
The Multi-Element Probabilistic Collocation

Method (ME-PCM): Error Analysis and

Applications

Jasmine Foo, Xiaoliang Wan and George Em Karniadakis ∗
Division of Applied Mathematics, Brown University, Providence, RI 02912 USA

Abstract

Stochastic spectral methods are numerical techniques for approximating solutions
to partial differential equations with random parameters. In this work, we present

and examine the multi-element probabilistic collocation method (ME-PCM), which
is a generalized form of the probabilistic collocation method. In the ME-PCM, the

parametric space is discretized and a collocation/cubature grid is prescribed on each
element. Both full and sparse tensor product grids based on Gauss and Clenshaw-

Curtis quadrature rules are considered. We prove analytically and observe in nu-
merical tests that as the parameter space mesh is refined, the convergence rate of

the solution depends on the quadrature rule of each element only through its degree

of exactness. In addition, the L2 error of the tensor product interpolant is exam-
ined and an adaptivity algorithm is provided. Numerical examples demonstrating

adaptive ME-PCM are shown, including low-regularity problems and long-time in-
tegration. We test the ME-PCM on two-dimensional Navier Stokes examples and a

stochastic diffusion problem with various random input distributions and up to 50
dimensions. While the convergence rate of ME-PCM deteriorates in 50 dimensions,

the error in the mean and variance is two orders of magnitude lower than the er-
ror obtained with the Monte Carlo method using only a small number of samples

(e.g., 100). The computational cost of ME-PCM is found to be favorable when com-
pared to the cost of other methods including stochastic Galerkin, Monte Carlo and

quasi-random sequence methods.

1 Introduction

Problems with parametric uncertainty arise in various applications from en-
gineering, biology, and many other fields. This uncertainty may be due to
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either the random nature of the quantity being modeled or a lack of infor-
mation about the true value of the parameter. In this paper we concentrate
on a class of methods designed to calculate the moment statistics of solu-
tions to PDE/ODE systems with parametric uncertainty. Our work builds
heavily upon previous contributions to the field of stochastic numerical meth-
ods, which include the generalized polynomial chaos method (gPC), multi-
element generalized polynomial chaos method (ME-gPC), probabilistic collo-
cation method (PCM), and many other variants (see, e.g., [1–13] and references
therein).

Calculation of moment statistics can essentially be described as a high-dimen-
sional integration problem, where the dimensionality refers to the cardinality
of random dimensions. For this reason, problems with large random dimension
suffer from the same computational challenges in this field as in the field of
high-dimensional numerical integration. Advances such as the use of sparse
grid techniques ([14,2,15]) for numerical integration have greatly alleviated this
problem, but such techniques rely upon the essential regularity of the solution
in parameter space. Thus, systems with discontinuous dependence on random
parameters cause difficulties for the convergence of these methods. As a result,
these problems still require prohibitively large computational resources. It
is worthwhile noting that currently for problems with very large dimension
(≥ 100), traditional Monte Carlo (MC) methods are more attractive than
any method in this class because of their favorable scaling with increasing
dimension. In this work, however, we restrict ourselves to problems of moderate
dimension, where large improvements in cost can be made relative to the cost
of MC.

As mentioned before, many variations have been introduced to improve the
efficiency of stochastic numerical methods including sparse grid collocation,
anisotropic sparse grid collocation [16], as well as sparse polynomial bases [9]
and wavelet expansions [17] for the Galerkin formulation. A multi-element for-
mulation for the stochastic Galerkin method was proposed in [1]. This method
was then generalized in [18] to deal with arbitrary probability distributions
with the numerical construction of generalized polynomial chaos bases on the
fly. This approach, called the Multi-Element Generalized Polynomial Chaos
(ME-gPC) method was found to effectively deal with problems exhibiting low
regularity in parametric space as well as for long-time integration [18]. How-
ever, as with most Galerkin methods, high random dimension often necessi-
tates a prohibitively large number of basis functions in nonlinear problems. In
addition, the ME-gPC method requires derivation of a new numerical scheme
and solver to deal with nonlinear problems.

In this paper we introduce a multi-element probabilistic collocation method
(ME-PCM) which is an extension of the probabilistic collocation method,
which was first introduced in [11], and later explored in [3,12]. The method
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we propose offers the advantages of domain decomposition in parametric space,
similar to the ME-gPC method, and also the computational ease of sampling-
based methods. In particular, we note that using the ME-PCM requires only
a wrapper around a deterministic solver of the ODE/PDE for each sample
calculation. Thus, nonlinear problems are significantly easier to compute using
the ME-PCM instead of the ME-gPC method. We are interested in setting
the theoretical foundations of the method and in answering some practical
questions about the usage of the ME-PCM. Specifically, we would like to
study how the choice of an integration/approximation rule in each element
affects the h-convergence rate of the solution (here, h-convergence refers to
the refinement of elements in the parametric space). We are also interested
in analyzing how this method compares to pre-existing methods in terms of
computational cost for difficult problems with low regularity in parametric
space, and how well it fares in long-time integration problems.

In section 2 the general framework and model problem are discussed. As the
reader will see, most of the error analysis is confined within the context of the
stochastic diffusion problem which is presented as an example in this section.
However, many non-elliptic problems are addressed in the examples section,
so a fairly general model problem formulation is maintained here to discuss
the method. Also in this section we will introduce assumptions on the random
input that are essential for ME-PCM as well as for the other methods we
have discussed so far. In section 3 ME-PCM is introduced, with two options
presented for the choice of an integration/approximation rule in each element.
Section 4 contains error analysis of ME-PCM and is divided into two main
parts. The first of these addresses the error in moments of the solution or
numerical integration error. Here, we show that the choice of integration rule
affects the convergence rate only through its degree of polynomial exactness.
In the second part we investigate the L2 error of the ME-PCM approximant
by building upon the previously published error analysis for the PCM method
in [12] and [15]. In section 5, numerical examples using ME-PCM for various
problems are shown. We numerically verify the findings in section 4 regarding
the h-convergence rate of moment errors using simple numerical integration
examples, ODEs and some two dimensional Navier-Stokes problems. We in-
vestigate the effectiveness of the adaptive ME-PCM on a problem with low
regularity in parametric space space and make some comparison studies of
computational costs with other methods. In the last example we solve a 50-
dimensional stochastic diffusion problem with the ME-PCM and study the
h-convergence of the method using an a priori adapted mesh. Finally, in the
appendices we include details of the proofs of theorems presented in the main
text as well as a short review of material on sparse grids and on adaptivity
criteria.
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2 Formulation

Let (Ω,F , P ) be a complete probability space, where Ω is the space of events,
F ⊂ 2Ω is the σ-algebra of sets in Ω, and P is the probability measure. Also,
define D to be a subset of Rd(d ∈ {1, 2, 3}) with boundary ∂D. Let L and B
be operators on D and ∂D, respectively, where L may depend upon ω ∈ Ω.
In this work we consider the following problem: find u : Ω×D → R such that
P -almost everywhere (a.e.) in Ω the following equation holds:











L(x, ω; u) = f(x, ω), x ∈ D,

B(x; u) = g(x), x ∈ ∂D.
(1)

We assume that the boundary has sufficient regularity and that f and g are
imposed so that the problem is well-posed P -a.e. We also assume that for
P -a.e. ω ∈ Ω, the solution u(·, ω) takes values in a Banach space, W(D),
of functions over the physical domain taking values in R. The main goal of
the ME-PCM, like other methods of its class, is to approximate the moment
statistics of the solution of this problem.

In order to apply the methods that will be discussed later, the random de-
pendence of operators L and f must satisfy a few important properties. The
first requirement, commonly known as a “finite dimensional noise assumption”
[12,3], is that the random input can be represented with a finite-dimensional
probability space. More specifically, the random input can be represented by
a finite set of random variables {Y1(ω), Y2(ω), ...YN(ω)}, with a known joint
density function ρ. With this assumption on the random input, the problem
(1) can be restated as follows. Find u : Ω × D → R such that

L(x, Y1(ω), Y2(ω), ...YN(ω); u) = f(x, Y1(ω), Y2(ω), ...YN(ω))

holds ∀x ∈ D and for P -a.e. ω ∈ Ω, with corresponding boundary conditions.
Using the Doob-Dynkin Lemma [19] we can assert that the solution u(x, ω) can
be written as u(x, Y (ω)) with Y = (Y1, Y2, ..., YN). Then, the problem may
be recast from the space Ω into the target space of the N random variables.
Let y = (y1, y2, ...yN) ∈ Γ ≡ ∏N

j=1 Γj , where Γj is the image of Yj(Ω) for
j = 1, ..., N . Let ρ(y) be the probability density function (PDF) of Y . The
problem can be restated: Find u : Γ ×D → R such that ρ-almost everywhere
for y ∈ Γ the following equation holds:











L(x, y; u) = f(x, y), x ∈ D,

B(x, u) = g(x), x ∈ ∂D.
(2)

Thus, the original problem (1) is recast as a fully deterministic problem in
equation (2). It is sometimes useful to think of the solution u as a function
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on Γ, taking values in a proper Banach space W(D). In this case we would
denote u(y) to be the Banach-valued solution to the problem for a particular
y ∈ Γ. Although numerical examples will be shown later in section 5 for various
differential operators L, most of the error analysis presented in section 4 will
be confined to the following prototype elliptic problem.

2.1 A model problem: elliptic problem with stochastic input

We consider the following stochastic linear boundary value problem: find a
stochastic function, u : Ω × D → R, such that the following equation holds
P -a.e:











−∇ · (a(x; ω)∇u(x; ω)) = f(x) in D,

u(x; ω) = 0 on ∂D,
(3)

where f(x) is assumed to be deterministic for simplicity and a(x; ω) is a
second-order random process satisfying the following assumption:

Assumption 1 Let a(x; ω) ∈ L∞(D; Ω) be strictly positive with lower and
upper bounds amin and amax, respectively,

0 < amin < amax and P (a(x; ω) ∈ [amin, amax], ∀x ∈ D) = 1.

