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Abstract

Chronic myeloid leukemia (CML) is the first human malignancy to be successfully treated with a small molecule inhibitor,
imatinib, targeting a mutant oncoprotein (BCR-ABL). Despite its successes, acquired resistance to imatinib leads to reduced
drug efficacy and frequent progression of disease. Understanding the characteristics of pre-existing resistant cells is
important for evaluating the benefits of first-line combination therapy with second generation inhibitors. However, due to
limitations of assay sensitivity, determining the existence and characteristics of resistant cell clones at the start of therapy is
difficult. Here we combined a mathematical modeling approach using branching processes with experimental data on the
fitness changes (i.e., changes in net reproductive rate) conferred by BCR-ABL kinase domain mutations to investigate the
likelihood, composition, and diversity of pre-existing resistance. Furthermore, we studied the impact of these factors on the
response to tyrosine kinase inhibitors. Our approach predicts that in most patients, there is at most one resistant clone
present at the time of diagnosis of their disease. Interestingly, patients are no more likely to harbor the most aggressive,
pan-resistant T315I mutation than any other resistance mutation; however, T315I cells on average establish larger-sized
clones at the time of diagnosis. We established that for patients diagnosed late, the relative benefit of combination therapy
over monotherapy with imatinib is significant, while this benefit is modest for patients with a typically early diagnosis time.
These findings, after pre-clinical validation, will have implications for the clinical management of CML: we recommend that
patients with advanced-phase disease be treated with combination therapy with at least two tyrosine kinase inhibitors.
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Introduction

Chronic myeloid leukemia (CML) is caused by a reciprocal
translocation between chromosomes 9 and 22 resulting in the
Philadelphia chromosome which harbors the BCR-ABL oncopro-
tein [1,2]. The kinase activity of BCR-ABL stimulates several
signal transduction pathways that promote survival and prolifer-
ation and inhibit apoptosis [3]. The small molecule inhibitor
imatinib mesylate (Gleevec, Novartis) induces a complete cytoge-
netic response in over 80% of patients with chronic phase CML
[4]. However, a minority of patients in chronic phase and a
substantial proportion in accelerated phase and blast crisis are
either initially insensitive to imatinib therapy or lose sensitivity
over time, leading to disease relapse [5,6].
Clinical resistance to imatinib is primarily mediated by point

mutations within the BCR-ABL tyrosine kinase domain [7]. To
date, over 90 point mutations encoding single amino-acid
substitutions have been observed (e.g. [7–11]). The second
generation BCR-ABL inhibitors dasatinib and nilotinib are

effective in most CML patients following failure of imatinib
therapy. However, one potential limitation of these therapies is
that their increased potency may be associated with additional
side-effects [12]. In addition, none of these inhibitors have
demonstrated significant activity against cells harboring the
T315I resistance mutation [12]. 1This limitation may be
overcome by third-generation inhibitors such as ponatinib, which
has recently shown promising results against T315I and is
currently in late phase II trials [13].
The term ‘pre-existing resistance’ refers to the presence of drug-

resistant cells prior to the start of therapy, and stands in contrast to
acquired resistance which arises during the course of treatment
from an apparently drug-sensitive tumor at diagnosis. The
characterization of pre-existing resistance in CML is of significant
clinical importance, since the likelihood and extent of resistance
determines patient prognosis and treatment choices such as
combination therapies and dose scheduling options. Resistant
cells pre-existing at low frequencies may be the underlying cause of
many cases of ‘acquired’ resistance, which are detected only after

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e27682



sensitive cells have been debulked by therapy. The existence and
composition of pre-existing resistant clones is for many reasons
difficult to ascertain [14]. It would hence be of tremendous clinical
utility to develop a rational method for determining the
characteristics of pre-existing resistance in CML patients.
Mathematical modeling provides a cost-effective method for

studying pre-existing resistance, and many contributions have
been made to elucidate the dynamics of resistance in cancer. The
investigation of the dynamics of resistance mutations emerging
during exponential expansion of a population was initiated by
Luria and Delbrück in 1943 [15]. Their analytical results
described the distribution of the number of resistant bacteria in
an exponentially growing population neglecting cell death. During
the last half-century, stochastic process models based on the theory
suggested by Luria and Delbrück have attracted the interest of
cancer researchers. However, in most situations of cancer growth,
cell death cannot be neglected; thus, several authors introduced
extensions of the Luria-Delbrück process that explicitly incorpo-
rate cell death (see, e.g. [16–18]). In pioneering work, Coldman
and Goldie used stochastic process models with a differentiation
hierarchy to model sensitive and resistant cancer cells, and
observed that a higher rate of cell death results in a larger number
of resistant cells for a given total tumor size [16]. Several other
authors considered situations in which resistance emerges due to a
single mutation in expanding populations using stochastic birth
and death processes [17,19]. These models were later extended to
investigate scenarios in which several genetic alterations must be
accumulated in a single cell for resistance to emerge [20–25],
describing situations in which multiple alterations are required to
confer resistance to a single drug, or when multiple drugs are used.
Recently, evolutionary modeling has also been utilized to predict
alternative therapeutic strategies capable of prolonging the clinical
benefit of tyrosine kinase inhibitors against EGFR-mutant non-
small cell lung cancers by delaying the development of resistance
[26].
Chronic myeloid leukemia has been studied from a mathemat-

