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Abstract

We study the accumulation of mutations in a spatial Moran model on a torus
in Zd in which each cell gives birth at a rate equal to its fitness and replaces
a neighbor at random with its offspring. Cells of type k have relative fitness
(1+s)k and mutate to type k+1 at rate uk+1. When restricted to two cell types
and no mutations, this model reduces to the biased voter model. We give a new
result for the biased voter model that identifies the asymptotic behavior of the
speed of propagation in the Bramson-Griffeath shape theorem, when s → 0.
Motivated by our results on the spatial Moran model we introduce a simplified
model and in the context of this model we study σk, the time of birth of the
first type k whose family line does not die out, and the growth of the number
of type k cells, Zk(t). This investigation is a first step in understanding the
spatial structure of the genetic heterogeneity of solid tumors.

1 Introduction

Cancer initiation and progression are driven by the accumulation of mutations in
cell populations. These mutations can confer changes to cellular reproduction rates
and enable rapid growth and evolution of tumors. Understanding the dynamics of
mutation accumulation in fixed or exponentially growing populations contributes to a
better understanding of when and how cancers initiate, as well as the genetic diversity
of tumors.

∗Partially supported by NIH grant 5R01GM096190
†Partially supported by NSF grant DMS-1224362

1



There has been a substantial amount of previous modeling effort devoted to the
study of temporal dynamics of mutation accumulation in cancer initiation and pro-
gression. These works have primarily been restricted to the setting of homogeneously
mixed populations, and fallen into the following three categories: multi-type Moran
models with a homogeneously mixing population of either (i) constant or (ii) expo-
nentially growing size, and (iii) multi-type branching processes. We refer the reader
to Part I of this work by Durrett and Moseley (2012) for a discussion of the literature
in category (i). Systems of type (ii) have been studied by Beerenwinkel et al. (2007)
and Durrett and Mayberry (2007), who have shown that there are traveling waves of
selective sweeps. In category (iii) Durrett and Moseley (2009) and Bozic et al. (2010)
studied systems in which individuals of type k always have fitness (1 + s)k. Dur-
rett, Foo, Leder, Mayberry and Michor (2011a,2011b) generalized the results to the
situation where fitness advances are random, and studied heterogeneity.

Although these previous studies have led to a better understanding of the tempo-
ral process of carcinogenesis in well-mixed populations, recent studies have revealed
that cancer evolution is strongly impacted by spatial dynamics within the tissues in
which cancers arise (e.g. Chai et. al. 2009, Martens et. al. 2011). In particular,
carcinogenesis is driven by a spatiotemporal process involving the accumulation and
spatial expansion of one or more patches of mutated cells within a homeostatic com-
partment; the growth rate and geometry of these patches impact the probability of
subsequent mutations and timing of cancer initiation. The main goal of this work is
to understand these dynamics by considering a simple two-step mutational pathway;
to this end we will consider (iv) spatial Moran models of constant size.

Historically, the first spatial model of tumor growth is the one of Williams and
Bjerknes (1972). In this model, there are two cell types: 0 (healthy) and 1 (tumor),
with fitnesses 1 and λ > 1. The cell at x gives birth at a rate equal to its fitness
to an offspring that replaces the cell at one of the 2d nearest neighbors chosen at
random. Bramson and Griffeath (1980,1981) proved the first rigorous results about
the asymptotic behavior of this model, which is also called the biased voter model.
In particular they proved a “shape theorem” for the asymptotic behavior of the pro-
cess which is stated and used below. In related work, Martens and Hallatschek used
simulation to study the dynamics of mutation accumulation and population adapta-
tion on a discrete time hexagonal lattice model with nearest neighbor replacement
upon reproduction in one and two dimensions. Here, the replacement rule in each
generation was tuned so that adaptation waves travel at a desired speed that matches
classical estimates of Fisher wave speeds. In addition, an additional probability of
death was imposed at the birth of each mutant in order to calibrate the dynamics
to a desired survival probability for each new mutant clone. Under this model, using
small fitness advantages s, the authors studied the speed of rate of change of the
mean fitness advantage per generation and found that this speed saturates once the
domain size exceeds a characteristic interference length. In a follow-up work, this
model was applied to study the impact of clonal interference on the waiting time for
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cancer initiation. Although the authors considered a similar question to the current
work, we note that in these works the microscopic behaviors are artificially tuned
to match desired macroscopic phenomena; then, the tuned model is simulated to
characterize other macroscopic behaviors. In contrast, here we begin by assuming
only the microscopic dynamics of reproduction, death and mutation on the lattice,
making no prior assumptions about the macroscopic dynamics. We then analyze this
process to characterize the emergent macroscopic behaviors and their dependence on
microscopic parameters.

In Part I, Durrett and Moseley (2012) considered a spatial Moran model in which
there are three types of cells (0, 1, and 2) all with fitness 1, and type i cells mutate
to type i + 1 cells at rate ui. Under these assumptions, limit theorems for τ2 the
time of the birth of the first type 2 were proved. These results were an extension
of (Komarova, 2007), in which the rate of producing two-hit neutral mutants in a
1-dimensional process was studied and compared to the well-mixed setting. In the
present paper we focus on the case in which new mutations have a selective advantage
over the previous ones. Throughout the paper we will use the following notation for
the asymptotic behavior of positive functions.

f(t) ∼ g(t) if f(t)/g(t) → 1 as t→∞
f(t) = o(g(t)) or � g(t) if f(t)/g(t) → 0 as t→∞

f(t) � g(t) if f(t)/g(t) →∞ as t→∞
f(t) = O(g(t)) if f(t) ≤ Cg(t) for all t

f(t) = Θ(g(t)) if cg(t) ≤ |f(t)| ≤ Cg(t) for all t

The outline of the remainder of the paper is as follows. In Section 2 we introduce
the spatial Moran model and state our main two results concerning this process.
Based on these two results we introduce our simplified model with deterministic
growth. In Section 3 we state our primary results regarding the timing of successful
mutations in the simplified model. Section 4 is concerned with an application of
this material to colon cancer, and section 5 reviews some basic results regarding the
biased voter model. Section 6 is devoted to proofs of useful facts about the biased
voter model. Theorems 2 is proved in Section 7, Theorems 3 and 4 in Section 8, and
Theorem 5 in Section 9. The proof of Theorem 1 is hidden away in Section 10 because
it relies on different techniques, and follows easily from results of Durrett and Zähle
(1997).

2 A spatial Moran model of tumor growth

Although we are mainly interested in studying processes on the torus [−L,L]d ∩ Zd,
we first consider a spatial model of tumor growth on a lattice in Zd. Type i cells
have fitness (1 + s)i. Type i cells mutate to become type i + 1 cells at rate ui. Let
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φt(z) be the fitness of the cell at z at time t. If we consider two nearest neighbors x
and y then the value at x will replace the one at y at rate φt(x) and y will replace
x at rate φt(y). The spatial Moran model we have just described can be viewed as
an extension of the biased voter model. In particular, the biased voter model is the
spatial Moran model restricted to type 0 and type 1 cells, without any mutations.
To study our model, it will be useful to describe some properties of the biased voter
model.

2.1 Growth from a single type 1

Consider a biased voter model with two types 0 and 1 with fitnesses 1 and λ > 1.
Then at each boundary edge connecting a 1 with a 0, the first event will be the 0
changing to 1 with probability p = λ/(λ+ 1) or the 1 changing to 0 with probability
1 − p = 1/(λ + 1). Thus if ξt = {x : φt(x) = λ} then while ξt 6= ∅, the size of the
set, |ξt|, is a biased random walk which makes jumps at rate equal to 1 + λ times
the number of boundary edges: |∂ξt| = |{x ∼ y : x ∈ ξt, y 6∈ ξt}|. Here we have
used x ∼ y to indicate that x and y are neighbors even though this conflicts with our
previously announced notation.

Elementary random walk results imply that if we start with one type 1 and let
Tk = inf{t : |ξt| = k} then using a subscript of 1 to indicate starting from one
individual with fitness λ

P1(T0 = ∞) = 1− 1− p

p
= 1− 1

λ
=
λ− 1

λ
=

s

1 + s

if λ = 1+s. Maruyama (1970, 1974) was the first to notice that the fixation probability
is not changed by considering a spatial model, but this fact has been rediscovered
by others, see Lieberman, Hauert, and Nowak (2005). Even in cancer, selective
advantages s are small, so we will use the approximation

P1(T0 = ∞) ≈ s. (1) notdie

Let ξ0
t be the set of sites occupied by individuals of type 1 at time t when initially

there is a single 1 at the origin at time 0. Bramson and Griffeath (1980, 1981) showed
that when ξ0

t does not die out, it grows linearly and has an asymptotic shape D. That
is, for any ε > 0, there is a tε (which depends on the outcome ω) so that on {T0 = ∞}
we have

(1− ε)tD ∩ Zd ⊂ ξt ⊂ (1 + ε)tD for t ≥ tε(ω).