Under this assumption, the problem has a unique solution u such that u(·, ω)
takes realizations in the space W(D) = H1

0 (D), P -a.e. in Ω. We can approxi-
mate a(x, ω) using a truncated Karhunen-Loève (K-L) expansion:

aN(x; ω) = E[a](x) +
N

∑

j=1

√

λjφj(x)Yj(ω), (4)

where {Yj}N
j=1 are mutually uncorrelated random variables with zero mean and

unit variance [7,20,8]. The eigenpairs {λj, φj}N
j=1 satisfy

∫

D
Raa(x, y)φi(x)dx = λiφi(y), (5)

where Raa is the covariance kernel of a. The use of this truncated approx-
imation for a(x; ω) guarantees that the finite dimensional noise assumption
is satisfied. For simplicity we make the additional assumption that Yi are in-
dependent so that the density function ρ(y) =

∏N
j=1 ρj(yj), where ρj is the

density function of each Yj.

5



3 ME-PCM Method

In this section we describe the multi-element probabilistic collocation method
(ME-PCM). The main idea of ME-PCM is to discretize the space Γ (which is
assumed to be bounded) into non-overlapping elements and perform the stan-
dard probabilistic collocation method on each element. This yields approxi-
mate local moment statistics in each element, which can then be assembled to
obtain global statistics. Key considerations arising in practice include finding
suitable mesh discretizations, choice of collocation points, and adaptive mesh
refinement. In the interest of uniformity, we adopt many of the same notations
used in the works of [12] and [15] on the probabilistic collocation method in
our description of the ME-PCM extension.

3.1 Spatial discretization

The method involves first discretizing the problem (2) in the physical space D
using a standard finite or spectral element solver to obtain the deterministic
semidiscrete solution. Let us define Wk(D) to be a standard solution subspace
of W(D) (e.g., finite/spectral element space), containing piecewise polynomi-
als defined on regular mesh Tk,D of D with maximum mesh spacing parameter
k. Define the deterministic semidiscrete solution uk(y) ≡ πku(y) ∈ Wk(D)
to be the finite/spectral element ([21,22]) approximate solution of the deter-
ministic problem (2) for each y ∈ Γ, where πk is the finite/spectral element
projection operator. Thus, uk : Γ → Wk(D). We assume that the discretiza-
tion in physical space satisfies the usual convergence property:

‖u(y) − uk(y)‖W(D) ≤ C(u(y), l)kl, ∀y ∈ Γ, (6)

where l is a positive number dependent on the regularity of u(y) in D. In the
case of the example problem (3), we have:

‖u(y) − uk(y)‖H1
0 (D) ≤ Ckl‖u(y)‖H l+1(D), ∀y ∈ Γ. (7)

3.2 Stochastic discretization

The next step is to discretize the parametric space Γ into a nonoverlapping
mesh of open hypercubes. We begin by defining {Bi}Ne

i=1 to be a finite collection
of open subsets of Γ such that

⋃Ne

i=1 Bi = Γ and Bi ∩ Bj = ∅ whenever i 6= j.
We will assume for simplicity that the Bi are rectangular (i.e., Bi =

∏N
j=1 Bi

j,
where Bi

j ⊂ Γj). These sets will be referred to as ‘elements’ of a mesh on
the parametric space Γ, and thus Ne refers to the number of elements in a
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particular mesh discretization. Let us denote a particular mesh discretization
of Γ as Th,Γ, where h refers to the maximum mesh spacing parameter. Once
a mesh is prescribed, a set of collocation points {qi

j}r
j=1 is prescribed in each

element Bi, where r refers to the number of points used. These points are
usually chosen to coincide with the points of an cubature rule on Bi with
integration weights {wi

j}r
j=1. In this work, we consider full tensor products

of Gauss quadrature points and sparse grids (see sections 7.1 and 7.1.1 the
appendix for details).

The semidiscrete solution uk is then collocated on the set of points
⋃Ne

i=1

⋃r
j=1{qi

j}.
In other words, at each of these points qi

j we find the finite/spectral element
solution of the deterministic problem:











L(x, qi
j; u) = f(x, qi

j), x ∈ D

B(x, u) = g(x), x ∈ ∂D.
(8)

This approximate solution is denoted by uk(·, qi
j) : Γ 7→ Wk(D). We are then

interested in constructing a fully discrete approximant IBiuk(x, y) using the
set of solutions {uk(·, qi

j)}r
j=1 over each element Bi. For example, the operator

IBi can be chosen to be the tensor product Lagrangian interpolant, i.e.,

IBiuk(x, y) ≡ Lp

Biuk(x, y) =
r

∑

j=1

uk(x, qi
j)l

i
j(y), (9)

where lij(y) is the Lagrange polynomial corresponding to the point qi
j and p

determines the degree of the interpolant in each dimension. The operator Lp

Bi

is defined and described in more depth in the appendix, section 7.1.

Another choice for the operator IBi is the isotropic Smolyak sparse grid op-
erator SBi(s), which was introduced in [23] by Smolyak. Here, the sparseness
parameter s controls the order of the approximant. The construction and de-
tails of this operator are also given in the appendix, section 7.1.1.

We now define the global approximant:

ũ(x, y) =
Ne
∑

i=1

IBiuk(x, y)I{y∈Bi} ∀x ∈ D, ∀y ∈ Γ

where Iy∈A denotes the characteristic function of set A.

We subsequently consider the computation of statistics and define the condi-
tional probability density function in each element:

ηi(y) =
ρ(y)

∫

Bi ρ(y)dy
. (10)
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We assume that the density function is in tensor product form ρ(y) =
∏N

j=1 ρj(yj),

so this property is inherited by the local density ηi(y) =
∏N

j=1 ηj(yj). The local

mean of a function v : D × Bi → R in an element i is given by:

E
i[v(x, ·)] = E[v(x, ·)|Y (ω) ∈ Bi] =

∫

Bi
v(x, y)ηi(y)dy.

Using the cubature rule over each element, we can easily compute the approx-
imate local mean of ũ as

E
i
a[ũ](x) =

r
∑

j=1

uk(x, qi
j)w

i
j ≈ E

i[ũ](x).

Here we use the notation Ei
a to denote the expected value approximation op-

erator using numerical quadrature. Note that Ei
a is defined through the partic-

ular choice of mesh and collocation grids for any given ME-PCM procedure.
Finally, the approximate global mean can be assembled from the local means
via Bayes’ formula

Ea[ũ](x) ≡
Ne
∑

i=1

E
i
a[ũ](x)P (Y (ω) ∈ Bi) ≈ E[ũ](x). (11)

Other statistics can be computed by the same procedure. For example, we can
compute the energy norm in physical space of the MEPCM solution ũ at each
collocation point. Then, using quadrature we can compute the mean of the
energy norm of the solution:

Ea[‖ũ‖W(D)] ≡
Ne
∑

i=1





r
∑

j=1

‖uk(·, qi
j)‖W(D)w

i
j



 P (Y(ω) ∈ Bi) ≈ E[‖ũ‖W(D)].

(12)
Recall that r denotes the number of collocation points in each element.

Remark 2 If the PDF ρ(y) is uniform, grids in each element can be obtained
by an affine mapping from a reference element. Otherwise, grids are, in gen-
eral, element-dependent, since ηi(y) are different in each element when the
parametric space Γ is decomposed. We refer the reader to [4] for more details
on constructing a local GPC bases orthogonal with respect to the conditional
PDF.

Remark 3 (Adaptivity) Adaptive mesh refinement is necessary when the
solution has low regularity in the parametric space Γ. The adaptive procedure
developed in [18,4] for the ME-gPC method can be employed directly for ME-
PCM. The key idea of adaptive criterion in [18,4] is to refine an element in
the parametric space when the decay of the coefficients in the chaos expansion
is relatively slow, see section 7.4 in the appendix. We note that IBiuk(x, y)
corresponds to a unique polynomial chaos expansion and all the local statis-
tics used in the adaptive criterion can be computed easily by the collocation
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solution. It is only necessary to project the collocation solution onto the high-
est modes of the basis to evaluate the adaptivity criterion. General adaptive
formulas for sparse grids have been developed in [24].

4 Error Analysis

In this section, we present come convergence results of ME-PCM, in particular,
we focus on the model problem (3).

4.1 Moments Error

We first examine the relation between h-convergence rate of ME-PCM and
the degree of exactness of cubature rules. We begin by defining two standard
norms. For a function f : A → R, we consider the Sobolev space W m,∞(A)
with the norm:

‖f‖m,∞,A = max
|α|≤m

ess sup
x∈A|Dαf(x)|

and the seminorm:

|f |m,∞,A = max
|α|=m

ess sup
x∈A|Dαf(x)|,

where A ⊂ RN , α ∈ NN
0 , |α| = α1 + . . . + αN and m ∈ N0.

In this section we assume that the density function ρ(y) is uniform for con-
venience in analysis. Then, a general h-convergence rate of ME-PCM is given
by the following theorem:

Theorem 4 Suppose f ∈ W m+1,∞(Γ) with Γ = (0, 1)N , and {Bi}Ne

i=1 is a
nonoverlapping mesh of Γ. Let h indicate the maximum side length of each
element and QΓ

m a quadrature rule with degree of exactness m in domain Γ.
(In other words Qm exactly integrates polynomials up to order m). Let QA

m be
the quadrature rule in subset A ⊂ Γ, corresponding to QΓ

m through an affine
linear mapping. We define a linear functional on W m+1,∞(A) :

EA(g) ≡
∫

A
g(x)dx −QA

m(g) (13)

whose norm is defined as

‖EA‖k,∞,A = sup
‖g‖k,∞,A≤1

|EA(g)|. (14)
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Then the following error estimate holds:

∣

∣

∣

∣

∣

∫

Γ
f(x)dx −

Ne
∑

i=1

QBi

m f

∣

∣

∣

∣

∣

≤ Chm+1‖EΓ‖m+1,∞,Γ|f |m+1,∞,Γ (15)

where C is a constant and ‖EΓ‖m+1,∞,Γ refers to the norm in the dual space
of W m+1,∞(Γ).