ical perspective by several authors, starting with a model of
granulocytopoiesis by Fokas and colleagues in 1991 [27]. Later on,
a deterministic model of the hematopoietic system in CML was
considered, focusing on the dynamics of stem and progenitor cell
response to imatinib [28]. These authors also calculated the
probability of a single type of resistance arising due to a point
mutation prior to treatment. Other contributions investigated the
effects of complex phenomena such as cellular quiescence,
immune system interactions, and other properties of the
hematopoietic system on the dynamics of treatment response
[29–32] Investigators also considered the emergence of cells
resistant to multiple BCR-ABL inhibitors [23,33], assuming that
cells have to accumulate m different mutations to become resistant
to m drugs. These authors calculated the probability of resistance
to all drugs arising before the initiation of therapy and concluded
that resistance predominantly arises prior to treatment.
These efforts have provided seminal contributions to the

understanding of imatinib resistance in CML. However, several
clinically important issues remain. For instance, significant fitness
differences between individual resistance mutations have been
observed experimentally [8]. The fitness of a particular cell type
refers to the net growth or reproductive rate of each cell of that
type. These fitness differences impact the genetic profile of the
disease at the start of treatment, but testing limitations make it
difficult to assess the characteristics of low-frequency pre-existing
resistant clones in the clinic. In order to make rational clinical
decisions about the use of combination therapy with second
generation inhibitors, it is essential to obtain quantifiable risk

assessments about the clonal diversity of resistant subpopulations
at the start of treatment.
In this paper, we present the first mathematical investigation of

clonal diversity within pre-existing resistant CML cells, incorpo-
rating experimental observations of the differential effect of various
imatinib-resistant mutations on cellular fitness. We developed a
novel mathematical model to quantify the likelihood and
composition of diverse, resistant CML cells existing at the time
of diagnosis. Within our framework, CML stem cells are modeled
as a multi-type stochastic birth-death process, in which each cell
waits a randomly distributed amount of time to give birth to a
daughter cell or die. The distribution of these waiting times is
dictated by the birth and death rates specified for each cell type.
Once a new cell arises, it creates an independent copy of the
branching process and the same reproduction and death steps are
repeated. Each cell type may have distinct growth kinetics and
thus proliferate and die at different rates than other types. In our
model, BCR-ABLp210-positive stem cells as well as each imatinib-
resistant type are represented by cell types with distinct growth
kinetics informed by experimental data [8]. During each division,
BCR-ABLp210-positive stem cells may give rise to an imatinib-
resistant daughter cell with a small probability. To analyze the
model, we first derived an estimate for the distribution of the time
at which the total stem cell population reaches level M. We then
characterized the resistant cell population as a function of time by
considering the arrival times (i.e., the time of creation) of mutated
cells in conjunction with the growth and extinction dynamics of
the resulting resistant clones. Lastly, we calculated the character-
istics of the resistant cell population at the time of detection by
convolving these estimates with the distribution of the time
at which the total stem cell population reaches the detection
level, M.
Our results represent a significant departure from earlier work

since we considered a spectrum of resistance mutations that confer
a random additive change to cellular fitness. Using this model, we
investigated the diversity within resistant cells present at the time
of diagnosis, formulated as a stochastic hitting time – the time it
takes for the stochastic population process to hit a specified cell
number corresponding to diagnosis. This concept was discussed in
the context of cancer modeling in [25]. We derived estimates of
the risk of harboring any particular resistant cell type, the number
of resistant clones, and the number of distinct resistant types
present at the start of therapy. Specifically, we determined the
expected number of resistance mutations present at the stochastic
time of diagnosis of the disease, and studied the temporal evolution
of the number of resistant types as the leukemia expands. We also
investigated the frequency composition of resistant cells as a
function of time and detection size. We then quantified the
probability that specific mutations are present at the time of
detection and the distribution of the size of these clones. Finally,
we assessed the benefits of combination therapy over monotherapy
in the clinical management of CML. These findings contribute to
a rational understanding of pre-existing resistance in CML and
may also be applicable to other cancer types treated with targeted
therapy.

Results

We utilized a stochastic multi-type branching process model to
describe the emergence of multiple imatinib-resistant clones in the
CML cell population prior to treatment. We considered only
CML stem cells since these are the only cells capable of persisting
indefinitely in the population; mutations arising in more
differentiated cell types, in the absence of dedifferentiation, would
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be lost from the cell population by differentiation. The cell
population initially consists of an expanding number of BCR-
ABLp210-positive stem cells which may acquire various resistance
mutations during cell divisions. The number of BCR-ABLp210-
positive stem cells at time t is represented by an approximation to
a birth and death process with birth rate a0, death rate b0, and net
growth rate l0:a0{b0w0. During each cell division, a resistance
mutation may arise with probability u. Each mutation has the
potential to confer a change in the birth and/or death rate of the
daughter cell; thus, each resistant type may have a different fitness,
which refers to the net reproductive rate (birth rate minus death
rate) of the cell. Whenever a new resistance mutation arises, a new
cell type is created within the population. Denote the number of
leukemic stem cells of resistant type i at time t with Mi(t). Each of
these resistant types evolves according to a branching process with
birth rate ai, death rate bi, and net growth rate li~ai{bi. The
total number of resistant stem cells is given by M(t):

P
i Mi(t).

