximation of the integral, and subsequently
higher levels of ν provide smaller contributions.
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Fig. 12. Top: Minimum computational effort required to achieve error tolerance of
ǫ = 10−4 for approximating the integral of DISCONTINUOUS (f6) function with
exponentially decaying ci Bottom: Same plot on log-log axes. For MC, we plot the
number of samples required such that the MC sample mean is within ǫ relative
error of the true solution with 95% confidence. The MEPCM is performed with an
adapted mesh in which only the first two dimensions are discretized, with both full
Gauss-Legendre and sparse Clenshaw Curtis points. The MEPCM-A is performed
with an adapted mesh in which only the first two dimensions are discretized, with
full Gauss-Legendre grids. We note that for the MEPCM-A, the choice ν = 4, µ = 2
approximates the function with sufficient accuracy at any dimension, due to the
decaying nature of the coefficients. Beyond 100 dimensions, the exact reference
solution is difficult to compute. Thus, the dashed line represents estimation of the
continued MEPCM-A line by calculating the number of points required for the same
(µ, ν) choice.
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Fig. 13. Percentage error between MEPCM-A solutions with ν < 6 and the
MEPCM-A solution with ν = 6. This is accomplished via re-postprocessing of the
MEPCM-A solution at ν = 6.

7 Modeling subsurface contaminant transport through heteroge-

neous media

To demonstrate the computational tractability of MEPCM-A on complex real-
istic problems, we apply this method to study subsurface contaminant trans-
port in natural porous media. In such problems, uncertainty arises from a
lack of information concerning physical features and events or a lack of un-
derstanding of the processes controlling groundwater flow and transport. It
is important to understand these uncertainties and their potential impact on
model results.

Until recently, quantifying uncertainty in the outcome of these problems was
performed with Monte Carlo simulation. Unfortunately, the expense of MC
simulation is too costly to provide reliable results. For simple probabilistic
models of the hydraulic properties (with low random dimension), stochastic
finite element techniques have been able to speed up the computations signifi-
cantly. However, realistic representation of these features requires the capabil-
ity of handling random inputs with high dimension. In this section we aim to
apply the MEPCM-A to address this problem with high-dimensional random
inputs, using results of simpler studies in the previous section to judiciously
make parameter choices.

7.1 Background

We focus in particular on the US Department of Energy’s Hanford Site, which
is located along the Columbia River in southeastern Washington. During the
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Hanford site’s 60-plus years of history, there have been more than 1000 indi-
vidual sources of contaminants distributed over 200 square miles mostly along
the Columbia River. A total of 450 billion gallons of contaminated liquid were
spilled containing radioactive materials such as cesium, strontium, technetium,
iodine, uranium, neptunium and plutonium and large quantities of organic
contaminants such as carbon tetrachloride [45]. Stewardship efforts for this
site require detailed modeling and prediction of the subsurface transport of
these contaminants. However, the hydraulic properties of the subsurface are
highly heterogeneous and difficult to fully characterize.

The ability to describe subsurface heterogeneities in quantitative terms and
to incorporate this quantitative description into computer models is a key el-
ement in predicting transport of subsurface contaminants and the reduction
of modeling uncertainties. While all subsurface environments are clearly de-
terministic, numerous experimental data sets suggest that the permeability
varies significantly in space in a manner that cannot be described with cer-
tainty. Consequently, over the last decade it has become common to treat
these quantities as spatially correlated random fields, thereby making velocity
and saturation spatially correlated random fields as well. Hence, probabilistic
descriptions using spatial stochastic processes may be employed to describe
the variations in the geologic structure at the Hanford site. Figure 14 (from
[46]) is a map showing the location and areas surrounding the Hanford site -
Pasco Basin. The regional aquifer system extends from western Idaho through
eastern Washington and northeastern Oregon. This problem has been studied
extensively in stochastic hydrogeology (e.g. [47] and references therein).

7.2 Mathematical model

In this section we consider natural stochastic extensions of Darcy’s law and
mass conservation in order to address the effect of variability in the hydraulic
conductivity, K, on the piezometric head, h.

q = −K(x; ω)∇h(x; ω), −∇ · q + f = 0, (14)

where we have assumed for simplicity that the source term is zero and that the
problem is steady. Then, the system reduces to the stochastic elliptic problem

−∇ · (K(x; ω)∇h(x; ω)) = 0. (15)

The domain of this problem is the region within the model boundary detailed
in Figure 14. Boundary conditions have been modeled by the authors of [46]
via analysis of hydrologic properties including permeability of the bedrock,
recharge volumes, runoff of precipitation, and many other factors. A schematic
of the lateral boundary conditions is shown in Figure 15. There, various regions
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Fig. 14. Extent of Regional and Local Groundwater Flow Systems Beneath the
Hanford Site (from [46], section 4).

are marked where either the value of the piezometric head are specified, the
Darcy flux is specified, or zero flow is imposed on the boundary.