D is convex and has the same symmetries as Zd.
Let e1 be the first unit vector and define the growth rate cd(s) so that the intersec-

tion of D with the x axis is [−cd(s)e1, cd(s)e1]. It is easy to compute c1(s). If ξt 6= ∅
then ξt = [lt, rt]. The right edge rt increases by 1 at rate λ and decreases by 1 at rate
1, so rt/t → λ − 1 = s, i.e., c1(s) = s. The proof of Bramson and Griffeath implies
that cd(s) ≥ bds where bd is a positive constant. By using techniques of Durrett and
Zähle (2007), we can find the order of magnitude of the speed.
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DZ Theorem 1. As s→ 0 we have

cd(s) ∼


s d = 1√

4πs/ log(1/s) d = 2
√

4βds d ≥ 3,

where βd is the probability that two d dimensional simple random walks started at 0
and e1 = (1, 0, . . . 0) never hit.

The proof of this result is found in Section 10.

2.2 Time of the first successful type 1 mutant

Let σi be the time of birth of the first successful type i, i.e., one whose family line
does not die out. Since we are considering the biased voter model on a finite set,
[−L,L]d ∩ Zd, the first issue to consider is: what does it mean for a mutation to not
die out? When λ = 1 + s formulas (20) and (21) (for the biased voter model on Zd)
imply that

P1(Tk < T0) =
1− (1 + s)−1

1− (1 + s)−k
Pk(T0 <∞) = λ−k

When s→ 0 and k ∼ C/s

P1(Tk < T0) →
s

1− e−C
Pk(T0 <∞) → e−C ,

so an appropriate finite size version of survival is reaching size C/s, where C is large.
To have success probability ≈ s, the value on Zd, we will let Cs →∞ slowly as s→ 0.

Since mutations occur at rate Nu1 and are successful with probability s, it is
almost obvious that:

sig1lim Theorem 2. If s, u1 → 0 then P (σ1 > t/Nu1s) → e−t.

While this is intutive, we have not been able to prove this without an additional tech-
nical assumption. Results in Section 6 will show that unsuccessful type 1 mutations
will typically die out by a time of order

`(s) =


s−2 d = 1

s−1 log(1/s) d = 2

s−1 d ≥ 3

(2) tofs

Since particles in the dual process move like random walks, they can move a distance
O(`(s)1/2) in time `(s). Thus, an unsuccessful type 1 mutation can spread over a
space-time volume of O(`(s)(d+2)/2). To be able to easily estimate the dependence
between different trials, we will assume

(A0) (1/u1) � `(s)(d+2)/2 (3) A0

5



This assumption will be in force throughout the paper. For a typical value of s = 0.01
(see the discussion in Section 4 for more on this) the condition is satisfied when
u1 < 10−6. Unfortunately this is not satisfied in our example in Section 4.2, we have
that u1 ≈ 10−5.

2.3 A simplified model with deterministic growth

Theorems 1, 2 and the Bramson-Griffeath shape theorem suggests a simplification to
our model.

• When a type I mutation occurs, it can either be a successful type 1 (which cor-
responds intuitively to its family line not dying out and occurs with probability
s), or it can be an unsuccessful type 1 with probability 1− s.

• Successful mutations initiate expanding clones that are growing balls (in the
usual `2 norm) whose radius at time t is cd(s)t. Note that here we are referring
to the balls as solid objects in Rd, so one must intersect the solid ball with Zd.

• Unsuccessful type 1 mutations give rise to a copy of the biased voter model
conditioned to die out.

Chatterjee and Durrett (2011) took the same approach in their study of Aldous’
gossip processes, in which information can spread by long range jumps in addition
to a nearest neighbor process that is first passage percolation. Rather than wrestle
with the details of the estimating the growth from the different seeds, they replaced
the random growth process by balloons that grow linearly in radius. In that paper
and this one, we do not expect this simplification to significantly alter the qualitative
behavior.

Theorems 3–5 will be proved for the simplified model.

If we are in a situation where successful mutations to type k + 1 only come from
descendants of successful type k mutations, our simplified model is the polynuclear
growth (PNG) model of Prähofer and Spohn (2000). In that system, mutations occur
at rate 1, and when they land on a point with height k produce a linearly growing
disk at height k + 1. There is a large literature on the one-dimensional PNG model,
which can be studied in great detail thanks to connections to increasing sequences
in random permutations and random matrices. See Ferrari and Prähofer (2006),
where it is shown that the scaled one dimensional profile of the PNG model converge
to solutions of Kardar-Parisi-Zhang (1986) equation. However, very little is known
in dimensions d ≥ 2. and the state of the spatial Moran model after hundreds or
thousands of mutations is not relevant to studying cancer.
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2.4 Takeover by 1’s

Consider now the special case of our simplified model with deterministic growth in
which the mutation rates ui ≡ u and we start with no individuals of type 1, i.e.,
ξ0 = ∅. Since we are interested first in finding the time at which the 1’s take over the
space, we will ignore the mutations that produce 2’s and use ξt to indicate the set of
sites occupied by 1’s. The time until the first successful type 1 mutation will be

tmut = Θ(1/Ldus).

The time to takeover the system tfix = Θ(L/cd). Setting tmut = tfix and solving we
see that if

(SF ) L� Lc =
( cd
su

)1/(d+1)

(4) SF

then we will have sequential fixation: mutations will fix faster than they arise, and
the times between successive mutations that do not die out will be exponential with
mean 1/tmut.

Let γd be the volume of a ball of radius 1 in d dimensions,

γ1 = 2, γ2 = π, γ3 = 4π/3 (5) gammadef

A site x will be type 1 at time t if there is a successful type 1 mutation in the space-
time cone {(y, r) : |y − x| < cd(t− r)}. Such mutations are approximately a Poisson
process with rate us so

P (x ∈ ξt) ≈ 1− exp

(
−us

∫ t

0

γd(cdr)
d dr

)
≈ 1− exp

(
−usγdc

d
dt

d+1

d+ 1

)
(6) fcover

This quantity will go from a small density ε to 1−ε at times of order (1/sucdd)
1/(d+1) =

Lc/cd.
To prepare for later developments, we note that the number of successful type 1

mutations by this time will be

Kpos =
Lc

cd
· Ldsu = Ld

(
su

cd

)d/(d+1)

= (L/Lc)
d. (7) Katfix

This observation will be used later in (14) to show that with high probability σ2 will
occur while the density of 1’s is small. Because of this, Theorem 2 can be upgraded
to show that up to time σ2 successful type 1 mutations occur at times of a Poisson
process with rate Nu1s.
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3 Waiting time for σ2
sec:sig2

In many cancer types (e.g. breast, colorectal), early mutations in the genetic progres-
sion compromise the DNA replication machinery, resulting in a drastically increased
mutation rate for subsequent events. Thus it is important to drop the assumption
u1 = u2. In this section we investigate the behavior of σ2, the waiting time until the
first successful type-2 mutant. There are three regimes of behavior, depending on the
value of

Γ = (Nu1s)
d+1(cddu2s)

−1, (8) Gammadef

which (as we will see shortly) is related to the number of successful type 1 mutations
necessary to create a successful type 2 mutation. Throughout this section, we are
taking the limit as s, u1, u2 → 0, and proving our results for the simplified model.

3.1 Γ → 0

In his Cornell Ph.D. thesis, Stephen Moseley began the study of the asymptotic
behavior of the waiting time σ2. His result is for the regime in which the first successful
mutation to type 2 occurs in the first successful type 1 family and before it reaches
fixation.

DMth3 Theorem 3. If we assume,

(A1)

(
cd
u2s

)d/(d+1)

� N � (cddu2s)
1/d+1

u1s
(A2)

and (A3) u2 � 1/`(s) then P (σ2 > t/Nu1s) → exp(−t).

Here `(s) is the quantity defined in (2). To connect with the title of the subsection
note that (A2) is the condition Γ → 0. The proof is provided in section 8.