Using this evolutionary model, we then analyzed the extent and
diversity of the pre-existing resistant population at the time of
diagnosis of CML.

Experimentally determined fitness parameters and
mutation rate estimates
To inform the growth and death parameters of our model, we

utilized data from n~11 imatinib-resistant CML cell lines and a
BCR-ABLp210 cell line [8]. Using doubling times, t2,k, from this
study, growth rates for the model were obtained utilizing the
formula ak~log 2=t2,k. Table 1 shows the net growth rate of each
cell line in the absence of therapy as well as the resistance status of
each mutant [34]. Note that the T315I mutant cell line, which is
resistant to all three BCR-ABL inhibitors, possesses the highest net
growth rate. In addition, two other resistance mutations, Y253F
and E255K, also confer growth advantages as compared to the
p210 cell line; all remaining mutants have a lower net growth-rate
than the p210 cells.

We utilized the in vitro data outlined above to estimate the birth
and death rates, ai and bi, of these resistant types in vivo. We
obtained estimates of the in vivo birth and death rates of
BCR-ABLp210 leukemic stem cells, a0~0:008 days{1 and
b0~0:003 days{1, as reported in [28], leading to a net growth
rate of l0~0:005 days{1. We then determined a constant
conversion factor relating in vitro net growth rate estimates of
BCR-ABLp210 leukemic stem cells to their in vivo net growth rate,
and applied this conversion factor to the data in Table 1 to obtain
estimates of the in vivo net growth rates of resistant cells. The
estimates of in vivo growth and death rates are specified in Table 2.
The point mutation rate, ui, was considered to be constant across
the eleven mutations, such that during each cell replication, all
resistance mutations are equally likely to arise. This assumption
can be relaxed by considering differing mutation rates; however, in
the absence of experimental data that can be used to inform the
magnitude of mutation rate differences, we have chosen to
consider constant mutation rates for all eleven mutants. An
estimate of 10{7 was used chosen for the mutation rate (although
in a later section we also analyze the sensitivity of model
predictions to perturbations in the mutation rate). This estimate
was chosen since the baseline mutation rate of human cells has
been characterized as approximately 10{10 per base per cell
division [35], while the mutation rate of malignant lymphoid cells
was observed to be up to 1000-fold larger than this baseline value
[36]. Although this latter observation was obtained from lymphoid
cells, it is consistent with experimental evidence for CML cells,
whose mutation rates were observed to be increased by several
hundred-fold as compared to parental cells not carrying the BCR-
ABL oncogene [37]. In this model we have neglected this
possibility of back mutation from a resistant mutant to sensitive
phenotype, since the chance that a cell acquires a mutation that
reinstates the original wild type state is exceedingly small. This
assumption is a very well-established modeling choice in
population genetics, where it is called the infinite-site assumption.

Distribution of the detection time
The time of diagnosis of the disease is defined as the time at

which the total number of CML stem cells reaches a threshold
Table 1. In vitro growth rates of cells harboring resistance
mutations [8].

Mutation

In vitro net growth

rate (days{1)
Std.
error Resistant to

T315I 0.271 0.0020 all

E255K 0.255 0.0043 imatinib

Y253F 0.239 0.0057 imatinib

p210 0.232 0.0041 **

E255V 0.221 0.0066 imatinib

V299L 0.203 0.0045 dasatinib

Y253H 0.202 0.0010 imatinib

M351T 0.194 0.0069 imatinib

F317L 0.188 0.0134 imatinib,
dasatinib

T315A 0.187 0.0057 dasatinib

F317V 0.171 0.0075 dasatinib

L248R 0.144 0.0061 imatinib,
dasatinib

The table displays the type of resistance mutation (ordered in terms of
decreasing growth rate), net growth rate (mean and standard error), and
sensitivity to the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib.
p210 refers to the drug-sensitive BCR-ABL-positive cell type.
doi:10.1371/journal.pone.0027682.t001

Table 2. In vivo growth rates of cells harboring resistance
mutations.