PROOF. See section 7.2 in the appendix.

Remark 5 In theorem 4, the only information used for the h-convergence
rate of ME-PCM is the degree of exactness of cubature rules. The norm of the
error functional ‖EΓ‖m+1,∞,Γ usually exhibits p-type convergence for polyno-
mial interpolation. Roughly speaking, theorem 4 shows hp-convergence of the
moments error of the ME-PCM.

We subsequently present several examples based on different choices of inter-
polation rule QΓ

m and an application to the stochastic elliptic problem.

Example 1: Tensor-product Gauss grid - Let QΓ
m signify tensor product

integration rule Γ, based upon one-dimensional Gauss formulas Uk
j , described

in appendix (section 7.1). If we choose n + 1 points in each dimension, the
degree of exactness is m = 2n + 1.

We now consider the degree of exactness associated with sparse grids, as de-
scribed in the appendix (section 7.1.1). In the sparse quadrature procedure,
the sparseness parameter ‘s’ controls the number of points in the grid. A
sparseness level equal to the number of dimensions (s = N) corresponds to
the trivial grid consisting of only one point. As s increases, the number of
points and hence the accuracy of the quadrature increases. In the following
we state some results from [25] relating the degree of exactness m of sparse
quadrature rules to the sparseness parameter s.

Example 2: Smolyak Clenshaw-Curtis grid - Let QΓ
m be the Clenshaw

Curtis Smolyak operator in Γ of dimension N with sparseness parameter s,
which is described in section 7.1.1. There we choose the number of points for
each order to be n1 = 1 and nk = 2k−1 + 1 for k > 1. With this choice, the
degree of exactness of QΓ

m can be stated as follows [25]: Let σ = floor(s/N)
and let τ = s mod N . Then QΓ

m has degree of exactness:

m(s, N) =











2(s − N) + 1, if s < 4N

2σ−1(N + 1 + τ ) + 2N − 1, otherwise.
(16)
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From [26] we also obtain a bound on the operator norm of the error functional:

‖EΓ‖m+1,∞,Γ ≤ r−m(s,N)(log r)(N−1)(m(s,N)+1). (17)

where r denotes the total number points used in the quadrature rule.

Example 3: Smolyak Gauss grid - Let QΓ
m be the Smolyak-Gauss operator

in Γ of dimension N with sparseness parameter s. Again we choose n1 = 1
and nk = 2k−1 + 1 for k > 1. Then, the degree of exactness of QΓ

m can be
stated as follows [25]: Let σ = floor(s/N) and let τ = s mod N . Then QΓ

m

has degree of exactness:

m(s, N) =











2(s −N) + 1, if s ≤ 3N

2σ−1(N + 1 + τ ) − 1, otherwise.
(18)

An application to stochastic elliptic problem - Let u be the exact
solution of the stochastic problem (3) given in section 2.1 satisfying u ∈
H1

0 (D) ∩ H2(D) almost surely. We assume that the coefficient a(x; ω) is rep-
resented by independent uniform random variables (Y1, ..., YN) ∈ Γ and that
Γ is compact in RN (see equation (4)). We obtain the following result:

Lemma 6 Using a nonoverlapping mesh of Γ with maximum side length h and
a collocation grid associated with a quadrature rule with degree of exactness m
in each element, define ũ to be the approximate solution given by ME-PCM
with a spatial discretization projection πk satisfying (7) for l = 1. Then the
error of the energy norm Ea‖ũ‖H1

0 (D) (defined in equation (12)) can be bounded
as:

∣

∣

∣ E‖u‖H1
0(D) − Ea‖ũ‖H1

0 (D)

∣

∣

∣ ≤ C1k‖u‖H2(D) + C2h
m+1, (19)

where the constants C1 and C2 are independent of k and h.

PROOF. Using the triangle inequality,

∣

∣

∣ E[‖u‖H1
0(D)] − Ea[‖ũ‖H1

0 (D)]
∣

∣

∣ ≤
∣

∣

∣ E[‖u‖H1
0(D)] − E[‖uk‖H1

0(D)]
∣

∣

∣

+
∣

∣

∣ E[‖uk‖H1
0 (D)] − Ea[‖ũ‖H1

0 (D)]
∣

∣

∣ (20)

Note that ‖uk(·, y)‖H1
0(D) ∈ W m+1,∞(Γ) for the problem at hand. Then, it is

clear that we can obtain the bound on the second term from Theorem 4 by
noting that

Ea‖ũ‖H1
0 (D) =

1

vol(Γ)

Ne
∑

i=1

QBi

m ‖uk(·, ·)‖H1
0(D)
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(where the norm is taken over the spatial variable and the quadrature acts in
the probability space) as well as by noting that

E‖uk‖H1
0 (D) =

1

vol(Γ)

∫

Γ
‖uk(·, y)‖H1

0 (D)dy.

Then,

|E‖uk‖H1
0 (D) − Ea‖ũ‖H1

0 (D)| ≤ C‖EΓ‖m+1,∞,Γ|uk|Wm+1,∞(Γ;H1
0(D))h

m+1.

We note that uk has the same regularity as u. Moreover, we know that there
exists an analytic extension for u in the parametric space [12], which implies
that |uk|Wm+1,∞ is finite. The first term in (20) is a spatial discretization error
term and

|E‖u‖H1
0(D) − E‖uk‖H1

0(D)| ≤E‖u − uk‖H1
0 (D)

≤E[Ck‖u‖H2(D)]

≤Ck · E‖u‖H2(D).

4.2 L2 error of the global approximant

In this section, the error of the global approximant ũ is compared with the
exact solution u in the L2(Γ; H1

0 (D)) norm:

‖ũ− u‖L2(Γ;H1
0 (D)) ≤ ‖ũ − uk‖L2(Γ;H1

0(D)) + ‖uk − u‖L2(Γ;H1
0(D))

We are interested in the first term, which corresponds to the stochastic dis-
cretization error. We assume that the second term, which corresponds to the
deterministic discretization error, is zero.

4.2.1 Tensor product interpolation using Gauss abscissas

We consider the global ME-PCM approximant ũ for a uniform PDF ρ(y),
where the interpolation operator is based on full tensor product of Gauss-
Legendre abscissas (see appendix, section 7.1), i.e., IΓ = Lp

Γ, where p =
(p1, . . . , pN ) ∈ ZN

+ indicates polynomial order used in each random dimen-
sion. We begin by restating a few relevant results from [12], where the same
stochastic elliptic problem is addressed in a one-element formulation. It is
proven there that the solution satisfies the following regularity property:

Lemma 7 (Regularity Property) [Babuska et. al.] Let Γ∗
j =

∏N
i=1,i6=j Γj ,

and let y∗
j be an arbitrary element of Γ∗

j . For each yj ∈ Γj , there exists αj > 0
such that the solution u(yj, y

∗
j , x) as a function of yj, u : Γj → C0(Γ∗

j , H
1
0 (D))
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admits an analytic extension uj
a(z, y∗

j , x), z ∈ C of u, in the region of the
complex plane:

Σ(Γj ; αj) ≡ {z ∈ C, dist(z, Γj) ≤ αj}. (21)

Moreover, ∀z ∈ Σ(Γz; αj), ‖ua(z)‖C0(Γ∗
j
;H1

0 (D)) ≤ λ, where λ is independent of
j.

We now state a main result of [12], which provides the error estimate of Lp

Γu.

Lemma 8 [Babuska et. al.] Let u be the exact solution of (3). Let p =
(p1, ..., pN) be a vector in ZN

+ and Lp
Γ represent the Lagrangian tensor prod-

uct interpolation operator using Gauss-Legendre abscissas on Γ, as defined in
section 7.1. Then,

‖Lp
Γu − u‖L2(Γ;H1

0 (D)) ≤ C
N

∑

j=1

exp{−rjpj} (22)

where

rj = log





αj

2



1 +

√

√

√

√1 +
1

α2
j







, (23)

and the αj are the parameters related to the size of the analyticity domain in
Lemma 7.

We note that in lemmas 7 and 8, uk is replaced by u because uk possesses the
same regularity as u. We next consider the error estimate of ME-PCM. Recall
that ũ(x, y) =

∑Ne

i=1(L
p

Biuk)(x, y)I{y∈Bi}. For convenience, we instead consider

the error between quantities
∑Ne

i=1(L
p

Biu)(x, y)I{y∈Bi} and u. However, we will
abuse notation a bit and still refer to the former quantity as ũ. We now state
the result:

Theorem 9 Let u be the exact solution of (3). Let Th,Γ = {Bi}Ne

i=1 represent
a uniform mesh on Γ where each element has side length h (Ne = ( 1

h
)N). Let

p = (p1, ..., pN) be a vector in ZN
+ and let Lp

Γ represent the Lagrangian tensor
product interpolation operator using Gauss-Legendre abscissas on Γ. Let Lp

Bi

represent Lp

Γ affinely mapped to Bi. Then,

‖ũ − u‖L2(Γ;H1
0 (D)) ≤ C

N
∑

j=1

exp{−rj(h)pj} (24)

where

rj(h) = log





αj

2h



1 +

√

√

√

√1 +
h2

α2
j







. (25)

PROOF. See section 7.3 in the appendix.
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Remark 10 It is easy to see that for fixed p, if we rewrite rj(h) as

rj(h) = log
1

h
+ log





αj

2



1 +

√

√

√

√1 +
h2

α2
j







,

we obtain a factor in the error estimate as

exp(−pj log
1

h
) = hpj ,

which is the desired h-type convergence of ME-PCM for this problem. Alterna-
tively for fixed h, rj(h) is a constant and we obtain p-type convergence through
the term

exp(−rj(h)pj).

Remark 11 It is important to note that Lemma 8 and theorem 9 are not
restricted to uniform distribution and can be easily generalized to other ρ(y)
by considering the norm equivalence [12]. Also error estimates of ME-PCM
based on other interpolation operators [15], e.g., sparse grids, can be obtained
following a similar procedure as in the proof of theorem 9.