Since the conditions of Theorem 3 are somewhat complicated, we will now explain
them intuitively. To see the reason for (A1), we note that under our simplified model,
if the successful type 2 mutation occurs before type 1’s reach fixation, it will occur
Θ(t2) units of time after the type 1 mutation when the space-time volume covered by
the its descendents ∫ t2

0

(cdr)
d dr = Θ(1/u2s).

That is, t2 = Θ((cddu2s)
−1/(d+1)). At that time the radius of the set of 1’s

cdt2 = Θ((cd/u2s)
1/(d+1))

For this to fit inside our torus, we need to have

(cd/u2s)
d/(d+1) � Ld = N (9) A1
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for the computation of the integral to be valid.
To explain (A2), note that if we let σ1 be the time of the first successful 1 mutation

then by Theorem 2
P (σ1 > t/Nu1s) ≈ e−t, (10) sig1lt

so for the result in Theorem 3 to hold we must have σ2 − σ1 � σ1, which requires

t2 = (cddu2s)
−1/(d+1) � 1/Nu1s

or rewriting things in terms of N

N � (cddu2s)
1/(d+1)

u1s
. (11) A2

Finally, (A3) is needed to rule out the possibility that the successful mutation to
type 2 occurs among the descendants of an unsuccessful type 1 mutation. Lemma 6.2
will show that if ξ0

t is the set of 1’s in a supercritical biased voter model on Zd with
λ = 1 + s and T0 is the time at which the process dies out then

E

(∫ T0

0

|ξ0
t | dt T0 <∞

)
≤ C`(s)

where `(s) was defined in (2). Mutations to type 2 that land on an unsuccessful
type 1 family will succeed with a probability between s and 2s, since when they grow
outside the unsuccessful type 1 family they will be competing with type 0’s. Since
the expected number of type 1 mutations before time t/Nu1s is O(1/s), the expected
number of successful mutations to type 2 that occur in these families is O(u2`(s)) → 0
by (A3).

3.2 Γ → I ∈ (0,∞)

Ith Theorem 4. If we assume (A1), (A3), and Γ → I ∈ (0,∞) then

P (σ2 > t/Nu1s) → exp

(
−
∫ t

0

1− exp

[
−γd

I
· y

d+1

d+ 1

]
dy

)
The proof is provided in section 8. Note that if I = 0, the exponential vanishes and
this reduces to Theorem 3.

The number of unsuccessful mutations by time t/Nu1s is of order 1/s, so as in the
discussion of the previous theorem, (A3) implies that we can ignore the possibility
that the successful type 2 comes from a type 1 family that dies out. To explain the
form of the limit, let t′ = t/(Nu1s) to simplify notation. Successful type 1 mutations
happen at rate Nu1s. When one occurs at time r, it will cover a space-time volume
at time t′ of size

v(r) = γdc
d
d(t

′ − r)d+1/(d+ 1)
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and hence produce a Poisson number of successful type 2 mutations with mean
u2sv(r). A well-known and useful result, which can be found in Parzen (1999) or
on page 421 of Komarova (2007), implies

P (σ2 > t′) = exp

(
−
∫ t′

0

Nu1s · [1− exp(−u2sv(r))] dr

)
(12) Parzen

This formula follows from thinning the Poisson process of successful type 1 mutations.
If we only accept successful type 1 mutations that give rise to at least one successful
type 2 mutation by time t′, then the number of accepted points is Poisson with a
mean equal to the integral in the formula. Since we have σ2 > t′ if and only if no
points are accepted, we have (12). The theorem follows easily from (12) by changing
variables y = Nu1s(t

′ − r) and using the definition of Γ in (8) to conclude

u2sγdc
d
d(Nu1s)

−(d+1) = γd/Γ

The careful reader will have noticed that we have assumed that the production
of successful type 2’s by different type 1 families are independent. We will prove
this by showing that with high probability the space time cones that successful type
1 mutations generate are disjoint. Once this is done (12) will be proved and the
Theorem follows.

3.3 Γ →∞
In this case there will be a large number of successful type 1 mutations before the first
successful type 2 mutant occurs. A new feature in this case is that the first successful
2 may come from a type 1 family that dies out.

To state our result, we need several definitions. Let β2 = π and for d ≥ 3 let βd

be the probability that two simple random walks started at 0 and e1 = (1, 0, . . . 0)
never hit. Let

αd =

{
1 d = 1

1/(2dβd) d ≥ 2
.

When a type 2 mutation arises in a type 1 family that will die out, the type 2’s
have a fitness of s compared to the type 1’s and of 2s compare to the type 0’s, so
its success probability is between s and 2s. To avoid the difficulty of calculating
the probability of success of a type 2 mutation landing at a random location on the
space-time set occupied by an unsuccessful type 1 family, we will introduce a “fudge
factor” 1 ≤ ρ2 ≤ 2 and assume that this probability is asymptotically ρ2s. Although
the factor ρ2 is annoying from a mathematical point of view, in practical applications
our uncertainty about the mutation rates ui is larger than uncertainty about the value
of ρ2.

Define J = 1/u2`(s) and

K = Γ1/(d+2) = (Nu1s)
(d+1)/(d+2) · (cddu2s)

−1/(d+2). (13) Kdef
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As the reader will see K is (the order of magnitude of) the number of successful type 1
mutations needed to get a successful type 2 mutation from a successful type 1 family.
J is (the order of magnitude of) the number of successful type 1 mutations that will
occur before we get a successful type 2 mutation from an unsuccessful type 1 family.
Note that in the second statement we are measuring time in terms of the number of
successful type 1 mutations, which occur roughly every 1/Nu1s units of time. This
somewhat awkward definition of J is needed for the following to be accurate.

lastth Theorem 5. If u1 ≤ u2, Γ →∞, and (A3) holds then

P (σ2 > t/Nu1s) ≈ exp

(
− γd(t/K)d+2

(d+ 1)(d+ 2)
− ρ2αd(t/J)

)
This informal statement is shorthand for three precise results. If J/K → ∞ then
unsuccessful type 1’s can be ignored and

P (σ2 > Kt/Nu1s) → exp

(
− γdt

d+2

(d+ 1)(d+ 2)

)
If J/K → 0 then the successful type 2 is always born in an unsuccessful type 1 family
and

P (σ2 > Jt/Nu1s) → exp (−ρ2αdt)

If K/(J +K) → θ ∈ (0, 1) then both successful and unsuccessful type 1’s contribute
to the limit

P (σ2 > (K + J)t/Nu1s) → exp

(
− γd(t/θ)

d+2

(d+ 1)(d+ 2)
− ρ2αd(t/(1− θ))

)
To prepare for their proofs note that if u1 = u2 then

K = N (d+1)/(d+2)

(
us

cd

)d/(d+2)

= K(d+1)/(d+2)
pos (14) KvsKpos

by (7). Thus if u1 ≤ u2 and K is large (as it is when Γ →∞) then K � Kpos so σ2

occurs before the 1’s reach positive density.

4 Numerical Examples
sec:numex

To help understand the conditions that specify the various regimes of behavior in our
theorems, we will consider some concrete examples. We consider the case d = 2, which
is relevant to carcinomas, i.e., cancers of the epithelial tissue which form linings of the
body. Most cancers are of epithelial origin, including breast, colon, lung, esophageal,
renal, and many others.
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4.1 Phase diagram for s = 0.01 in d = 2

In a study of glioblastoma and colorectal cancer, Bozic et al (2010) concluded that
the average selective advantage of somatic mutations was surprisingly small, 0.004.
Here we adopt a slightly larger value, 0.01. In this subsection we will set N = 10c,
u1 = 10−a, and u2 = 10−b, where a, b, and c are all positive constants, and determine
the regions in which our theorems can be applied. We will take b = a − 2, since
in many cancers (e.g. breast, colorectal) an early mutational hit damages DNA
replication machinery within the cell and leads to elevated mutation rates.

To identify the order of magnitude of these constants we note that cells have a
diameter of roughly 10−5m so there are 106 in 1 cm2, and 108 in (10 cm)2. The
point mutation rate has been estimated, see Jones et al. (2008), to be 5× 10−10 per
nucleotide per cell division. To compute the ui this number needs to be multiplied by
the number of nulceotides that when mutated lead to cancer. In some cases there are
a small number of nonsynonymous mutations that achieve the desired effect, while in
other cases there may be hundreds of possible mutations that knock out the gene and
there may be a number of genes which can be hit. Bozic et al (2008) state that in
their applications the number of possible mutations is 34,000. Thus mutation rates
can range from 10−9 to 10−5, or can be larger after the mechanisms that govern DNA
replication are damaged.