Mutation In vivo growth rate (days{1) Resistant to

T315I 0.0088 all

E255K 0.0085 imatinib

Y253F 0.0082 imatinib

p210 0.008 **

E255V 0.0078 imatinib

V299L 0.0074 dasatinib

Y253H 0.0074 imatinib

M351T 0.0072 imatinib

F317L 0.0071 imatinib, dasatinib

T315A 0.0070 dasatinib

F317V 0.0067 dasatinib

L248R 0.0061 imatinib, dasatinib

The table shows the estimated in vivo birth rates for the eleven BCR-ABL
resistant mutants (ordered in terms of decreasing growth rate) and the BCR-
ABLp210 cells. The death rate for all cell types is 0:003 days{1 .
doi:10.1371/journal.pone.0027682.t002
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detection size, M. This quantity was estimated to be approxi-
mately M~100,000 in chronic phase patients [38,39]. We
determined characteristics of resistant clones for this estimate of
M, as well as for larger M in order to quantify the effect of later
detection on the dynamics of resistance. Since CML stem cells
evolve according to a stochastic process, the time at which the total
cell number reaches size M is a random quantity, tM . We derived
an approximate form for the probability density function of this
random time, given by

rtM (t)~
l20M

a0
exp½{(l0M=a0)exp({l0t)"exp({l0t)

This density function was determined by considering the asymptotic
behavior of the single type birth-death process representing the

BCR-ABLp210-positive CML stem cells. In the parameter regime of
interest (defined by point mutation rates per cell division and growth
kinetics of the resistant types), the random time that the BCR-

ABLp210-positive CML cell number hits a threshold size M
represents a good approximation of the time at which the total
CML stem cell number hits sizeM. We also obtained an expression
for the mean of the detection time, given by

E½tM "& 1

l0
log

Ml0
a0

! "
z

1

l0
c:

where c is the Euler-Mascheroni constant. The median of this
distribution is given by

t1=2&
1

l0
log

Ml0
a0

! "
{

1

l0
log log 2:

Derivations of these formulae as well as an expression for the mode
of this distribution is provided in Material S1.
Figure S1 displays the density function of the detection time for

three different example abundances of leukemic stem cells at
diagnosis. As expected, a larger detection size results in a shift of
this density to the right, indicating later detection times. For the
baseline detection size estimate of M~100,000 leukemic stem
cells, diagnosis is expected to occur around 6–7 years after cancer
initiation; this time frame is consistent with data from Hiroshima
bomb survivors [40]. In the following analyses, the density
function plays an important role in ascertaining the characteristics
of resistant cells at the detection time.

The number of distinct resistant types present at
diagnosis
A straightforward method of characterizing biodiversity within

a population is to report the number of individual distinct types or
‘species’; this measure of diversity is often referred to as species
richness in ecology [41]. Using the density function rtM calculated
previously, we next studied the number of distinct cell types, Nd ,
present at the time of diagnosis. Let n be the total number of
resistant types. Then the mean number of distinct resistant types
present at diagnosis is given by

E½Nd (tM )"~n{
l0
a0

Xn

i~1

ðM

0
e{sl0=a0

exp {a0uliM

ð 1
l0

logMs

0

e{l0r

ai{b0e{li r
dr

" #

ds:

We also derived the probability mass function for the number of
resistant types present at the time of detection. For each 1ƒkƒn,
define N k~fA5f1, . . . ,ng : jAj~kg (i.e. all possible subsets of
resistant types with cardinality k). Then the probability of having k
distinct types present at diagnosis is given by

P(Nd (tM )~k)~

l0
a0

X

A[N k

ðM

0

exp {sl0=a0za0uM
X

i =[A

li

ð 1
l0

logMs

0

e{l0r

ai{b0e{li r
dr

2

4

3

5

|P
i[A

1{exp {a0uMli

ð 1
l0

logMs

0

e{l0r

ai{b0e{li r
dr

 !" #

ds:

Derivations of these expressions are provided in Material S1.
Using these approximations, we examined the distribution of

the number of distinct resistant leukemic cell types present at
normal and late detection times (Fig. 1a). For the baseline estimate
of M~100,000 leukemic stem cells at the time of diagnosis of the
disease, almost all patients harbor zero or one resistant clone at
diagnosis. The probability of harboring no resistant cells at
diagnosis is approximately 87%, while the probability of having
exactly one resistant cell type is approximately 12% if the mutation
rate is 10{7 per base per cell division. We also tested for the
sensitivity of the results to the estimate of the mutation rates (see
Fig. 1b). When u~10{7, the chance that a newly diagnosed
patient harbors two or more resistant cell types is approximately
1%. If the disease is detected at later times, then the probability
mass function shifts to the right and slightly more resistant types
are present. However, for all detection sizes tested, the probability
of greater than three resistant types present at the time of diagnosis
is negligibly small. Although it is biologically possible to acquire
more than one mutation in a single cell division, this event has
negligible probability given the scale of the mutation rate and
detection size. Thus in the these analyses we do not explicitly
discuss cell populations with multiple resistance mutations.
These results provide useful quantitative guidelines for the clinical

management of CML: patients diagnosed with a disease burden of
about 100,000 leukemic stem cells have an approximately 12%
chance of harboring one imatinib-resistant cell type. Patients
diagnosed later (e.g. with 200,000 leukemic stem cells) have a
significantly greater chance of harboring one resistant cell type
(20%) or even two distinct types (2{3%). Thus, the disease burden
at the start of treatment is an important indicator of the likelihood of
harboring one or multiple resistant types at the start of treatment,
and may be useful in making first-line treatment choices for
individual patients. In particular, the total cost and potential toxicity
of administering a second-generation inhibitor (either in lieu of or in
addition to imatinib) should be considered along with the chance of
harboring one or multiple resistant cell types.
We also considered the effects of increasing detection size and

mutation rates on the expected number of distinct types of resistant
cells present at diagnosis. Figure 1b displays the expected number of
resistant types,E½Nd (tM )", as a function of the detection size,M, for
various values of the mutation rate, u. In Figure 1c, we show
E½Nd (tM )" as a function of the mutation rate for various choices of
M. Increasing detection size and mutation rate both lead to a larger
expected number of resistant cell types present at diagnosis. These
studies could be extended to include mutant-specific mutation rates,
which will be the topic of future contributions.
We then studied the evolution of this diversity measure (i.e., the

number of distinct resistant clones) over time as the disease
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progresses. We found that the expected number of resistant types
as a function of time can be written as