5 Numerical Examples

5.1 Approximation of GENZ test functions

In this section we will numerically verify the h-convergence rate of ME-PCM
stated in the previous section by approximating the integrals of the following
functions defined on [0, 1]2 from the GENZ test suite [27]. Sparse grids based on
one-dimensional Gauss and Clenshaw-Curtis quadrature rules are examined.
We use the following functions:

OSCILLATORY: f1(x1, x2)= cos (2πw1 + c1x1 + c2x2)

GAUSSIAN: f4(x1, x2)= exp (−c2
1(x1 − w1)

2 − c2
2(x2 − w2)

2)

CONTINUOUS: f5(x1, x2)= exp (−c1|x1 −w1|2 − c2|x2 −w2|2)

DISCONTINUOUS: f6(x1, x2)=











0, if x1 > w1 or x2 > w2,

exp (c1x1 + c2x2), otherwise.

where w1, w2, c1, c2 are constants.

Figure 1 shows the approximation error of the OSCILLATORY and GAUS-
SIAN integrals by sparse grid cubature on uniform meshes. The number of
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elements per side Nes corresponds to 1
h

where h is the size of each element.
The sparseness parameter is s = 3 in both cases, leading to a degree of ex-
actness of m = 3 for both types of grids. Both of these functions f1, f4 lie in
W4,∞([0, 1]2) so the conditions of Theorem 1 hold. From the figure, we see that
the convergence rate is indeed O(h4) = O(N−4

es ) as predicted, since m+1 = 4.
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Fig. 1. h-convergence of Gauss and Clenshaw-Curtis sparse grid integration of

smooth functions f1 and f4 from the GENZ test suite. Solid lines indicate f1 errors
while dotted lines indicate f4 errors. Square markers: Clenshaw-Curtis points, circle

markers: Gauss points.

We also consider the CONTINUOUS and DISCONTINUOUS functions (f5, f6),
which do not satisfy the regularity requirements needed in the assumptions of
Theorem 1. Figure 2 shows the approximation error for these functions using
the same sparse grids as in the previous example. Without the proper regular-
ity, it can be seen that the convergence rate is reduced to approximately order
one. Tests were also performed to verify that adapting the mesh to the discon-
tinuities of the function recovers the optimal convergence rate. Specifically, the
mesh is chosen such that the discontinuities fall on the borders of elements.
From the figure it can be seen that under these conditions, the convergence
rate indeed returns to O(N−4

es ).

To investigate the constant in the error bound in (15), the integral of functions
f1 and f4 are approximated using a Clenshaw-Curtis sparse grid with varying
sparseness parameter s. The errors are shown in tables in Figure 3. In the last
column, the absolute error ε is normalized by the term

R = r−m(log r)(N−1)(m+1)hm+1| · |m+1,∞,[0,1]2, (26)

where r is the total number of points in the quadrature rule. This gives an
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Fig. 2. h-convergence of sparse grid integration error for nonsmooth functions f5

and f6 from the GENZ test suite. Solid lines indicate f1 errors while dotted lines

indicate f4 errors. Marker key - square: Clenshaw-Curtis points on uniform mesh,
circle: Gauss points on uniform mesh, diamond: Gauss points on adapted mesh.

estimate of the constants in the error bound of (15).

It can be seen that by normalizing the error by the factor R, we obtain a con-
stant which depends on the function being integrated as well as the sparseness
parameter.

5.2 ODE examples

Next we examine errors in time-dependent solutions using, first, simple ordi-
nary differential equations (ODEs) and, second, a nonlinear system.

5.2.1 Simple ODEs

In this section we investigate the h-convergence rate of ME-PCM for ODEs
with uncertain parameters. The collocation grid in each element is kept fixed
as the mesh is uniformly refined. Only ‘smooth’ problems are considered, i.e.,
problems where the solution exhibits regularity in the parameter space. The
error from the time integration solver (fourth-order Runge Kutta) is negligi-
ble, and thus dominated by the more interesting stochastic semidiscrete error
term. We are interested in verifying the convergence rates for ODEs in both
the mean and variance error, while using tensor product grids instead of the
sparse grids investigated in the previous examples. The following equations
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s, m, r Nes |ε| |ε|
R

3,3,5 2 6.3e-7 0.000405

4 3.9e-8 0.000402

10 1.0e-9 0.000402

20 6.2e-11 0.000402

100 1.0e-13 0.000404

4,5,13 1 2.2e-7 0.000774

2 3.6e-9 0.000760

4 5.2e-11 0.000756

5 1.4e-11 0.000755

8 8.1e-13 0.000755

15 1.9e-14 0.000752

5,7,29 1 3.1e-10 0.001109

2 1.2e-12 0.001085

3 4.7e-15 0.001080

s, m, r Nes |ε| |ε|
R

3,3,5 1 8.0e-5 0.000319

2 8.1e-5 0.000319

4 4.8e-6 0.000305

8 3.0e-6 0.000302

10 1.2e-7 0.000301

50 1.9e-10 0.000300

4,5,13 3 1.8e-8 0.000900

10 1.3e-11 0.000888

15 1.1e-12 0.000887

20 2.1e-13 0.000892

5,7,29 2 3.7.0e-10 0.000283

3 2.6e-11 0.000271

5 4.3e-13 0.000266

8 9.9e-15 0.000265

Fig. 3. Sparse integration errors ε and numerical approximation of constants for
the functions f1 (left) and f4 (right) using varying sparseness parameter s. Recall

that s is the sparseness parameter of the grid in each element, m is the degree of
exactness, and r is the total number of points used in each element. Also, Nes is the
number of elements per direction.

are investigated:

Case I:
dy

dt
= −(ξ1 + M)y

Case II:
dy

dt
= −(ξ1 + M)y2

Case III:
dy

dt
= −(ξ1 + M)y3

Case IV:
dy

dt
= −(ξ1 + ξ2 + M)y2

where ξ1, ξ2 are i.i.d. random variables distributed uniformly on [−1, 1]. M
is chosen to avoid singularities in the solution and y(0) = 1. Exact solutions
can be found for all four cases. The error in mean and variance between the
numerical solution using ME-PCM and the exact solution is taken at time
T = 5.
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In this example a tensor product Gauss-Legendre collocation grid is used over
each element. An asymptotic index of algebraic convergence, κ, is numerically
calculated as h decreases. This is shown in tables 1 and 2 for the mean and
variance, respectively. The results are close to the expected value of κ, which
is m +1 where m is now the degree of exactness for the Gauss tensor product
grids. Furthermore, the same result holds for the variance as well as the mean.

Table 1
Numerically calculated index of algebraic convergence κ of the mean solution at
time T = 5 for ODE examples I-IV. ME-PCM is used with a tensor product Gauss-

Legendre grid in each element. These results show good agreement with the expected
values of κ ≈ m + 1.

degree of exactness m Case I Case II Case III Case IV

3 -3.95 -3.99 -3.99 -3.93

5 -5.94 -5.98 -5.98 -5.91

7 -7.96 -7.91 -7.91 -7.92

Table 2

Numerically calculated index of algebraic convergence κ of the variance of the solu-
tion at time T = 5 for ODE examples I-IV. ME-PCM is used with a tensor product

Gauss-Legendre grid in each element. These results show good agreement with the
expected values of κ ≈ m + 1.

degree of exactness m Case I Case II Case III Case IV

3 -3.95 -3.99 -3.99 -3.96

5 -5.94 -5.97 -5.97 -5.90

7 -7.92 -7.97 -7.89 -7.91

5.2.2 Kraichnan-Orszag Problem

The deterministic Kraichnan-Orszag (K-O) three-mode problem is as follows
[28]:

dy1

dt
= y1y3

dy2

dt
=−y2y3 (27)

dy3

dt
=−y2

1 + y2
2
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subject to random initial conditions:

y1(0) = y1(0; ω), y2(0) = y2(0; ω), y3(0) = y3(0; ω)

The solution exhibits low regularity with respect to the parameter y2(0).

0.2

0.4

0.6

0.8 −0.5

0

0.5

−0.5

0

0.5

 

y
2y

1

 

y
3

y
2
(0) = −0.1

y
2
(0) = −0.001

y
2
(0) = 0.001

y
2
(0) = 0.1

y
2
(0) = 0

Fig. 4. y1-y2-y3 phase plot of solutions to the Kraichnan-Orszag problem (27) with
initial conditions y1(0) = 1, y3(0) = 0 and varying y2(0). Triangle markers indicate
solutions when y2(0) > 0. Circle markers indicate solutions when y2(0) < 0. The

wide black line (situated on the lower half of the y2 = 0 plane separating the two sets
of trajectories for y2(0) < 0 and y2(0) > 0) indicates the solution when y2(0) = 0.

Figure 4 shows phase plots of solutions to the deterministic problem with
varying initial conditions for y2. If y2(0) is negative, the solution is periodic
and travels in the region where y2 is negative. If it is positive, the solution
is also periodic but travels in the region where y2 is positive. If it is zero,
the solution is a constant. It is clear from this plot that the frequency of the
solution is also dependent on this initial condition. The temporal discretization
here and throughout this section is performed by fourth-order Runga-Kutta
integration.

To further explore this, suppose that the initial condition y2(0; ω) in the
stochastic K-O problem is ξ, a uniform random variable on [−0.1, 0.1] and
that y1(0) = 1 and y3(0) = 0. The solution y = (y1, y2, y3) is only C0 contin-
uous with respect to the random parameter ξ. Figure 5 shows the solution of
the deterministic K-O problem as a function of the parameter y2(0) ranging
from −0.1 to 0.1 at varying times. We can see that the solution is very oscil-
latory; thus, it requires a large amount of computational time to be solved by
existing methods such as ME-gPC, PCM, and gPC. In the following sections,
we will investigate the performance of both regular and h-adaptive ME-PCM
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on this problem for short- and long-time integration. Computational costs
of ME-PCM will be compared to those of other existing methods mentioned
above. In addition, a sparse grid ME-PCM example will be demonstrated for
a case where N = 3.
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Fig. 5. Plots of the solution to 27 y1, y2, y3 as a function of y2(0) at various times.