To begin the study of our special case s = 0.01 and d = 2, we note that

c2 = (s/ ln(1/s))1/2 = 0.0466 log10(c2) = −1.322

`(s) = ln(1/s)/s = 460.5 log10(`(s)) = 2.663

Here log10 is the base 10 logarithm, and just in this one instance we have written ln
rather than log for the natural logarithm.

In order to get started we need to check the technical conditions (A0) (1/u1) �
`(s)(d+2)/2. To identify the boundaries between the various regimes we will replace �
by <. If we do this we need

a > 5.362

Condition (A1) says (cd/u2s)
d/(d+1) � N . If we again replace � by <, then the

condition is (
0.0466 · 10b+2

)2/3
< 10c,

which after taking logarithms and simplifying can be written as

b− 3c/2 < −0.67. (15) aneqb_A1

We skip over (A2), which is Γ → 0, because we will consider Γ later. Condition
(A3), which is u2 � 1/`(s) is now simply

b > 2.66. (16) aneqb_A3
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Figure 1: Parameter region delineated by assumptions (A1) and (A3), for s = 0.01,
d = 2, and b = a− 2 (upper right region between the dashed lines). The vertical line
is (A3). The color at each point represents the value of log Γ. The dot represents the
parameters used in the example for colorectal cancer. newplot_ex

Figure 1 shows the parameter regime in which (A1) and (A3) apply (upper right
region between the two dashed lines), when s = 0.01 and d = 2. To reduce to two
dimensions we have assumed b = a− 2.

To determine the specific regimes in which Theorems 3, 4, and 5 hold, we must
consider whether the parameter Γ tends to zero, infinity, or a positive real number.
When d = 2 and s = 0.01

Γ = (Nu1s)
d+1(cddu2s)

−1

log(Γ) = 3(c− a− 2)− (−2.644− b− 2) = 3(c− a) + b− 1.356 (17) gammaeq

Figure 1 shows the value of log Γ at each point in the plane when b = a − 2. In
contemplating the size of Γ it is important to remember that we are interested in
K = Γ1/(d+2) which is approximately the number of successful mutations before σ2

and its relationship to J = 1/u2`(s) which in our example has log J = b− 2.65.

4.2 Application to colorectal cancer initiation

For a concrete example, we consider the process of cancer initiation in the sigmoid
colon. The cells of the colon are subdivided into partially-isolated subpopulations
of proliferative units, called colonic crypts. Each crypt is thought to contain ap-
proximately 4-20 stem cells which give rise to approximately 2000 differentiated cells
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(Nicolas et al, 2007; Bach et al, 2000). These stem cells divide and may accumulate
genetic mutations which spread until most stem cells within the crypt carry that
mutation. Clonal expansion among crypts is possible via crypt bifurcation: a process
during which a single crypt subdivides into two separate crypts via partitioning and
regrowth of the stem and differentiated cell populations. If the stem cells within a
crypt carry a mutation which is advantageous to cellular fitness, the rate of crypt
bifurcation may be elevated, leading to clonal expansion of the number of crypts
carrying the mutation.

Here, following the example of Martens et al (2011), we take each colonic crypt to
be a single ‘agent’ in the model and consider a ‘lattice’ of crypts in the tissue of the
sigmoid colon. The process of crypt bifurcation can then be thought of as analogous
to the dynamics of the biased voter model. Specifically, when a crypt bifurcates we
assume that it replaces a neighboring crypt. We consider the domain of the process
to be the inner surface of the colon, which is a cylindrical structure; thus d = 2.
Using the estimate of approximately 16 crypts per square mm (Cheng et al, 1984),
we obtain an estimate of N = 945000 crypts in the entire sigmoid colon.

It has been observed that the incidence of colon cancer is higher in people who
suffer from diseases of the colon such as ulcerative colitis and Crohn’s disease. In such
patients, the mutation rate u1 per crypt cycle per crypt division time (in patients
with predisposing conditions) is approximated to be 10−5 (thus a = 5), using baseline
estimates of 10−10 for the mutation probability in a single nucleotide per cell division,
∼ 10 target genes important in colorectal cancer initiation, and approximately 3 days
between stem cell divisions in a crypt ((Totarfumo et al, 1987; see Martens et al,
2011 for a detailed description of this calculation). Here, the condition (A0) is not
quite satisfied; however since we believe this condition can be improved, we will still
proceed to see what these theorems can tell us.

It is widely accepted that a sequence of multiple mutations is necessary for the
initiation of colon cancer. For example, a single defective allele of the gene Adenoma-
tous polyposis coli (APC) can result in a condition in which the intestinal epithelium
is studded with benign polyps. However, additional mutations (e.g. in genes p53 or
kRAS) are required to initiate cancer. Furthermore, it has been suggested that inac-
tivation of one APC allele may induce chromosomal aberrations (Ceol et al, 2007));
therefore we consider the case where b = a− 2 = 3.

In the following we are interested in understanding the dynamics of mutation
accumulation in the sigmoid colon for patients with conditions such as ulcerative
colitis and Crohn’s disease. These conditions may often affect only a small portion
of the colon; thus we consider a range of N = 10c for c = 4, 5, 6. Using Figure
1 we observe that for a = 5, b = 3, as the size of the affected part of the colon
increases, the system dynamics change from the regime of Theorem 3 to the regime
of Theorem 4 and Theorem 5. This provides us with some insight into how the
spatial process of initiation may vary between individuals with differing severity of
predisposing conditions, since predisposing conditions such as ulcerative colitis and
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Crohn’s disease cause inflammation and higher baseline mutation rates, as well as
differing sizes of affected tissue regions.

We next consider the time for a crypt to acquire two hits once ulcerative colitis
has already begun to affect crypt dynamics, and compare the model predictions to
available epidemiological data. Although the extent of the affected area of the colon
varies between patients at the time of diagnosis, a majority of patients are diagnosed
with distal ulcerative colitis which is confined to the left side (approximately a third)
of the colon. Thus we estimate of the number of crypts in the affected area as
N ≈ 945000/3. Recall that ρ2s is the probability of success of a type-2 mutation
landing at a random location on the space-time set occupied by an unsuccessful type-1
family; although its exact value is unknown, ρ2 ∈ [1, 2]. For these parameters Theorem
5 holds, and we have J = 2.17, K = 6.1. Therefore the expression in Theorem 5 can be
simplified by ignoring the term within the exponential involving K−4. Using Theorem
5, we next calculate the probability of acquiring a successful type-2 cell within 10 years
of developing ulcerative colitis. In colons affected by ulcerative colitis, it has been
estimated that a crypt cycle takes approximately 100 days (Cheng et. al 1986). Since
10 years corresponds to approximately 36.5 crypt cycles, we find that P (σ2 < 36.5) ≈
0.041 to 0.081, where the variation comes from the uncerstainty in ρ2. It has been
suggested that colorectal cancer develops as a result of two such rate-limiting genetic
hits, followed by one additional high-frequency event (Luebeck and Moogavkar 2002).
Thus we may compare this estimate to epidemiological observations of the progression
rate to colorectal cancer within 10 years after developing ulcerative colitis, which is
≈ 2% (Eaden et. al. 2001). Taking into account variability in extent of affected area
at diagnosis as well as potential delays in the high frequency event and diagnosis time,
we find the model prediction to be roughly consistent with available epidemiological
observations. The model can then be utilized to provide further insights into risk
stratification of the patient population using various factors such as extent of the
affected area in colitis diagnoses, lifestyle and diet choices which may elevate mutation
rates.

In followup works, we will utilize this model to study spatial measures of genetic
diversity in premalignant tissue, as well as the phenomenon of field cancerization. Ge-
netic diversity is an important marker of prognosis in premalignant conditions as well
as tumor progression (Merlo et. al. 2006). For example, heterogeneity measures in
a premalignant condition called Barretts esophagus were shown to strongly correlate
with the likelihood of progression to esophageal cancer (Maley et. al., 2006). How-
ever, it is often difficult to accurately measure the amount of genetic heterogeneity in
sequencing studies, and there is a need for improved spatial sampling guidelines. Field
cancerization refers to the clinical observation that there is an increased likelihood
for local recurrences in the same region of tissue after a primary tumor is surgically
removed. This increased likelihood is suspected to be due to the existence of prema-
lignant lesions at the time of diagnosis; however, in practice these lesions are usually
undetectable and appear histologically normal. Thus, mathematical predictions of
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spatial heterogeneity based upon fundamental tissue and cancer parameters will in-
form spatial sampling guidelines. In addition, these models can provide prognostic
insights about the extent of premalignant lesions, probability of local recurrences,
and the degree to which recurrent tumors are genetically related to primary tumors.
These extensions will require the consideration of general k-step mutational pathways,
where k varies depending on cancer type.