E½Nd (t)"~
Xn

i~1

a20uJi(t)

l0za20uJi(t)
,

where

Ji(t)~li

ðt

0

el0s

ai{b0e{li (t{s)
ds:

Similarly, the variance can be written as

Var ½Nd (t)"~
Xn

i~1

Xn

j~1

P !NNi(t)w0, !NNj(t)w0
$ %

{P !NNi(t)w0ð ÞP !NNj(t)w0
$ %$ %

,

where !NNi(t) represents the number of extant mutations that have
been created by time t. The derivations of these expressions are
provided in Material S1. Figure 1d displays the expected number
of resistant cell types as a function of time, E½Nd (t)", for three

values of the mutation rate. For the baseline estimate of u~10{7

per base per cell division, the expected number of types increases
substantially after six years of disease evolution. Intense diversi-
fication of the resistant cell population occurs at slightly different
times for the other mutation rate estimates, but remains close to
the 6–7 year range. Thus, a delay in detection has two negative
consequences: it increases the likelihood of pre-existing resistant
cells, and it enhances the diversity of resistant cells.

The number of pre-existing resistant cells
We then studied the number of resistant cells of each type as a

function of time, as well as at the time of diagnosis; quantifying the
abundance of each type is important since small populations of
resistant cells may become extinct due to stochastic fluctuations.

Figure 1. Existence and composition of pre-existing resistance. (a) The panel shows the distribution of the number of distinct resistant clones
at the time of diagnosis. There are M~100,000 (blue), M~200,000 (green), or M~300,000 (red) leukemic stem cells present at the time of
diagnosis. The per base pair mutation rate is u~10{7. (b) The panel displays the expected number of resistant cell types as a function of the
detection size, M , for varying mutation rates. (c) The expected number of resistant types at diagnosis is shown as a function of the mutation rate u,
for varying numbers of leukemic stem cells at diagnosis, M . (d) The expected number of resistant cell types is displayed as a function of time t in
years, for varying mutation rates u.
doi:10.1371/journal.pone.0027682.g001
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Thus, resistant types that routinely establish large clones are likely
more prevalent in the clinic.
The expected population size of each resistant cell type at time t

is given by

E½Mi(t)"~
ua0
l0

eli t{el0t

li{l0
: ð1Þ

Accurate analytical estimates of the expected number of resistant
cells at detection time tM were obtained for those resistant cell
types whose net growth rate was less than that of the p210 cells,

E½Mi(tM )"~ul20M

ð1

0

(1{y1{li=l0 )e{yl0M=a0

l0{li
dy:

These formulae are derived in Material S1.
Figure 2 displays the expected numbers of various resistant types

both prior to and at the detection time. Panels a and b show the
expected number of cells of each type for M~100,000 and
250,000 leukemic stem cells at detection time, respectively. Note

that for larger detection sizes, the total number of resistant cells
increases and the dominance of the T315I mutation over other
types is even more pronounced. This effect is further investigated
in Figure 2c and d. Panel c shows the time evolution of the average
population size of each type as calculated from equation (1); six to
seven years after cancer initiation, the expected number of
resistant cells is on the order of one cell out of a total population of
approximately 105 leukemic stem cells; thus only an experimental
technique with sensitivity greater than 10{5 stem cells would
detect resistant leukemic stem cells at this frequency. In addition,
the histogram in Figure 2d displays the ratio of the average
number of each type to the expected total number of resistant cells
as a function of time. At early times (e.g., 0 to 2 years after cancer
initiation), the mutant types on average establish similarly-sized
clones. However, as time passes, the fitter types such as T315I-
and E255K-positive cells give rise to much larger clones as
compared to the other types.
Two of the most important resistant cell types are those

harboring the T315I and F317L mutations. The abundance of
these resistant cell types are of particular clinical importance since
the T315I mutation confers resistance to all three BCR-ABL