(y1(0) = 1, y3(0) = 0)

In the following, ξ1, ξ2 are i.i.d. random variables distributed uniformly on
[−1, 1]. First, we consider a two-dimensional (N = 2) case of problem in
equation (27), where y1(0) = ξ2, y2(0) = 0.1ξ1, and y3(0) = 0. To illustrate
p−convergence of ME-PCM, we hold Ne constant using a uniform grid of
4 elements on Γ = [−1, 1] × [−1, 1]. A tensor product of Gauss-Legendre
quadrature points is used and the number of points is increased between each
run. Figure 6 shows the errors in mean and variance of y1. The exact solution
is taken to be the ME-PCM solution with Ne = 100 elements and r = 100
points in each element.

Next, h-convergence is demonstrated by holding r constant with just one col-
location point per element and refining the mesh uniformly. Here the one-
dimensional input used: y2(0) = ξ1, y1(0) = 1.0, y3(0) = 0.0. Figure 7 shows
the errors in mean and variance of y1 at time t = 5 as a function of the number
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Fig. 6. Error in mean (left) and variance (right) of y1 for 2D K-O problem with
varying r.

of elements used. Note that here at time t = 5 the solution is still smooth,
and we expect the convergence rate defined in the previous section. Hence, we
expect the error to decrease by O(N−1

e ) as the mesh is refined.
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Fig. 7. h-convergence of ME-PCM for the 1D K-O problem

For convergence in long-term integration we demonstrate the h-adaptive ver-
sion of ME-PCM using the one-dimensional random input as in the previous
example. In Figure 8 the ME-PCM solution is shown for varying tolerance
level θ (see section 7.4 in the appendix). A Gauss-Legendre grid of 3 col-
location points in each element is used. As θ decreases, the elements split
more frequently; thus the solution does indeed converge to the reference so-
lution which is obtained using a quasi random Sobol (MC-SOBOL) sequence
with 106 iterations. Also plotted on the same graph is an example PCM so-
lution where 30 Gauss-Legendre points are used. The PCM solution and the
ME-PCM solution are both shown only until they diverge from the correct
solution.
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Fig. 8. h-adaptive ME-PCM for the 1D K-O problem. We note that the single-ele-
ment PCM diverges after t ≈ 20.

Computational cost: Here the computational costs of ME-PCM for the K-O
problem are compared to those of existing methods. Since the solution to this
problem has low regularity in the parametric space it represents a ‘worst case
scenario’ for all of these methods. First, we consider the two-dimensional K-O
problem from the previous section. The error in variance of y1 is considered at
final time t = 10. In this section we define the error between two numerically
integrated functions g(tj) and f(tj), j = 1...nt as:

εL2 =

1
nt

√

∑nt
j=1(g(tj) − f(tj))2

1
nt

√

∑nt
j=1 f(tj)2

, (28)

where f is considered to be the reference solution.

To compare computational costs, an error tolerance is prescribed and the cost
for achieving that error level is measured. The methods examined are: ME-
PCM with Clenshaw-Curtis sparse grids, PCM with Clenshaw-Curtis sparse
grids, and MC-SOBOL. For PCM and ME-PCM, the error levels are achieved
by increasing the number of points in each element (p-refinement). For ME-
PCM we are also able to refine the mesh simultaneously (h-refinement). For
MC-SOBOL, the error level is achieved by increasing the length of the Sobol
sequence. Table 3 shows the results of these comparisons. From the results we
can see that the ME-PCM is much faster than either PCM or MC-SOBOL
for all error tolerances and that for some error levels PCM is actually more
expensive than MC-SOBOL.

Next, we consider the costs of the h-adaptive formulations of ME-PCM and
ME-gPC for the same problem. We note that for the K-O problem, the so-
lution’s spectrum is continuously growing so that elements are continuously
splitting and this leads to large computational costs. This property makes

22



Table 3
Comparison of number of samples required for the 2D K-O problem (y1(0) =
1, y2(0) = 0.1ξ1, y3(0) = ξ2) for time t ∈ [0, 10]. For ME-PCM and PCM the sparse-

ness parameter s is provided, and for ME-PCM the number of elements Ne is also
provided.

Error level εL2 ME-PCM PCM MC-SOBOL

10−2 36(Ne = 16, s = 2) 321(s = 8) 100

10−3 320(Ne = 64, s = 3) 3329(s = 11) 950

10−4 3328(Ne = 256, s = 4) 7169(s = 12) 9500

it suitable for comparing two such h-adaptive methods as it will accentuate
the relative difference between the methods and their weaknesses. For both
methods, the error level is achieved by decreasing θ, the adaptivity tolerance.
Legendre chaos is used for the basis in the ME-gPC method, and a tensor
product Gauss-Legendre grid is used in each element for the ME-PCM. The
highest polynomial order is 2 for ME-GPC and 3 collocation points per el-
ement are used for ME-PCM. Table 4 shows the results of this comparison.
We note that even with extra projection steps between physical and modal
parametric space, ME-PCM outperforms ME-gPC. It is important to note
that the same adaptivity tolerance is required for achieving the prescribed
error tolerance for both methods; thus, the difference in computational costs
is due to the actual cost of each method and not a discrepancy in the element
splitting frequency.

Table 4
Comparison of computational costs (seconds) for 2D K-O problem (y1(0) =

1, y2(0) = 0.1ξ1, y3(0) = ξ2) for time t ∈ [0, 10].

Error level εL2 h-Adaptive ME-PCM h-Adaptive ME-gPC

10−2 0.5 11.95

10−3 3.43 29.31

10−4 38.8 337.7

In Figure 9 we demonstrate the h-convergence of sparse grid ME-PCM for a
three-dimensional K-O problem (y1(0) = ξ1, y2(0) = ξ2, y3(0) = ξ3). A sparse
Gauss-Legendre grid with 195 points is used in every element and the mesh is
uniformly refined as in previous examples. We also plot the solution obtained
from the h-adaptive version of ME-PCM, using θ = 0.0001 and a Gauss-
Legendre tensor product grid with 73 points in each element.
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Fig. 9. h-convergence of sparse grid ME-PCM for the 3D K-O problem (y1(0) = ξ1,

y2(0) = ξ2, y3(0) = ξ3).

5.3 Kovasznay flow

We consider next the problem of steady, laminar flow behind a two-dimensional
grid, solved by Kovasznay in 1948 [29]. The exact solution to the Navier-Stokes
equations is given by:

u = 1 − eλx cos(2πy), v =
λ

2π
eλx sin(2πy),

where u, v are velocities in the x and y direction, respectively, and

λ =
1

2ν
− (

1

4ν2
+ 4π2)

1
2 ,

Here we model the kinematic viscosity, ν, as a random parameter as:

ν = ν0(1 + δξ), |δ| < 1. (29)

The random variable ξ has Beta distributions B(1, 1) and B(0, 0) with support
[−1, 1] for the two cases we address, and ν0 represents the mean viscosity. Each
deterministic problem is performed by a spectral/hp element method using a
32-element mesh. The accuracy of the spatial solver is of order 10−10 in the
L∞ norm.

In the first case ξ ∼ B(1, 1), δ = 0.95, ν0 = 0.05 and the collocation points are
chosen to be Gauss points from the gPC basis constructed to be orthogonal
to the PDF on each element. We use r = 2 points in each element with a
degree of exactness m = 2r − 1 = 3. Since the problem is smooth we expect
a convergence rate of O(N−(m+1)

e ) = O(N−4
e ) (note that Ne = Nes here). In

Figure 10 the L∞ errors in mean and variance are plotted as a function of Ne.
The numerical results show agreement with the expected convergence rate of
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the method. We also consider the case where ξ ∼ B(0, 0) which is the same

10
0

10
1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

N
e

L
∞

 E
rr

o
r

Mean of u

Mean of v

CN
e

−4

10
0

10
1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N
e

L
∞

 E
rr

o
r

Variance of u

Variance of v

CN
e

−4

Fig. 10. Kovasznay flow problem: h-convergence rate for ξ ∼ B(−1, 1). Left: mean;
Right: variance.

as the uniform distribution on [−1, 1]. In this case δ = 0.8 and ν0 = 0.05.
Here, r = 1 Gauss-Legendre points are used in each element; thus the degree
of exactness is m = 1. The expected convergence rate is then O(N−2

e ). Figure
11 shows the results for this case. For comparison we include ME-gPC results
with the same h-convergence rate (highest order of polynomial is zero). It is
seen that ME-gPC provides a better accuracy for the mean value due to the
Galerkin projection.
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Fig. 11. Kovasznay flow problem: h-convergence rate for ξ ∼ B(0, 0). Left: x-velocity;
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5.4 Navier-Stokes: Noisy flow past a 2D stationary circular cylinder

We also study noisy flow past a 2D stationary cylinder to demonstrate the
long-term behavior of the ME-PCM method. We consider the following inflow
boundary conditions:

u = 1 + δξ, v = 0,

where δ is a constant equal to 0.1 and ξ is a uniform random variable on
[−

√
3,
√

3]. The Reynolds number based on the mean velocity is Re = 100.
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This problem was studied in [30] using the ME-gPC method. Due to the
sensitivity of the vortex shedding frequency to the inflow noise, high-order
polynomial chaos is not efficient for this problem. However, the convergence
can be improved by using multi-element formulations and h-type refinement.
Here, we re-visit this problem using the ME-PCM method.

The error evolution of variance of the lift coefficient is shown in figure 12.
The errors are normalized based on a reference solution given by ME-PCM
with Ne = 20, r = 9. It is observed that the errors given by single-element
PCM increase fast to O(1). Similar results are shown in [30] for the high-order
single-element gPC. This is due to the expanding frequency spectrum in the
parametric space with respect to ξ. Thus, the polynomial order or number of
collocation points must be increased rapidly to maintain low errors. ME-PCM
effectively slows down the error increase by h-refinement in agreement with
the analysis of [30].
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Fig. 12. Error evolution of variance of the lift coefficient given by ME-PCM for the
noisy flow past 2D stationary circular cylinder. More than 25 vortex shedding cycles

are simulated.