7.3 Results

We perform the PCM-A on the problem in equation (15) with boundary con-
ditions on the physical domain as given in Figure 15. The random hydraulic
conductivity, K, is modeled as a spatially correlated random process on the do-
main with a standard logarithmic transformation to ensure that it is bounded
away from zero. The correlation length is roughly equal to one third the dis-
tance between the points furthest north and south on the domain. The mean
of this process is e0.5σ2

with σ = 0.05, and the variance is equal to e2σ2

− eσ2

.
Once again, using the KL eigenpairs calculated for the covariance kernel, the
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Fig. 15. Groundwater flow model grid and lateral boundary conditions (from [46],
section 4).

random input K is defined to be a truncated expansion in terms of uniform
independent random variables on [−1, 1]. The expansion is truncated after 100
terms. We demonstrate the capability of PCM-A to address high dimensional
inputs on this problem.

The spatial discretization is performed using spectral elements on the ap-
proximately 15000-element mesh shown in Figure 15, with 3rd order Jacobi
polynomials on each element. PCM-A is performed using Gauss-Legendre ten-
sor product grids in each element. In Figure 16 we plot the first and second
moments of the value of the piezometric head over the domain, for two choices
of ANOVA discretization parameter ν = 1, 2. We observe that the difference
between solutions at ν = 1 and ν = 2 is small. To quantify the difference be-
tween these discretization levels we also calculated the mean of the H1

0 norm
of the solution for each case, shown in Table 7.
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Fig. 16. PCM-A results for problem (15) quantifying the effect of uncertainty in
hydraulic conductivity K on the piezometric head h. The conductivity is modeled
by a 100-term K-L expansion of a lognormal spatial random process. Top row: ν = 1
results for mean (left) and standard deviation (right). Bottom row: ν = 2 results
for mean (left) and standard deviation (right).

Table 7
Number of points used for each ν and mean of the H1

0 norm of the piezometric head.

ν Number of points E[‖h‖H1

0
(D)]

1 401 9.030922763071

2 44581 9.030966179659

8 Summary and Discussion

In this work a variant of the MEPCM method utilizing an ANOVA-type de-
composition was proposed for dealing with problems of high random dimen-
sion. We first numerically investigated the dependence of the convergence of
this method on the decomposition parameters µ and ν, concluding that in
order to achieve monotonic convergence µ and ν must be increased simultane-
ously. In addition, it was shown that for the 10-dimensional stochastic elliptic
problem, MEPCM-A with an adapted mesh performs better than PCM-A and
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as well as the sparse grid PCM method, which can only be used for smooth
problems. We also demonstrated the MEPCM-A for the integration of func-
tions with low regularity in very high dimensions.

We also applied the PCM-A to obtain error bars for the piezometric head at
the Hanford site under stochastic hydraulic conductivity conditions. For fu-
ture uncertainty quantification at the Hanford site, data from drilling samples
and knowledge of the subsurface composition will be incorporated into the
stochastic models. It is highly likely that various regions of the domain will be
modeled independently under different spatial random processes, depending
on regional geologic variations. Within each region, the estimated correlation
length of these processes may be relatively small. Thus, we expect that in order
to realistically represent the variation in conductivity, very high-dimensional
random inputs may be required. In future studies, the MEPCM-A may provide
a useful tool for handling such high-dimensional inputs in this complex system.
We conclude that for problems with prohibitively high nominal dimension and
possibly low stochastic regularity, the MEPCM-A can be a useful tool in solv-
ing otherwise computationally intractable problems, provided the solution has
relatively low effective dimension or a decay in its interaction weights.

We note that although we increase the computationally tractable number of
dimensions by incorporating the ANOVA decomposition, there still exists a
dimension limit beyond which Monte Carlo simulation is more efficient for
moment calculation. This is due to the fact that the computational costs
of MC simply scale more favorably with increasing dimension. We are then
interested in asking the question: as we increase the number of stochastic
dimensions in a problem, where is the crossover point beyond which Monte
Carlo is more efficient that the MEPCM-A and other stochastic collocation
variants? This crossover dimension is of course dependent on the problem
and the particular error tolerance we seek, but addressing a simple example
problem may shed light on relative differences between crossover dimensions
of the various methods.

The results presented in this work suggest that the MEPCM-A can provide
a more efficient alternative to Monte Carlo for some problems in higher-
dimensional regimes, which may be intractable for other stochastic colloca-
tion methods. In general, the MEPCM-A is a promising tool for addressing
problems of high dimension and low regularity; however, further investigation
is needed to more clearly delineate the class of problems for which it provides
the greatest benefit.

Specifically, it is of great practical importance that further effort is put into
incorporating approaches from data mining, statistics and financial mathe-
matics for estimating the effective dimension. Examples of such work include
the report of Caflisch et. al. [48] on effective dimension in mortgage backed
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securities, as well as the work of Wang and collaborators in [49,37] and refer-
ences therein. With these techniques, certain classes of high dimensional PDE
problems with lower effective dimension or a decay in the interaction weights
of the solution may be detected and treated automatically [32]. It will be inter-
esting to also extend MEPCM-A to non-elliptic PDEs; for nonlinear evolution

PDEs, like the Navier-Stokes equations, computing the effective dimensional-
ity is much more complex. (The more fundamental question on the existence
of low-dimensional manifolds in turbulent flows will not be addressed here
but physical and numerical evidence points to coherent structures and rela-
tively low-dimensionality, see [50,51].) Finally, systematic work on obtaining
the composite error bound due to error contributions from the MEPCM rep-
resentation and the ANOVA decomposition is required.
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