Figure 2. The frequency of pre-existing resistant cells. (a) The panel displays the expected number of resistant cells of each type at diagnosis
for M~100,000 leukemic stem cells. (b) The expected number of resistant cells of each type at diagnosis for M~250,000 leukemic stem cells is
shown. (c) The panel displays the time evolution of the average number of cells of each type. (d) The ratio of the expected number of cells of each
type to the expected total resistant cell number as a function of time. The mutation rate is u~10{7 per base per cell division for all panels.
doi:10.1371/journal.pone.0027682.g002
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inhibitors, while the F317L mutation confers resistance to two of
them. We therefore studied the distribution of these two resistance
mutations at detection time. Figure 3 displays the distributions of
resistant cells for a series of sample simulations. While both
distributions have the most mass accumulated at the origin, large
T315I clones (i.e., w500 cells) arise with much greater frequency
than large F317L clones. In addition, medium-sized T315I clones
(i.e., 100–500 cells) emerge in roughly 2% of samples, while F317L
clones of similar size arise in only 0.5% of cases. When
investigating the other resistance mutations, we found that
T315I-positive cells are more likely to create a large clone at
detection than any other resistant cell type. This effect is amplified
in tumors that are detected later, i.e. when the CML stem cell pool
is larger. Figure S3 provides analogous histograms for the
remaining 9 mutant cell types.
The histograms discussed above were generated via repeated

independent stochastic simulations of the branching process
model. Each simulation run was initiated with a single BCR-
ABLp210-positive stem cell which waits an exponential amount of
time until the first event occurs, which is either a cell division or a
cell death event. This random waiting time is exponentially
distributed with the mean given by the inverse of the sum of the
birth rate, ri, and death rate, di, for this cell type i. Once an event
occurs, a choice is made for the cell to either divide or die; the cell
divides with probability ri=(rizdi) or otherwise dies. During each
division event, there is a small probability u that a sensitive cell
mutates to produce a resistant daughter cell (belonging to one of
the 11 resistant types). This resistant cell then creates an
independent clone governed by a branching process with the
corresponding birth and death rates, as provided in Table 2. This
process is repeated until the total population of cells reaches the
detection size M, at which point we recorded the number of cells
of each resistant type. Tabulating this information over repeated
independent trials led to the histograms displayed in Figure 3 and
Figure S3.

The risk of pre-existing resistance
We then investigated the likelihood that a patient harbors any

specific resistance mutation at the time of detection. Using our

stochastic model, we derived the probability that there are no
resistant cells of type i at detection time as

P(Mi(tM )~0)~

l0
a0

ðM

0
e{sl0=a0 exp {a0uliM

ðq(s)

0

e{l0r

ai{b0e{li r
dr

& '
ds:

The likelihood of any resistant cell type existing in the population
at detection time then easily follows as complement of this
quantity. The details of the derivation are provided in Material S1.
Figure 4a displays the probability that each of the eleven

resistant cell types is present at the time of diagnosis with
M~100,000 leukemic stem cells. The likelihood of any cell type
existing is nearly identical (about 1:2%) for all of the eleven types.
Recall that the majority of patients harbor at most one type of
resistance mutation at detection (see Fig. 1). This observation, in
conjunction with the discovery that all mutations are equally likely
to be present, led us to conclude that patients are equally likely to
harbor T315I-positive cells at diagnosis as any other resistant cell
types. However, as we observed in the previous section, T315I-
positive cells are more likely to establish larger cell clones, making
this mutation more clinically apparent even though it is not more
frequent at the time of diagnosis. In other words, when present,
T315I-positive cells are more likely to establish larger clones at
detection time than other types; this may result in an increased
perceived frequency of this mutation.

Sensitivity of newly diagnosed CML patients to tyrosine
kinase inhibitors
We then investigated the probability that a newly diagnosed

CML patient responds to one or a combination of the BCR-ABL
inhibitors imatinib, dasatinib, and nilotinib. In this context,
sensitivity to a particular inhibitor is defined as the absence of
cells containing any of the eleven mutations which confer
resistance to that drug; this analysis can be performed for eleven
mutations only since no information on fitness parameters is
available for other resistance mutations. Figure 4b displays the
probability that a patient is sensitive to imatinib, dasatinib, the

Figure 3. The frequency of T315I and F317L mutations at diagnosis. The figure shows the distribution of the number of T315I-positive (a)
and F317L-positive (b) cells in the population at detection time. Parameters are M~100,000 and u~10{7 , and simulations are run for 100,000
samples.
doi:10.1371/journal.pone.0027682.g003
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combination of imatinib and dasatinib, and a three-drug
combination. This analysis was performed considering two
different threshold numbers of CML stem cells at diagnosis; as
expected, a larger detection size leads to a higher risk of resistance.
Note that even if two drugs cannot be administered at the same
time for reasons of toxicity, within our framework, alternating
therapy still represents a significant improvement over therapy
with a single inhibitor.
Interestingly, for patients in which the disease was diagnosed

when there were M~100,000 leukemic stem cells, the benefit of
combination therapy over monotherapy with imatinib or dasatinib
is quite small; the probability of sensitivity to imatinib or dasatinib
is in the range of 90–95%, while the probability of sensitivity to
imatinib and dasatinib or a three-drug combination therapy is
approximately 95–98%. This observation is due to the fact that at
this detection size, it is very unlikely that multiple types of resistant
cells co-exist in the patient. However, for a larger disease burden at
diagnosis, a significant benefit arises from utilizing combination
therapies over imatinib or dasatinib monotherapy, since there is a
pronounced risk of harboring more than one type of resistant cell.
In this case, the probability of sensitivity to imatinib is less than
80%, while the probability of sensitivity to a three-drug
combination is over 95%. Thus, the increase in effectiveness of
combination therapy over monotherapy with imatinib or dasatinib
is much more pronounced for patients whose disease is diagnosed
later as compared to early chronic phase patients. Therefore, for
patients in advanced stages of the disease, it is preferential to
administer combination therapy of at least two BCR-ABL tyrosine
kinase inhibitors, such as imatinib and nilotinib.