5 Construction and duality
sec:grep

To make the paper self-contained and to recall some facts that may not be widely
known, we will now construct the two type biased voter model and explain its duality
with coalescing branching random walk.

To construct the biased voter model, we follow the approach in Griffeath (1978).
Associated with each order pair (x, y) of nearest neighbors, we have two Poisson
processes, T x,y,v

n , n ≥ 1 and T x,y,b
n , n ≥ 1 with rates 1/2d and (λ − 1)/2d. Here,

all of the Poisson processes are independent, and together constitute the graphical
representation. At each time t = T x,y,v we draw an arrow (y, t) → (x, t) and put a δ
at (x, t), while at each time t = T x,y,b we draw an arrow (y, t) → (x, t). We think of
arrows as little tubes that allow fluid to flow in the direction indicated, while the δ’s
are dams that stop the passage of the fluid. The δ’s occur just before the arrows so
they don’t block the fluid that flows through them.

Given an initial set A of sites that are occupied by 1’s, the set of sites that are
occupied by 1’s at time t is the set ξA

t of points that are wet if fluid is injected at
points of A at time 0. By checking cases, one can see that the effect of an arrow-δ
from y to x is as follows:

before after
x y x y
0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 1

The first case should be clear. In the second the arrow spreads the fluid from y to x.
In the third the δ at x stops the fluid, but there is nothing from y to replace it, while
in the fourth case there is. Thus the arrow-δ produces a voter model step: x imitates
y.

If we remove the δ, then only the third line changes and the overall result is a
birth from y to x, with the two particles coalescing to one if x is already occupied:
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before after
x y x y
0 0 0 0
0 1 1 1
1 0 1 0
1 1 1 1

The graphical representation has the useful property that it constructs the biased
voter model for all initial conditions on the same probability space. As Harris (1976)
noted this implies that the constructed processes are additive:

ξA∪B
t = ξA

t ∪ ξB
t . (18) additive

since a space-time point can be reached from A∪B at time 0 if and only if it can be
reached from A or from B. A consequence of additivity is that A→ ξA

t is increasing,
a property that is called “attractive.”

An important reason for constructing a process from a graphical representation is
that it allows us to construct a dual process. Let ζx,t

r be the set of points at time t−r
that can be reached by a path starting from x at time t that goes down the graphical
representation and crosses the arrows in the direction OPPOSITE their orientation.
If we recall that the δ’s occur just before the arrows on the way up then we see that
the effect of an arrow-δ from y to x on the dual process is

before after
x y x y
0 0 0 0
0 1 0 1
1 0 0 1
1 1 0 1

In words this is a coalescing random walk. If there is a particle at x (corresponding
to a 1) it jumps to y. If there is also a particle at y the two coalesce to 1. It is easy to
see that an arrow without a δ has the same effect in the dual as it did in the forward
process except that now the birth is from x to y.

Given a set of sites B, let ζB,t
s = ∪x∈Bζ

x,s
s . It is immediate from the definitions

that
{ξA

t ∩B 6= ∅} = {ζB,t
t ∩ A 6= ∅}

i.e., the two events are equal. To get rid of the superscript t from the dual process,
we note that if t < t′ then the distribution of ζB,t′

r for r ≤ t is the same as ζB,t
r for

r ≤ t. Invoking Kolmogorov’s extension theorem there is process ζB
r defined for all

time r ≥ 0 that has the same distribution as ζB,t
r for r ≤ t. This process satisfies

P (ξA
t ∩B 6= ∅) = P (ζB

t ∩ A 6= ∅)
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In what follows, we will be interested in the biased voter model with mutation
0 → 1 at rate u1. Mutation can be incorporated into the graphical representation by
adding independent Poisson processes T x,µ

n , n ≥ 1 with rate u1. If we let ξ̂A
t be the

biased voter model with mutation starting with A occupied at time t, and suppose
that there are mutations at xi at times t1 < t2 < . . . tk < t then

ξ̂A
t = ξA

t ∪ ξ
x1,t1
t . . . ∪ ξxk,tk

t

where ξxi,ti
t is the biased voter model without mutation starting with xi occupied at

time ti.
In our proofs, it will be useful to be able to quantify the notion that two processes,

ξA
t and ξB

t or ξx1,t1
t and ξx2,t2

t are independent when they don’t hit each other. To do
this we use a coupling due to David Griffeath (1978). We define the first process on a
graphical representation, and the second on an independent graphical representation
with the caveat that events in the second process that involve an edge (x, y) where
x or y is occupied in the first process must use the first graphical representation, so
that the pair of processes has the same joint distribution as if they were both defined
on the same graphical representation.

6 Results for the biased voter model
sec:bvm

6.1 Upper bounds

Our goal is to bound the size of type 1 families that later die out. The first step is to
determine the effect on the process of conditioning it to die out. In the proofs in this
section we will sometimes suppose in addition to λ > 1 that λ ≤ 2 in order to get rid
of λ’s from the formulas.

ctodie Lemma 6.1. Let ξ0
t is the set of 1’s in a supercritical biased voter model with λ = 1+s

on Zd starting from ξ0
0 = {0}. Let T0 be the time at which the process dies out. Let

ξ̄0
t be the biased voter model with ξ̄0

0 = {0} and the roles of 1 and 0 interchanged, i.e.,
1’s give birth at rate 1, and 0’s give birth at rate λ. Then

({|ξ0
t |, t ≤ T0} T0 <∞) =d {|ξ̄0

t |, t ≤ T0}

Proof. If ξ0
t = A with |A| = k and |∂A| = ` then |ξ0

t | grows to size k + 1 at rate
λ`, and shrinks to size k − 1 at rate `, so the transition probability of the embedded
discrete time chain is

p(k, k + 1) =
λ

1 + λ
p(k, k − 1) =

1

1 + λ
(19) BVtp

If we let ϕ(x) = λ−x then it is easy to check that

ϕ(k) = p(k, k + 1)ϕ(k + 1) + p(k, k − 1)ϕ(k − 1)
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hence if a < x < b then

Px(Ta < Tb) =
ϕ(b)− ϕ(x)

ϕ(b)− ϕ(a)
Px(Tb < Ta) =

ϕ(x)− ϕ(a)

ϕ(b)− ϕ(a)
(20) asymm

Let a = 0, x = 1, and b→∞ in the first formula

Pk(T0 <∞) = λ−k. (21) hit0

If we condition a random walk with positive drift to hit 0 then the conditioned
process has transition probability

p̄(k, k + 1) =
p(k, k + 1)ϕ(k + 1)

ϕ(k)
=

1

1 + λ
p̄(k, k − 1) =

λ

1 + λ
(22) CondTP

In words, the result is a random walk with the probabilities of up and down inter-
changed. Conditioning ξt to hit 0 does not change the exponential holding times, and
desired result follows.

The next three results are numerical upper bounds. As in part I these are based
on the fact that when k is large, the size of the boundary in the biased voter model

∂(k) ∼

{
2dβdk d ≥ 3

4β2k/ log k d = 2.
(23) Bdrysize

When s = 0 this follows from (I1) on page 202 of Cox, Durrett, and Perkins (2002).
Also see the discussion of this point in Section 2 of Part I.

To extend this to the subcritical biased voter model we will use Girsanov’s formula:

LetP0 be the law of the voter model in which a 1 next to a 0 forces it to flip at rate
(1 + s/2)/2d and vice versa a 0 next to a 1 forces it to flip at rate (1 + s/2)/2d.

Let Ps be the law of a subcritical voter model in which a 1 next to a 0 forces it to
flip at rate 1/2d and vice versa a 0 next to a 1 forces it to flip at rate (1 + s)/2d.

The speed up in P0 is a harmless linear transformtion of the time scale, but it makes
the rates at which things happen = (2+s)/2d on each discordant edge. Thus when we
look at the Radon-Nikodym derivative it will only depend on the embedded chain.

dPs

dP0

=

(
2

2 + s

)n+
(

2 + 2s

2 + s

)n−

(24) RN1

where n+ is the number of up jumps and n− is the number of down jumps. Rewriting
the RN derivative we have

dPs

dP0

=

(
2

2 + s

)n+−n− ( 4 + 4s

4 + 4s+ s2

)n−

≤ 1 (25) RN2

so events that have small probability under P0 (e.g., the boundary size deviating from
the stated formula) also have small probability under Ps.