5.5 Stochastic elliptic problem

We consider the two-dimensional (D = [0, 1]2) elliptic problem with random
coefficients from section 2.1 using the ME-PCM method. To avoid introducing
large errors from physical discretization, we consider a smooth problem in the
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physical domain. For simplicity, we use a non-zero force term with homoge-
neous boundary conditions

f(x) = sin(x1) cos(x2) and E[a](x) = 1. (30)

Assume that the random field a(x, ω) satisfies the Gaussian correlation func-

tion: K(x1, x2) = δ2e
−|x1−x2|

2

A with A being the correlation length and δ the
standard deviation. Due to the analyticity of the Gaussian kernel, the eigen-
values decay exponentially [8]. The decay rate is determined by the value of
the correlation length, where a larger A corresponds to a faster decay rate.

Since the Gaussian kernel is analytic, high-order element methods for spatial
discretization converge quickly, resulting in highly accurate numerical solu-
tions for the eigenvalue problem in the Karhunen-Loève expansion. Spectral/hp
discretization with 64 quadrilateral elements is used in the physical space. In
each element, a 12-th order Jacobi polynomial basis is used to construct the
approximation space. The accuracy is close to the machine accuracy for numer-
ical solutions of both deterministic elliptic PDEs and the eigenvalue problem.
Therefore, we assume from now on that no substantial errors come from the
physical discretization.

We perform the ME-PCM for this problem using Smolyak Gauss sparse grids
in each element of a uniform mesh. We first verify the relation between the h-
convergence rate and the degree of exactness of the quadrature rule. Consider
a two-dimensional random input Y1, Y2 with uniform and Beta distributions,
taking values in Γ = [−1, 1]2. We note here that for the case where Y1 and Y2

have uniform distribution, the local conditional probability density function
is still uniform in each direction; however, in the case where Y1 and Y2 have
Beta distribution the conditional density function can differ from dimension
to dimension. Due to the symmetry of the tensor-product rule in the Smolyak
algorithm, we still expect the h-convergence rate given in theorem for the Beta
distribution case. We use δ = 0.72 for Beta(1,1) distribution and δ = 0.66
for uniform distribution so that the variance of the input for both cases is
equal. The h-convergence behavior is shown in figure 13. It is seen that the

h-convergence rate asymptotically approaches O(N
−(m+1)

N
e ) = O(N−(m+1)

es ) for
both uniform and Beta distributions. Note that m(3, 2) = 3 and m(4, 2) = 5
for these non-nested sparse grids. We next study some higher dimensional
cases:

(i) N = 4, A = 2.8367936716,
(ii) N = 10, A = 0.4898834872,
(iii) N = 25, A = 0.1121059863,
(iv) N = 50, A = 0.04890758154.

For all these cases the smallest eigenvalue is less than 0.314% of the largest
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Fig. 13. h-convergence rate of the ME-PCM for the stochastic diffusion problem with
N = 2 and the degree of exactness of quadrature rules. Left: Uniform distribution,
δ = 0.66; Right: Beta(1,1) distribution, δ = 0.72.

eigenvalue, see figure 14. We compute the error by comparing the solution
with a reference solution computed using a highly refined grid in Γ. The error
is computed in the norm ‖ · ‖L2(Γ;H1

0 (D)), where Γ = [−1, 1]N is the parametric
domain. According to the regularity study in [9], the importance of each ran-

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

index

E
ig

e
n

v
a

lu
e

s

A = 2.8368

A = 0.4899

A = 0.1121

A = 0.0489

Fig. 14. Eigenvalues given by different correlation lengths.

dom dimension can be roughly estimated by the value
√

λi‖φi(x)‖L∞, where
λi and φi are the eigenpairs from the Karhunen-Loève expansion satisfying
(5). In [18] it is shown that refining the random dimension with the largest
value of

√
λi‖φi(x)‖L∞ is an efficient adaptivity method. For collocation-type

methods, one straightforward approach to approximate the local errors is to
compare the results given by sparse grids at two different levels. However,
due to the big jump between numbers of points at two consecutive sparse-
ness levels the cost for error estimation could be much larger than solving the
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original problem. For example, if N = 10 and s = N + 1, the cost for error
estimation is about 15 times as large as the cost for solving the equation.
Thus, here we investigate the h-convergence of ME-PCM method by building
a priori adaptive meshes in the parametric space. More specifically, we use
a pre-constructed mesh where only the dimensions with the largest values of√

λi‖φi(x)‖L∞ are decomposed.

In Figure 15 we plot the normalized errors of mean and standard deviation
versus the total number rtot = Ner of collocation points in Γ for N = 4, 10.
For both cases the three most important random dimensions have been de-
composed in every parameter space mesh. We refine the mesh by further de-
composing elements in only the three most important dimensions. According
to Theorem 4 we expect the theoretical convergence rate O(r

−(m+1)/N
tot ) =

O(N−(m+1)/N
e ) as the mesh is refined uniformly in all directions. For the cases

shown in Figure 15, these expected theoretical convergence rates are O(r−1
tot ) for

N = 4 and O(r−0.4
tot ). However, since we refine in only the most important ran-

dom dimensions, at low discretization levels we observe that the h-convergence
rate is actually faster than the expected rate. As the mesh is refined further in
these three dimensions, we observe that the h-convergence rate asymptotically
approaches the expected theoretical values. This is due to the fact that the
values of

√
λi‖φi(x)‖L∞ for each dimension become more comparable after

decomposition of the parametric space. We note that if the number of random
dimensions is of the order O(10), we can easily obtain an h-convergence rate
better than Monte Carlo methods using sparse grids of relatively low level. For
example, the expected asymptotic h-convergence rate is O(r−0.6

tot ) and O(r−0.8
tot ),

for s = N + 2 and s = N + 3, respectively, with N = 10.
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Fig. 15. h-convergence of the ME-PCM method. Error in mean and standard de-
viation vs. number of sampling points are plotted for both ME-PCM and Monte

Carlo methods. The local observed convergence rates of ME-PCM are denoted with
dashed lines adjacent to the graphs. Left: N=4, s = N +1; Right: N=10, s = N +1.

Note that if the approximated random function is sufficiently regular the h-
convergence rate is determined by m and N . The ME-PCM method will be-
come less efficient for a fixed m as N increases. In tables 5 and 6, we show the
h-convergence for N = 25, 50, where only the six most important dimensions
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are refined. We note that for moderate error levels, the efficiency of ME-PCM
is far better than that of Monte Carlo since using approximately 100 samples
results in a very small error two orders of magnitude less than the correspond-
ing Monte Carlo error. The overall observed h-convergence rate is O(r−0.26

tot )
and O(r−0.13

tot ) for N = 25 and N = 50, respectively, with s = N + 1, which
represents the sparsest nontrivial level of sampling. It is seen that adaptiv-
ity improves the h-convergence rate, since if no adapted meshes are used the
expected h-convergence rate would be O(r−0.16

tot ) and O(r−0.08
tot ) for N = 25

and N = 50, respectively, for s = N + 1. If coupled with a posteriori error
estimation [18], the adaptive meshes can be improved further by refining the
elements with largest local errors.

Table 5

Errors in mean and standard deviation for elliptic problem with N = 25; comparison
of ME-PCM and MC errors for the same amount of work done (number of points

sampled). Here, ME-PCM with a sparse grid with parameter s = N + 1 is used
in every element. Mesh refinement is performed in only the six most important
dimensions.

# of sample points ME-PCM Mean ME-PCM Std MC Mean MC Std

76 1.72e-4 3.41e-4 3.56e-2 3.62e-2

152 1.29e-4 2.57e-4 2.44e-2 2.44e-2

608 7.55e-5 1.52e-4 1.05e-2 1.08e-2

1216 6.94e-5 1.40e-4 9.90e-3 1.03e-2

4104 5.86e-5 1.19e-4 4.14e-3 4.27e-3

9728 4.67e-5 9.50e-5 1.51e-3 1.56e-3

38912 2.82e-5 5.76e-5 1.11e-3 1.13e-3

58368 2.76e-5 5.64e-5 6.27e-4 6.42e-4

In summary, the relation between the degree of exactness and h-refinement
is verified for the elliptic problem with random coefficients. Using a priori
adaptive meshes, the ME-PCM method based on sparse grids of relative low
level can be an efficient numerical approach for a moderate number O(10) of
random dimensions. A surprising result for high dimensions is that although
the convergence rate of ME-PCM degrades the method produces very good
results even for a very small number of samples, of the order of 100.

6 Summary

In this work we introduced an h-adaptive multi-element formulation of the
probabilistic collocation method. Two choices for collocation point sets were
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Table 6
Errors in mean and standard deviation for elliptic problem with N = 50; comparison
of ME-PCM and MC errors for the same amount of work done (number of points

sampled). Here, ME-PCM with a sparse grid with parameter s = N + 1 is used
in every element. Mesh refinement is performed in only the six most important

dimensions.

# of sample points ME-PCM Mean ME-PCM Std MC Mean MC Std

151 4.31e-5 7.92e-5 9.23e-3 9.37e-3

302 3.70e-5 6.92e-5 8.49e-3 8.63e-3

604 3.27e-5 6.16e-5 5.78e-3 5.75e-3

2416 2.65e-5 5.08e-5 3.12e-3 3.11e-3

4832 2.55e-5 4.93e-5 2.48e-3 2.47e-3

19328 2.40e-5 4.66e-5 1.25e-3 1.23e-3

77312 1.83e-5 3.55e-5 5.88e-4 5.86e-4

173952 1.53e-5 3.01e-5 5.11e-4 5.12e-4

309248 1.50e-5 2.96e-5 3.72e-4 3.78e-4

addressed: tensor product and Smolyak sparse grids. It was proven in section
4 that the h-convergence rate of ME-PCM moment errors is dependent on the
choice of cubature rule only through its degree of exactness, in the case of
uniform inputs. We also presented there an L2 error bound for the ME-PCM
solution to the stochastic diffusion problem in 4.2.