Robustness analysis
We also tested the robustness of the results to reasonable

perturbations which may account for errors in the experiment data
– i.e. the growth kinetics of the eleven resistant cell types – or in
our model assumptions. One key assumption of our framework is

that the ratio of net growth rates of resistant and BCR-ABLp210-
positive cell lines is preserved in patients. To determine the
amount of robustness of our findings to errors in this assumption,
we perturbed the in vivo growth rate estimates with scaled uniform
random variates representing 20% noise simultaneously for all 11
mutants, and observed that our results were extremely robust to
this level of noise. The level of 20% noise was chosen to be in
excess of the experimental noise level in the measurement of in vitro
growth kinetics ([8], see Table 1 for the experimental standard
error). Table S1 shows the minimum and maximum probability of
sensitivity to each drug combination, obtained after 100 sample
simulations of the perturbed system. In each sample simulation, a
perturbed growth rate was drawn at random for each mutant, and
the probability of sensitivity to each drug combination was
computed. This numerical experiment was conducted for two
different values of the detection size. We observed that the range of
the resulting probabilities for each drug combination, as reported
via the minimum and maximum observed, remarkably deviated
by less than one percent from the probabilities obtained from the
unperturbed growth rates. To demonstrate visually how robust the
results were, Figure S2a shows the resulting probabilities for one
sample simulation; these results should be compared to Figure 4b.
Another modeling choice of uncertain biological underpinning

relates to whether the differences in cellular fitness are due to
differences in birth or death rates. Since the BCR-ABL oncogene
modulates the proliferative potential of cells [42], we hypothesized
that the BCR-ABL kinase domain resistance mutations likely also
affect growth more than death. Therefore, we first considered
differences in cellular fitness to be due to differences in birth rates,
so that the death rate remains unchanged among resistant cell
types (bi~b0 for i~1ƒiƒn). We then investigated the robustness
of our results by comparing this situation to the one in which
differences in fitness are attributed to differential death rates (see
Figure S2b), and obtained results which deviated less than one
percent from the original results shown in Figure 4b.

Figure 4. Sensitivity to therapy. (a) The panel displays the probability that there exists at least one cell with any specified mutation in the CML
stem cell population at detection time. Parameters areM~100,000 and u~10{7 . (b) The probability that the leukemic stem cell population is free of
mutants conferring resistance to imatinib, dasatinib, imatinib plus dasatinib, and all three drugs at detection time. Parameters are M~100,000 (red),
M~250,000 (blue), and u~10{7 .
doi:10.1371/journal.pone.0027682.g004
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Discussion

In this paper, we have developed a stochastic mathematical
model for the evolution of multiple types of resistance mutations to
BCR-ABL tyrosine kinase inhibitors (TKIs) within an expanding
population of leukemic stem cells before the initiation of therapy.
Using experimental studies of the fitness values of cells harboring
different resistance mutations [8], we investigated the likelihood,
composition, and diversity of pre-existing resistance as well as the
impact of these factors on the response to targeted therapies.
Our study led to several conclusions regarding pre-existing TKI

resistance in CML patients:

N The majority of patients harbors at most a single resistant
clone at detection; the likelihood of more than one resistant cell
type being present at detection is small unless the disease is
detected in advanced stages, i.e. with a large pool of CML stem
cells at diagnosis.

N The likelihood of harboring the T315I mutation at detection is
similar to the likelihood of harboring any other resistant
mutation. However, when present, T315I-positive cells are
more likely to establish more clinically apparent, large-sized
clones at detection time than other types; this may result in an
increased perceived frequency of this mutation.

N Delayed detection increases the risk of pre-existing resistance
and also enhances the diversity of the resistant population at
diagnosis.

N The overall benefit of combination therapy over monotherapy
with imatinib or dasatinib is minor for patients with a small
disease burden at detection, i.e. for those who are diagnosed
early. However, this benefit is significantly more pronounced
for patients whose disease is diagnosed late. Thus, within our
framework, combination therapy is beneficial for patients
diagnosed with a large disease burden.

Our combined theoretical and experimental approach predicts
that 6–7 years after cancer initiation, the expected number of
resistant cells is approximately 1 resistant leukemic stem cell out of
a total population of 105 leukemic stem cells; thus an experimental
technique with sensitivity capable of identifying one resistant
leukemic stem cell out of 107{108 leukemic cells is needed to
detect resistant cells of this frequency. In addition, at early times
(e.g. 0 to 2 years after cancer initiation), all resistant cell types on
average establish similarly-sized clones. However, as time
increases, the fitter types – such as the T315I and E255K mutants
– give rise to much larger clones as compared to other mutations.
These findings emphasize the necessity to quantify the number of
leukemic stem cells over time since this disease burden determines
the risk of relapse due to the evolution of TKI resistance.
In this study, we initially assumed that the ratio between net