Let q(k) = (1 + λ)∂(k) be the rate at which jumps occur when the subcritical
biased voter model has k points.
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ubdead Lemma 6.2. Let ξ̄t be the subcritical biased voter model defined in Lemma 6.1.

g(k) ≡ Ek

(∫ T0

0

|ξ̄t| dt
)
≤ Ck`(s)

where `(s) was defined in (2)

Proof. Due to the additivity property of the biased voter model (18) it suffices to prove
the result when k = 1. Let S̄n be the simple random walk that jumps according to
p̄ defined in (22) and note that |ξ̄t| is a continuous time version of S̄n that jumps
approximately at rate q(k) when in state k and makes jumps according to p̄. Let
T+

k = min{n ≥ 1 : Sn = k}. By considering the expected number of visits to k and
the amount of time spent there on each one we have

E1

(∫ T0

0

|ξ̄t| dt
)

=
∞∑

k=1

P̄1(Tk < T0)

P̄k(T
+
k = ∞)

· k

q(k)
(26) deadmh

If P̄ is the law of the conditioned chain with transition probability (22), and P is the
law of the process with transition probability chain following (19) then by symmetry
and (20),

P̄1(Tk < T0) = Pk−1(T0 < Tk) =
λ−k − λ−(k−1)

λ−k − 1
=

λ− 1

λk − 1
. (27) P1Tk

Using symmetry and (20) again,

P̄k(T
+
k = ∞) =

λ

1 + λ
P̄k−1(T0 < Tk) =

λ

1 + λ
P1(Tk < T0)

=
λ

1 + λ
· λ

−1 − 1

λ−k − 1
=

λ− 1

(1 + λ)(1− λ−k)
, (28) PkTk+

so we have

P̄1(Tk < T0)

P̄k(T
+
k = ∞)

=

(
λ− 1

λk − 1

)(
1 + λ

λ− 1

)
λ−k(λk − 1) = λ−k(1 + λ)

and (26) becomes

E

(∫ T0

0

|ξ̄t| dt
)

= (1 + λ)
∞∑

k=1

λ−k · k

q(k)
. (29) deadmh2

In one dimension q(k) = 2(1 + λ), so doing some algebra and using the formula
for the mean of the geometric distribution, two times the quantity in (29) is

∞∑
k=1

kλ−k =
1/λ

(1− 1/λ)

∞∑
k=1

kλ−(k−1)(1− 1/λ)

=
1/λ

(1− 1/λ)2
≤ Cs−2. (30) a3bd1
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Since q(k) ∼ 2d(1 + λ)βdk, in d ≥ 3, so the quantity in (29) is

1

2dβd

∞∑
k=1

λ−k =
1

2dβd

· 1/λ

1− 1/λ
≤ Cs−1. (31) a3bd3

In d = 2 we have q(k) ∼ 4(1 + λ)β2k/ log k so the quantity in (29) is

1

4β2

∞∑
k=1

λ−k log k ≤ Cs−1 log(1/s). (32) a3bd2

To see the last inequality note that for k ≤ 1/s2, log k ≤ 2 log(1/s) and as s→ 0 we
can ignore the contribution from k > 1/s2.

In order to conclude that the limit of the expected values is the expected value of
the limit we need a bound for the second moment. We begin with the case k = 1.

mom2d Lemma 6.3. Let ξ̄0
t be the subcritical biased voter model defined in Lemma 6.1.

E1

(∫ T0

0

|ξ̄0
t | dt

)2

≤ C`(s)2/s.

Proof. Using the Markov property

Ek

(∫ T0

0

|ξ̄0
t | dt

)2

= 2Ek

∫ T0

0

dr |ξ̄0
r |
∫ T0

r

|ξ̄0
t | dt (33) m2occ

= 2Ek

∫ T0

0

dr |ξ̄0
r |g(|ξ̄0

r |) ≤ 2C`(s)Ek

∫ T0

0

dr |ξ̄0
r |2

by Lemma 6.2. Thus by the reasoning that lead to (29)

E1

(∫ T0

0

|ξ̄0
t | dt

)2

≤ 2C`(s) · (1 + λ)
∞∑

k=1

λ−k · k2

q(k)
. (34) deadmh3

The remainder of the proof is similar to the previous argument

d = 1 q(k) = 2(1 + λ)
1

2

∞∑
k=1

k2λ−k ≤ Cs−3

d ≥ 3 q(k) ∼ 2d(1 + λ)βdk
1

2dβd

∞∑
k=1

kλ−k ≤ Cs−2

d = 2 q(k) ∼ 4(1 + λ)β2
k

log k

1

4β2

∞∑
k=1

λ−kk log k ≤ Cs−2 log(1/s).

Recalling the definition of `(s) in (2), we see that the right-hand side is always C`(s)/s
and we have proved the desired result.
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ub2dead Lemma 6.4. Let ξ̄t be the subcritical biased voter model defined in Lemma 6.1.

Ej

(∫ T0

0

|ξ̄t| dt
)2

≤ C

s
· j3

q(j)
+ C(λj − 1)

(
`(s)

s

)2

.

Note that when j = a/s and a ≤ 1 both terms on the right are bounded by Ca(`(s)/s)2.

Proof. Combining (33) with (26) we have

Ej

(∫ T0

0

|ξ̄t| dt
)2

≤ 2C`(s)
∞∑

k=1

P̄j(Tk < T0)

P̄k(T
+
k = ∞)

· k

q(k)
. (35) deadm2

When j ≥ k, P̄j(Tk < T0) = 1 while for j ≤ k, (27) becomes

P̄j(Tk < T0) = Pk−j(T0 < Tk) =
λ−k − λ−(k−j)

λ−k − 1
=
λj − 1

λk − 1
. (36) PjTk

The formula in (28) has not changed

P̄k(T
+
k = ∞) =

λ− 1

(1 + λ)(1− λ−k)

so we have

h(k) ≡ P̄j(Tk < T0)

P̄k(T
+
k = ∞)

=


(1 + λ)

1− λ−k

λ− 1
k ≤ j

(1 + λ)(λj − 1)
λ−k

λ− 1
k ≥ j.

To bound the first part of the sum, j ≤ k in (35), we begin by noting that λ− 1 = s
and (1+λ)(1−λ−k) ≤ 3 so h(k) ≤ 3/s. At this point there are three cases q(j) = O(1),
q(j) = O(j/ log(j)), and q(j) = O(j) for d = 1, 2 and d ≥ 3. However in each case
k2/q(k) is increasing so

j∑
k=1

h(k)
k2

q(k)
≤ C

s
· j · j2

q(j)
.

This is the first term on the right-hand side of the lemma. For the second part of the
sum, we use

∞∑
k=j

h(k)
k2

q(k)
≤ C

λj

s

∞∑
k=j

λ−k k2

q(k)

so using the computation for (34) in the previous lemma gives the second term.
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6.2 Limit theorems

Our first step is to generalize Lemma 1 from part I. Let Tk be the first time |ξ0
t | = k

and let

a(n) =


n2 d = 1,

n log n d = 2,

n d ≥ 3.

(This time there is no 2 in the definition for d = 2.)

dead1lb Lemma 6.5. Let ε > 0 and let ξn
t be the biased voter model with λ = 1−1/n. Writing

[x] for the integer part we have(
|ξn

T[nε]+a(n)t|
n

∣∣∣∣∣T[nε] <∞

)
⇒ (Yt|Y0 = ε), (37) procconv

where ⇒ indicates convergence in distribution of the stochastic processes as n→∞.

dYt =

{
−2 dt+ 2 dBt d = 1,

−2dβdYt dt+
√

4dβdYt dWt d ≥ 2.

In d = 1 the process is stopped when it hits 0. In d ≥ 2, 0 is an absorbing boundary
so we don’t have to stop the process.

Proof. In d = 1 the result is trivial. The size of the set increases by 1 at rate 2(1−1/n)
and decreases by 1 at rate 2, so if ξn(n2t) = k

infinitesimal mean = 2n2 · 1

n
· −1

n
= −2

infinitesimal variance = 2n2 · 1

n2
·
(

2− 1

n

)
→ 4.

In this and the next two calculations the first factor is the time scaling, the second
comes from the fact that jumps change the scaled process by 1/n. The third term is
the difference of the rates in the first case and the sum in the second.