The h-convergence rate result was verified in the numerical examples section,
for both uniform and nonuniform inputs. The choice of grid points should be
made in a problem-dependent manner; one needs to consider the expected
regularity of the solution, PDF of the inputs, and boundary point issues in
order to choose a sufficiently robust and efficient cubature rule for the problem.
In addition, if h-adaptivity is required one must consider the accuracy of
projection onto the orthogonal basis when prescribing the rule.

In the numerical examples section we also demonstrated ME-PCM conver-
gence for the discontinuous stochastic Kraichnan-Orzag problem. It was shown
that for the two-dimensional K-O problem the ME-PCM outperforms PCM
and the quasi Monte Carlo method. We also demonstrated the convergence of
the h-adaptive ME-PCM on the one- and three-dimensional K-O problems,
and showed that the computational cost of the h-adaptive ME-PCM is much
less than that of the h-adaptive ME-gPC method. The effectiveness of the
ME-PCM in long-term integration was addressed using the problem of noisy
flow past a 2D stationary cylinder. Lastly, convergence was demonstrated for
the stochastic diffusion problem with higher-dimensional inputs and the effi-
ciency of the method was shown to be more favorable than that of the Monte
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Carlo method even for 50 dimensions. A surprising result, which we plan to
investigate further in future studies, is the good performance of the adaptive
ME-PCM for high-dimensional problems in cases of very coarse sampling.
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7 Appendix

7.1 Tensor product Lagrangian interpolation

The description in this section closely mirrors the description in the work
of [12] since it addresses the procedure over out chosen reference element,
Γ, only. However, we include it here to explicitly define the procedure and
notation for the reader. First define the polynomial space Ppj

(Γj) as the span
of polynomials of degree at most pj in Γj , for j = 1, ..., N . Then define Pp(Γ) to
be the span of tensor product polynomials Ppj

(Γj), where p = (p1, p2, ..., pN):

Pp(Γ) = span{Pp1(Γ1) ⊗ · · ·PpN
(ΓN )}

In this section we seek an interpolation operator IΓ which will take uk(·, ·) to
the space Pp(Γ) ⊗Wk(D). In each dimension j = 1, ..., N consider the set of
polynomials on Γj which are orthogonal with respect to some density function

ρj, and let ρ =
∏N

j=1 ρj . Define {qj,i}pj+1
i=1 to be the pj + 1 roots of the pj-th

order polynomial of this family. For any coordinate N -tuple of integer indices
[m1, m2, ..., mN] where each index mj ∈ [1, pj + 1], a global index may be
associated:

m = m1 + p1(m2 − 1) + p1p2(m3 − 1) + ...

and the associated N -tuple (q1,m1, q2,m2, ..., qN,mN
) is called qm. Considering

all possible vectors [m1, ..., mN] we obtain a set of points {qm}r
m=1 where the

total number of points r =
∏N

j=1(pj + 1).
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Now define {lji}
pj+1
i=1 to be the one-dimensional Lagrange polynomial basis for

Ppj
(Γj) on the abscissas {qj,i}pj+1

i=1 . The N -dimensional tensor product La-
grange basis on Γ is then defined to be the set of polynomials lm(y) =
∏N

j=1 ljmj
(yj). The N -dimensional Lagrangian interpolant of uk in Γ is then

given by the following:

Lp
Γ(u)(y) =

r
∑

m=1

uk(x, qm) · lm(y)

Hence, the operator Lp
Γ takes uk ∈ C0(Γ;Wk(D)) to the space Pp(Γ)⊗Wk(D).

It is also important that the collocation points coincide with the points of a
cubature rule in each element with respect to the weight ρ. With the tensor
product Gaussian abscissas we have that for any continuous v : Γ → R,

r
∑

m=1

v(qm)wm ≈
∫

Γ
v(y)ρ(y)dy,

where the wm =
∏N

j=1 wmj
, and wmj

=
∫

Γj
l2mj

(y)ρj(y)dy. In section 3, Lp

Bi

refers to the Lagrangian interpolant Lp
Γ defined in element Bi of the mesh

Th,Γ constructed using roots of polynomials orthogonal with respect to the
conditional probability density function ηi(y) =

∏N
j=1 ηj(yj) defined in (10).

For more details on the construction of polynomials orthogonal with respect
to the conditional density function, please see [4].

7.1.1 Smolyak sparse grid interpolation

Another choice for the operator IΓ is the isotropic Smolyak sparse grid op-
erator, which was introduced in [23] by Smolyak. This algorithm provides an
alternative to the more costly tensor product rule described above. It has pre-
viously been used in other works for stochastic collocation ([14,2,15]). Recently
an anisotropic formulation of the Smolyak sparse grid has been introduced in
[16] for the probabilistic collocation method. While we do not use it in this
work, this anisotropic formulation could also be implemented in the ME-PCM.
The following closely follows the description of the Smolyak method in [31,26],
and [25] where the interpolation and cubature errors and costs of this method
are investigated.

In this section we will assume that Γ = [−1, 1]N without loss of generality, since
the N -dimensional element can always be mapped to this standard element.
We begin by choosing a one-dimensional interpolation formula V i

j suited to
the setting in which we are interested. For functions v : [−1, 1] → Wk(D),
define

V i
j(v) =

ni
∑

m=1

v(yi
m) · ai

m,
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where i ∈ N specifies the degree of the interpolation, ni is the number of
points used, ai

m ∈ C([−1, 1]), and the {yi
m}ni

m=1 are interpolation abscissas
in [−1, 1]. The index j indicates that this interpolation formula is used in
the j-th dimension. In practice, we will always use the same formulas in every
dimension, but for now we will retain the subscript in order to better elucidate
the Smolyak construction.

This one-dimensional formula could be chosen to be the Lagrangian inter-
polant on Gaussian abscissas as described above. In that case,

V i
j(v) =

ni
∑

m=1

v(qj,m) · ljm,

where the qj,m are the roots of the (ni − 1)-th degree orthogonal polynomial
in the jth dimension as described above and {ljm}ni

m=1 are the Lagrange inter-
polating polynomials through these abscissas. Recall that the orthogonality of
the polynomials generating the abscissas is with respect to the weight ρj .

The Clenshaw-Curtis interpolant is another choice for the one-dimensional
formula V i

j. In this case, the abscissas {yi
m}ni

m=1 would be Clenshaw-Curtis
points, which can be found in [25] and the interpolating polynomials ai

m are
chosen such that V i

j reproduces exactly all polynomials of degree less than
ni. Please see the references [31], [26], [25] and others for more detail on the
Clenshaw-Curtis interpolant.

The one-dimensional interpolant serves as a building block for the Smolyak
formula, as we will see soon. In this work we choose n1 = 1 and ni = 2i−1 + 1
as recommended in [31]. With this choice the Clenshaw-Curtis point sets are
nested, which reduces the number of points used in total.

Define V0
j = 0 and 4i

j = V i
j −V i−1

j . The Smolyak algorithm is:

SΓ(s) =
∑

|i|≤s

(4i1
1 ⊗ · · · ⊗ 4iN

N ) (31)

where the summation is over N -dimensional vectors i with components i1, ..., iN ∈
N. The parameter s controls the ‘sparseness’ of the grid; larger s results in
more points.

The operator can also be rewritten as:

SΓ(s) =
∑

s−N+1≤|i|≤s

(−1)s−|i|







N − 1

s − |i|





 · (V i1
1 ⊗ · · · ⊗ V iN

N ). (32)

From now on we assume that the interpolation rule V i
j is the same for all

dimensions j, so that we can drop the subscript. Let χi denote the one dimen-
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sional point set used in V i. The total set of points used in SΓ(s) is:

HΓ(s) =
⋃

s−N+1≤|i|≤s

(χi1 × · · · × χiN )

Then, in the general notation we have used above, the collocation points are
given by {qj}r

j=1 where each qj ∈ HΓ(s) and the total number of points
r = Card(HΓ(s)). When Clenshaw-Curtis one-dimensional rules are used with
this choice of ni, the point sets are nested (i.e. χi−1 ⊂ χi). When using nested
one-dimensional rules the Smolyak formula is actually interpolatory (see [31]
for details).

The Smolyak formula can also be used as a cubature formula over Γ with
respect to the weight ρ =

∏N
j=1 ρj as in the previous section. To do this, we

simply replace V i with the corresponding one-dimensional quadrature formula
U i in equations (31) and (32) of the Smolyak construction. In other words, let

U i
j(v) =

ni
∑

m=1

v(yi
m) · wi

m

approximate the integral
∫

[−1,1]
v(y)ρj(y)dy

for i ∈ N and j = 1, ..., N . Then, the Smolyak N−dimensional cubature
operates

∑

s−N+1≤|i|≤s

(−1)s−|i|







N − 1

s − |i|





 · (U i1
1 ⊗ · · · ⊗ U iN

N ).

approximates the N -dimensional integral
∫

Γ
v(y)ρ(y)dy.

for smooth functions v : Γ → R. Thus, the weights for the N -dimensional
cubature are combinations of products of the one-dimensional weights; see [25]
for more details. In the section 3, SBi(s) refers to the Smolyak operator SΓ(s)
constructed in the element Bi of the mesh Th,Γ using conditional probability
density function ηi(y) =

∏N
j=1 ηj(yj) defined in (10).

We make a choice for the approximating operator IBi in each element based on
the needs of the problem. We may choose IBi ≡ Lp

Bi where p determines the
degree of the interpolant and thus the number of points used. Alternatively,
we can choose IBi ≡ SBi(s), where s controls the order of the approximant
and also the number of points used. In this work we consider both tensor
product and sparse grids, built from both both Gaussian and Clenshaw-Curtis
formulations for one-dimensional bases. In practice, the choice of what type
of approximation to use should be problem-dependent, and factors to take

37



into consideration include: the suitability of a rule to the density function
ρ, preference for points on or off boundaries, regularity of the integrand and
robustness of the rule, and of course the number of points required to achieve
a particular degree of exactness. This last consideration is addressed in detail
in [26]. Since nested quadrature rules require less overall points in the Smolyak
algorithm, the Clenshaw-Curtis rule is often an attractive choice.