growth rates of BCR-ABLp210-positive and resistant leukemic stem
cells in vitro is preserved in vivo, and that differences in cellular
fitness between resistant types are due to differences in birth rates
instead of death rates. To investigate the impact of these
assumptions, we studied the robustness of our results to variation
in resistant cell growth and death rates. For example, we
investigated the scenario in which the difference in net growth
rate among resistant mutants is due to variation in death rates
instead of birth rates. We found that our results (i.e. the
characteristics and diversity of the resistant population at detection
time) are very robust to this change. For example, Figure S2b
shows the probability that a patient is sensitive to imatinib,
dasatinib, the combination of imatinib and dasatinib, and a three-
drug combination when the fitness difference is attributed to death

rates. These results are very similar to the analogous Figure 4b
where the fitness difference is attributed to growth rates. More
generally, our model demonstrated that the scale and parameters
of this system (i.e. mutation rates, detection size, etc) imply that
resistant mutants usually arise late in the time-scale and close to
the time of detection. Furthermore, the differences in growth rates
among these mutants are not large enough to enable the selection
of some types over others, given the short time period between the
creation of the mutants and the detection time. Thus, even though
fitness differences exist between these mutants, detection occurs so
close in time to mutant creation that there is an approximately
equal likelihood of finding each one in the population at detection.
Our key findings hold for all reasonable perturbations of our in vivo
growth rate estimates. To demonstrate this finding, we perturbed
the in vivo growth rate estimates with scaled uniform random
variates representing 20% noise and recalculated the probabilities
of sensitivity to combination and monotherapy. Figure S2a
displays these probabilities for one sample perturbation of growth
rates, and Table S1 shows the minimum and maximum values for
each probability, obtained from 100 trials of randomized
perturbation. These findings support the conclusion that our
results are robust to substantial perturbations in the in vivo growth
rate estimates.
We have focused on resistant cells arising prior to the start of

therapy since it is difficult to detect and characterize low-frequency
pre-existing resistance in the clinic. This analysis could be
extended to study the diversity and composition of resistant cells
arising during treatment if experimental data on fitness parameters
of different cell types during therapy was available. Specifically, we
could utilize mathematical modeling to quantify the impact of
drug combinations and scheduling choices on the evolution of
resistance. Further, data on additional mutants not considered in
this study is necessary to obtain an accurate picture of the
dynamics of these resistance mutations in CML patients. Our
model can also be utilized to study the scenario in which the rate
of the creation of resistant cells (i.e. mutation rates) vary amongst
the different types. If these mutation rates are experimentally
found to vary significantly across several orders of magnitude, such
findings would impact the clinical predictions of our model.
Finally, we have only considered cell-autonomous factors in this
mathematical framework and have neglected more complex
factors such as interactions with the microenvironment and
immune system; this choice was made since no quantitative data
on the interactions between these factors and CML stem cells are
available in vivo. An extension of mathematical approaches to
resistance in CML including such factors is an important goal of
the field.
The type of analysis presented in this paper can aid in the design

of therapy scheduling to delay or prevent the evolution of
resistance. Our methodology can be applied to studying other
cancer types and therapies which are susceptible to diverse
resistance mutations, as in the case of CML. We have derived
simple analytical estimates of the number of resistant types present
at detection, the probability that any given resistant cell type is
present at diagnosis, and the number of cells of each resistant type.
This interdisciplinary approach provides a useful tool for
researchers to predict the likelihood and characteristics of diverse
pre-existing populations as well as the potential benefits of various
therapies using only growth kinetics data as input.

Methods

Please refer to Material S1 for detailed explanation of all
formulas in the text as well as simulation details.
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Supporting Information

Figure S1 Time of detection of disease. The figure shows
the probability density function of the detection time, or the time
that the CML stem cell population hits size M, for M=100, 000,
250, 000 and 500, 000. Since the mutant population does not
represent a significant portion of the population at detection, this
distribution is closely approximated by considering the time at
which the number of drug-sensitive CML stem cells reaches M.
(TIFF)

Figure S2 Robustness to growth rate perturbations. a)
Probability of sensitivity to mono- and combination therapies
when the resistant mutant birth rates are perturbed by a
multiplicative random factor (1+0.2?U [21, 1]), for one represen-
tative sample (see Table S1 for comprehensive robustness
statistics). b) Probability of sensitivity to mono- and combination
therapies when the fitness differences between mutants are
attributed to variation in death rates instead of birth rates. In
both panels, probabilities are shown for detection sizes of 100,000
and 250,000 cells.
(TIFF)

Figure S3 The frequency of CML resistance mutations
at diagnosis. The figure shows the distribution of the number of

Y253H-positive (a), Y253F-positive (b), V299L- positive (c),
T315A-positive (d), M351T-positive (e), L248R-positive (f),
F317V-positive (g), E255V-positive (h), and E255K-positive (i)
cells in the population at detection time. Parameters are M=100,
000 and u= 1027, and simulations are run for 100,000 samples.
(TIFF)

Table S1 Robustness properties.
(PDF)

Material S1 Supplementary Material.
(PDF)
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