The one-dimensional case is easy because if we start from a single occupied site
the size of the boundary, i.e., number of 0 − 1 edges is always 2 until the process
dies out. Using the formulas for the boundary size in (23), we see that in d ≥ 3 if
ξn(nt) = k with k/n = x then

infinitesimal mean = n · 1

n
· −2dβdk

n
→ −2dβdx

infinitesimal variance = n · 1

n2
· 2dβdk

n
·
(

2− 1

n

)
→ 4dβdx
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while in d = 2 if ξn(tn log n) = k with k/n = x then

infinitesimal mean = n log n · 1

n
· −4βdk

n log k
· → −4βdx

infinitesimal variance = n log n · 1

n2
· 4βdk

log k
·
(

2− 1

n

)
→ 8βdx.

Having shown the convergence of infinitesimal mean and variance to that of a stochas-
tic differential equation with a well-posed martingale problem, the result follows. See
e.g., Theorem 4.1 on page 354 in Ethier and Kurtz (1986).

In d ≥ 2, Lemma 6.5 can be extended to a measure valued limit. We begin
by describing the limit. A measure valued process Xt is a super-Brownian motion
with branching rate γ, diffusion coefficient σ2 and drift θ if it is a solution of the
following martingale problem. Let ∆ denote the Laplacian, and use µ(f) to denote
the integral of the function f with respect to the measure µ. For all φ ∈ C∞

K (Rd)
(smooth functions with compact support)

Zt(φ) = Xt(φ)−X0(φ)−
∫ t

0

Xs(σ
2∆φ/2 + θφ) ds

is a martingale with variance process

〈Z(φ)〉t =

∫ t

0

Xs(γφ
2) ds.

mvlim Lemma 6.6. Suppose d ≥ 2 and let Xn
t be the measure that assigns mass 1/n to each

point a(n)−1/2ξ0
Tnε+a(n)t. If there exists a subsequence n(k) such that X

n(k)
0 converges

weakly to a limit, then (Xn(k)|Tnε <∞) converges weakly to a super-Brownian motion
with branching rate 2βd, diffusion coefficient 1, and drift −βd.

We mention this result because we think it is interesting. Unfortunately it does
not give us what we need to prove Lemma 6.7, so we will not use it in what follows.

Why is this true? For d ≥ 3 this is a special case of Theorem 1.3 in Cox and Perkins
(2005) since the biased voter model is a special case of the voter model perturbation
they consider. The situation is not as clean in the more difficult case of d = 2. To
quote Ed Perkins, it is an easier argument than the Lotka-Volterra models considered
in Theorem 1.2 of Cox and Perkins (2008).

ubst Lemma 6.7. Let δ > 0. If M is large then the probability an unsuccessful type 1
family will last for time ≥ M`(s) or will escape from a cube of radius M`(s)1/2 is
≤ δs.
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In d = 1 the biased voter model is an interval when it is not empty so the desired
result follows from Lemma 6.5. To see this recall that in that lemma s = 1/n and
that `(1/n) = a(n).

To prove this in d ≥ 2 we will combine the first half of Theorem 4 from Bramson,
Cox, and LeGall (2001) with the trivial fact that the voter model dominates the
subcritical biased voter model. Their result concerns the ordinary voter model with
kernel p(x, y). That is, voter at x changes opinions at rate 1, and imitates the one at y
with probability p(x, y) where p(x, y) = p(0, y− x) is irreducible and symmetric with
p(0, 0) = 0 and

∑
x p(0, x)xixj = σ2δ(i, j). Here δ(i, j) = 1 if i = j and 0 otherwise.

To get a limit, we scale space so that the voters live on Zd/
√
n, run time at rate n

and denote the resulting voter model by ξn
t . Let mn = n/ log n in d = 2 and n in

d ≥ 3, and define a measure valued process by

Xn
t =

1

mn

∑
y∈ξn

t

δy.

We write Xn,0
t when the initial state is ξn

0 = {0}. Let D be the space of functions
from [0,∞) into the space of finite measures on Rd that are continuous in the weak
topology.

BCL Theorem 6. Assume d ≥ 2 and let N0 be the excursion measure of super-Brownian
motion on Rd with branching rate 2βd and diffusion coefficient σ2.
Let α > 0 and let F be a bounded continuous function on D with F (ω) = 0 if ωt = 0
for t ≥ α. Then

lim
n→∞

mnEF (Xn,0
· ) = N0(F ).

The excursion measure is defined by starting the super process from εδ0, multiply-
ing the probability measure by 1/ε and letting ε→ 0. See Section 3 of Bramson, Cox,
and LeGall (2001) and references therein for more details. This is the super-process
analogue of starting Brownian motion at ε, killing it when it hits 0, considering the
limit of (1/ε) times the probability measure, which defines Ito’s excursion measure.
See Chapter XII of Revuz and Yor (1991) for a thorough treatment. In most cases
the killed Brownian motion B̄t dies out quickly but when ε < 1

(1/ε)Pε(max
t
B̄t > 1) = 1.

Theorem 6 was used in Merle (2008) to study the likelihood of the voter model
wandering far away from its starting point. We will use a result of his to establish
Lemma 6.7.

Proof of Lemma 6.7. We will first establish the result for the voter model. In partic-
ular, define T0 to be the extinction time of the voter model started from a single site
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on Zd, and p(t) = P (T0 > t). Recall from Bramson and Griffeath (1980a) the large t
asymptotics

p(t) ∼

{
1

βdt
, d ≥ 3

1
π

log t
t
, d = 2.

(38) eq:ext_time

Based on these asymptotics it is easy to verify that

p (M`(s)) ∼ s/M,

which establishes the claim with regards to survival time. In order to establish the
claim with regard to escape from the large box we use Claim 1 of Merle 2008 (p828):

Claim 1. There exists a positive K0 and K2 such that for any α > 1 and any A ≥ 1

P

(
sup
t≤2α

sup
x∈ξ0

t

|x| > A
√
α

)
≤ K0p(α) exp(−K2A)

where ξ0
t is a voter model started with a single seed at the origin.

Now consider

P

(
sup
t>0

sup
x∈ξ0

t

|x| > M
√
`(s)

)
≤ P

(
sup

t≤2
√

M`(s)

sup
x∈ξ0

t

|x| > M
√
`(s)

)
+ p

(
2
√
M`(s)

)
≤ p

(
2
√
M`(s)

)(
K0e

−K2

√
M + 1

)
.

The result then follows for the subcritical biased voter model by comparison.

7 Proof of Theorem 2

In this section we will show that if σ1 is the birth time of the first successful type
1 then P (σ1 > t/Nu1s) → e−t. To do this, we consider the space-time set Gr of
(x, q) ∈ Zd× [0, r] with ||x||∞ ≤ L so that the biased voter model (constructed on the
graphical representation described in Section 5) started from x at time q survives in
the sense that it reaches size Cs/s where Cs →∞ as s→ 0. As explained in Section
2.2, the success probability is ∼ s, as s→ 0.

Let R = t/Nu1s and recall N = Ld. Let |GR| =
∫ R

0
|{x : (x, q) ∈ GR}| dq. Our

goal is to show that
|GR|/NRs→ 1 in probability.

Since mutations to type 1 occur at rate u1 and one that lands on GR produces a
success, the desired result will follow.

To approximate GR, we will consider GM
R the set of points (x, q) with q ≤ R so

that the biased voter model escapes from the space-time set

(x, q) + ([−M`(s)1/2,M`(s)1/2]d × [0,M`(s)]),
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where `(s) was defined in (2). Let δ > 0. It follows from Lemma 6.7 that if M is
large enough then

P ((x, q) ∈ GM
R −GR) ≤ δs. (39) GMvsG

Let pM = P ((x, q) ∈ GM
R ) and note that |pM − s| < δs.

To get bounds on the size of |GM
R |, we note that if ‖x − x′‖∞ > 2M`(s)1/2 or

|q − q′| > M`(s) then the events (x, q) ∈ GM
R and (x′, q′) ∈ GM

R are independent.
From this it follows that

var (|GM
R |) =

∑
x:||x||∞≤L

∑
x′:||x′||∞≤L

∫ R

0

dq

∫ R

0

dq′ cov (1(x,q)∈GM
r
, 1(x′,q′)∈GM

r
)

≤ NR · (4M`(s)1/2)d · 2M`(s) · pM = cMd+1 ·NRpM · `(s)(d+2)/2.

We need to show that var (|GM
R |) � (E|GM

R |)2 where (E|GM
R |)2 = (NRpM)2. However,

this follows from (A0) (1/u1) � `(s)(d+2)/2, and hence Chebyshev’s inequality gives

|GM
R |/NRpM → 1 in probability.