7.2 Proof of theorem 4

PROOF. Recall that we have defined a linear functional on W m+1,∞(A) :

EA(g) ≡
∫

A
g(x)dx −QA

m(g) (33)

whose norm is defined as

‖EA‖k,∞,A = sup
‖g‖k,∞,A≤1

|EA(g)|. (34)

Let Pm(A) denote the space of all polynomials of degree ≤ m in the variable
x ∈ A ⊂ Γ. Since the quadrature rule QA

m has a degree of exactness of m, i.e.,

EA(g) = 0, ∀g ∈ Pm(A)

we know from the Bramble-Hilbert lemma that there exists a constant C(A)
such that

|EA(f)| ≤ C(A)‖EA‖m+1,∞,A|f |m+1,∞,A, (35)

where the constant C(A) is determined by A.

For element Bi =
∏N

k=1(ak, bk) we define an invertible affine mapping

Fi : x ∈ Γ → Fi(x) = qTx + c ∈ Bi,

where the constant vectors q, c ∈ R
n. Since Γ = (0, 1)N , it is easy to see that

the component qk = bk − ak ≤ h, k = 1, . . . , N . We now examine the relation
between |f |m+1,∞,F−1

i (Bi) and |f |m+1,∞,Bi.

|f |m+1,∞,F−1
i (Bi) = max

|α|=m+1
ess sup

x∈F−1
i (Bi) |Dαf |

= max
|α|=m+1

ess sup
x∈Bi qα|Dαf | ≤ hm+1|f |m+1,∞,Bi, (36)

where qα =
∏N

k=1 qαk

k .

Using inequalities (35) and (36), we have
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∣

∣

∣

∣

∣

∫

Γ
f(x)dx −

Ne
∑

i=1

QBi
m f(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Ne
∑

i=1

∫

Bi
f(x)dx −QBi

m f(x)

∣

∣

∣

∣

∣

≤
Ne
∑

i=1

vol(Bi)

∣

∣

∣

∣

∣

∫

F−1
i

(Bi)=Γ
f(y)dy −QΓ

m(f(y))

∣

∣

∣

∣

∣

≤
Ne
∑

i=1

vol(Bi)C(Γ)‖EΓ‖m+1,∞,Γ|f |m+1,∞,F−1
i

(Bi)

≤C(Γ)hm+1
Ne
∑

i=1

vol(Bi)‖EΓ‖m+1,∞,Γ|f |m+1,∞,Bi

≤C(Γ)hm+1‖EΓ‖m+1,∞,Γ|f |m+1,∞,Γ,

which concludes the proof.

7.3 Proof of theorem 9

PROOF.

Recall that Lp

Bi is defined to be an affine mapping of the interpolation operator
Lp

Γ from Γ into Bi. The first step is to bound the error in each element Bi. To
do this, we first map from the element to the reference element Γ = (0, 1)N .
Let Bi be an element in the mesh. Then, define c = (c1, c2, ..., cN) to be the
vector in RN such that Bi = (c1, c1 + h) × · · · × (cN , cN + h).

Now let y be any point in RN and define the mapping Fi(y) = yh+ c and let
ū ≡ u ◦ Fi. Then, Fi : Γ → Bi, and

‖Lp

Biu − u‖L2(Bi;H1
0(D)) = hN/2‖Lp

Γū − ū‖L2(Γ;H1
0 (D)).

We can bound this last quantity using Lemma 1, as long as we ensure that
Regularity Property 1 holds for ū and determine the size of the domain of the
analytic extension.

Recall that u : Γ → H1
0 (D) has an analytic extension uj

a in each dimension j,
which we can think of as a function taking C × Γ∗

j to the space H1
0 (D). Note

that ua can also be thought of as a function of (z2, yj, y
∗
j ), where z2 ∈ R, taking

values again in H1
0 (D). To see this, consider the element z ∈ C associated with

the coordinate pair (z1, z2) through the relation z = z1 + iz2. In the context of
uj

a : C×Γ∗
j → H1

0 (D), the first space C is actually the complex plane in which
the real axis corresponds to yj. Thus, dependence on z ∈ C can be written
as dependence on a coordinate pair (yj, z2) where z1 = yj. We now define a
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function ūj
a by making the following mapping: Let z2 ∈ R, yj ∈ R, and and

y∗
j ∈ RN−1, and define the new mapping

ūj
a(z2, yj, y

∗
j ) ≡ uj

a

(

hz2, hyj + cj, hy∗
j + c∗j

)

where c∗j is the vector c with the j-th dimension deleted. This function is
defined for all (z2, yj, y

∗
j ) such that the analytic extension ua is defined. It is

clear then that ūj
a coincides with ū for all (z2, yj, y

∗
j ) such that z2 = 0 and

yj ∈ Γj . Thus, it is an extension of ū|Γj
. In addition, since this mapping does

not affect the analyticity properties of a function, ūj
a as a function of the

pair, (z2, yj) ∈ C, is analytic for all (z2, yj) such that (hz2, hyj + cj) ∈ Σ. In
particular, we can say that ūj

a is an analytic extension of ū|Γj
in the region:

Σ̄(Γj;
1

h
αj) = {x ∈ C, dist(x, Γj) ≤

1

h
αj}. (37)

Furthermore, ∀z ∈ Σ̄(Γj;
1
h
αj), ‖ūj

a(z)‖C0(Γ∗
j
;H1

0 (D)) ≤ λ. The analyticity region

can be much larger than this for certain elements, but this region is a minimum
that is valid for all elements. Note that the bound λ is also independent of the
element choice. Thus, using Lemma 1, we can bound

‖Lp
Γū − ū‖L2(Γ;H1

0 (D)) ≤ C
N

∑

j=1

pjexp{−rj(h)pj},

with rj(h) defined as

rj(h) = log





αj

2h



1 +

√

√

√

√1 +
h2

α2
j







.

The constant C depends on the function ū only through the quantity that
bounds ‖ūj

a(z)‖C0(Γ∗
j
;H1

0 (D)). Since this quantity is bounded by λ, and this

bound holds for any j and any element i, C can be chosen to be indepen-
dent of the element choice.

This bound is independent of the element choice Bi so it is a uniform bound
for the L2 interpolation error over every element. Then,

40



‖ũ− u‖2
L2(Γ;H1

0(D)) = ‖
Ne
∑

i=1

(Lp

Biu)I{y∈Bi} − u‖2
L2(Γ;H1

0 (D))

=
Ne
∑

i=1

‖Lp

Biu − u‖2
L2(Bi;H1

0(D))

=
Ne
∑

i=1

hN‖Lp
Γū − ū‖2

L2(Γ;H1
0 (D))

≤


C
N

∑

j=1

exp{−pjrj(h)}




2

.

7.4 An adaptive procedure

We denote the gPC expansion of a random field in element Bk as:

û(y) =
Np
∑

j=0

ûjΦk,j(y),

where p is the highest order of polynomial chaos, Np denotes the total number
of basis modes for a gPC expansion of maximum order p in N dimensions,
and {Φk,j}∞j=1 is the local orthogonal polynomial chaos basis in element Bk.

By noting that there exists a unique correspondence between the gPC basis
and the Lagrange basis defined by grid points used in ME-PCM, we can em-
ploy the adaptive criterion developed in [4] in the following manner. We must
first obtain the gPC coefficients ûj of the solution in each element since the
adaptivity criterion is evaluated in terms of these coefficients. To do this, we
project the collocation solution onto each basis function Φk,j to obtain the
coefficient ûj using the numerical quadrature rule associated with the collo-
cation points. From the orthogonality of gPC we can easily obtain the local
variance given by polynomial chaos with order p:

%2
k,p =

Np
∑

j=1

û2
jE[Φ2

k,j].

We define the decay rate of relative error of polynomial chaos in each element
as follows:

ϑk =

∑Np

i=Np−1+1 û2
i E[Φ2

k,i]

%2
k,p

.

Based on ϑk and the scaled parameter Pr(Y (ω) ∈ Bk), we implement h-type
refinement, in other words, we decompose the current random element into
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smaller ones, if the following criterion

ϑγ
k Pr(Y (ω) ∈ Bk) ≥ θ, 0 < γ < 1

is satisfied, where γ and θ are prescribed constants. The sensitivity of each
random dimension is defined as

ri =
(ûi,p)

2
E[Φ2

i,p]
∑Np

j=Np−1+1 û2
jE[Φ2

j ]
, i = 1, 2, · · · , N (38)

where we drop the subscript k for clarity, and the subscript ∗i,p denotes the
mode varying in only the i-th random dimension with polynomial order p. All
random dimensions which satisfy

ri ≥ α · max
j=1,··· ,d

rj, 0 < α < 1, i = 1, 2, · · · , N (39)

will be split into two equal random elements in the next time step while all
other random dimensions will remain unchanged. To split each element, a new
collocation grid on each daughter element is constructed. Then, the ME-PCM
interpolant at each new collocation point is evaluated to provide a current set
of solutions at every collocation point in the domain.

We note that not all gPC coefficients ûi, i = 0...Np are utilized in the adap-
tivity criterion. In fact, from above we can see that it is only necessary to
project the collocation solution onto the highest modes of the basis in order
to evaluate this criterion. The order p of the polynomial chaos basis used can
be approximately determined by the following proposition.

Proposition 12 To maintain an accurate transformation between collocation
solutions and the gPC spectral expansion, the polynomial order of the gPC basis
can be taken up to bm/2c, where b∗c indicates the integer not larger than ∗
and m indicated the degree of exactness of the quadrature rule.

PROOF. The conclusion can be obtained directly from the definition of
Galerkin projection.

In the examples we used γ = 0.5, α = 0.01 and we varied θ. More details on
the adaptivity criteria can be found in [18,4].
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