Using (39) now we see that P (|GM
R − GR| > kδsNR) ≤ 1/k. Since δ is arbitrary, it

follows that |GR|/NRs→ 1 and the proof of Theorem 2 is complete.

Remark 1. For all scenarios under consideration in this paper we have that at the
time σ2 the type 1 cells are at an asymptotically negligible density, this is enforced by
either assumption (A1) or (14). Note that the previous proof of Theorem 2 carries
over identically if we assume that there are previous existing type 1 cells at asymp-
totically negligible density. Therefore, the sequence of scaled successful type 1 arrival
times until σ2 are asymptotically a Poisson process.

8 Proofs of Theorems 3 and 4
sec:pfDM

Proof of Theorem 3. Let At be the event that the first successful type 2 mutant comes
from an unsuccessful type 1 family that arises before time t/Nu1s. The expected
number of such families is t/s. Using Lemma 6.2 to bound the space time volume
covered by an unsuccessful mutation and ignoring the possibility that they overlap,
we have

P (At) ≤ u2s ·
t

s
· C`(s) → 0 (40) notdead1

by (A3).
Under the simplified model, the total space-time volume occupied by descendants

of the successful type 1 mutation up to time σ1 + t is

g(t) =
γdc

d
dt

d+1

d+ 1
,
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assuming that at this time the diameter is < L. Let B(t) be the event that there is
no successful type 2 mutation by time σ1 + t, and let

t2 = (u2sγdc
d
d/(d+ 1))−1/(d+1).

Using the Poisson approximation

P (B(Kt2)) ∼ exp(−u2sg(Kt2)) → exp(−Kd+1).

This shows that if K is large, σ2−σ1 ≤ Kt2 with high probability. Now the diameter
of the ball covered by the descendants of the successful type 1 at time σ1 +Kt2 is

O(cdt2) = O((cd/u2s)
1/(d+1)) � L

by assumption (A1), so our computation of the volume is legitimate. Finally, the
time

t2 = O((cddu2s)
−1/(d+1)) � 1/Nu1s

by assumption (A2). Since σ1 is O(1/Nu1s) this shows that the time difference σ2−σ1

can be ignored. Since mutations to type 1 come at times of a Poisson process with
rate Nu1s this tells us that the possibility of a second successful type 1 mutation can
also be ignored.

Proof of Theorem 4. The only remaining detail is to show that with high probability
the space-time cones generated by different type 1 mutations are dsjoint. This follows
from the proof of Lemma 9.1.

9 Proof of Theorem 5
sec:pfJK

There are three cases corresponding to the three limit theorems stated after the result.
Define Z∗

1(r) to be the number of descendants of successful type i mutations at time
r and define Z0

1(r) to be the number of descendants of unsuccessful type 1 mutations
at time r.

9.1 J � K

In this case the successful type 2 will come from a successful type 1 family. To simplify
notation define

H1(t) =
γd

u2s

td+2

(d+ 1)(d+ 2)
, and T1(t) =

Kt

Nu1s
.

Since successful type 2 mutations occur at rate u2s the desired result follows imme-
diately from
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s2area Lemma 9.1. Under the assumptions of Theorem 5 if J/K →∞ then

1

H1(t)

∫ T1(t)

0

Z0
1(r) dr → 0 and

1

H1(t)

∫ T1(t)

0

Z∗
1(r) dr → 1

in probability as u1, u2 and s go to 0.

Proof. The first thing to show is that the contribution from unsuccessful type 1
mutations is negligible. The expected total number of unsuccessful type 1 mutations
by time T1(t) is approximately tK/s. Therefore by Lemma 6.2 their expected total
space-time contribution is ≤ (tK/s) · C`(s). Recalling that J = 1/u2`(s),

K � 1

u2`(s)
implies

K`(s)

s
� 1

u2s

and the successful type 2 mutation will not come from an unsuccessful type 1.
The next step is to show that we can assume that the volumes covered by distinct

successful type 1 families are disjoint. By the light-cone argument used to derive (6),
the volume AT covered by type 1 families up to time T has

E(AT ) = N

∫ T

0

1− exp(−λt) dt with λt = u1s · γdc
d
dt

d+1/(d+ 1)

while if BT is the volume covered by at least two successful type 1 families

E(BT ) = N

∫ T

0

1− exp(−λt)(1 + λt) dt.

The discussion before (14) implies that σ2 occurs when 1’s have low density, so λT1(t) →
0. Since e−x ≥ 1− x, we always have 1− e−x(1 + x) ≤ x2. In the other direction, if
δ is small and 0 < x < δ, 1− e−x ≥ x/2. Combining our results we see that

E(BT1(t)) ≤ 2λT1(t)E(AT1(t))

so Markov’s inequality implies that overlaps can be ignored.
Recall that Theorem 2 tells us that successful type 1 mutations happen at times

0 < t1 < t2 < . . . of a Poisson process with rate Nu1s. Note that if we condition on
the number M of mutations that have occurred by time Kt/Nu1s then {t1, t2, . . . tM}
has the same distribution as {v1, v2, . . . vM} where the vi are independent random
variables uniform on [0, Kt/Nu1s]. Let Xi be the space-time volume covered by the
type 1 family starting at vi, then

E[Xi|vi] =
γdc

d
d

d+ 1

(
Kt

Nu1s
− v

)d+1

.
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Since vi is uniform,

EXi =
γdc

d
d

(d+ 1)(d+ 2)
·
(

Kt

Nu1s

)d+1

(41) EXi

where γd is the geometric constant defined in (5). The random sum SM = X1 + · · ·+
XM has

ESM = EXiEM (42) meanrsum

var (SM) = EMvarXi + var (M)(EXi)
2 = EMEX2

i (43) varrsum

since M is Poisson and hence has EM = varM . To get an upper bound on EX2
i ,

suppose the mutation occurs at time 0, and replace the cone by a cylinder to get

Xi ≤ γd

(
cd

Kt

Nu1s

)d
Kt

Nu1s
.

Since EM = Kt, using (41) and (43) it follows that

var (SM) ≤ CKt

(
Kt

Nu1s

)2d+2

= C
(ESM)2

Kt
.

Since K → ∞, Chebyshev’s inequality implies SM/ESM → 1 in probability. Using
(41) and (42)

ESM =
γdc

d
d

(d+ 1)(d+ 2)
· (Kt)d+2

(Nu1s)d+1
= H1(t) (44) ESM

where the last equality follows from the definition of K in (13).
The last result gives asymptotics for the volume covered by successful type 1

families, when we have ignored the possibility of further type 2 mutations. Now
unsuccessful type 2 mutations occur at rate u2 and have expected space time volume
`(s). Assumption (A3) implies u2`(s) → 0 so the loss of volume can be ignored.

9.2 J � K

In this case the successful type 2 will come from an unsuccessful type 1 family. Let

H2(t) =
αdt

u2s
, and T2(t) =

tJ

Nu1s
.

As in the previous result it suffices to show

d2area Lemma 9.2. Under the assumptions of Theorem 5 if J/K → 0 then

1

H2(t)

∫ T2(t)

0

Z0
1(r) dr → 1 and

1

H2(t)

∫ T2(t)

0

Z∗
1(r) dr → 0,

in probability as u1, u2 and s→ 0.
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The second part of the result follows easily from Lemma 9.1. To see this note that
Hi(t) = ci(d, t)/u2s, while the earlier calculation, see (44), implies

E

∫ T2(t)

0

Z∗
1(r) dr ∼ (J/K)d+2H1(t) = o(H2(t)).

To prove the first part of this result we need some information about unsucccessful
type 1 families. The probability that a subcritical voter model ξ0

t with λ = 1− s hits
ε/s is using (20)

(1− s)−1 − 1

(1− s)−ε/s
≈ s

eε − 1
(45) reach

Taking ε = 1 in the last result, n = 1/s in (37), and noting a(1/s) = `(s) we see
that type 1 families reach 1/s with probability s, and their total man-hours before
extinction is approximated by

`(s)

s

(∫ T0

0

Ys ds

∣∣∣∣Y0 = 1

)
.

Thus contributions to the mean that come from type 1 families that reach size 1/s
are O(`(s)).

To turn the result for the order of magnitude into a limit theorem we need to
compute the mean of the contribution of a large family. Let Yt be the limit process
defined in Lemma 6.5.

alphad Lemma 9.3.

g(x) ≡ Ex

(∫ T0

0

Yr dr

)
=

{
x2/2 + x d = 1

x/(2dβd) d ≥ 2.

Proof. The infinitesimal generator of Y is

Lf =

{
f ′′(x)− f ′(x) d = 1

2dβdxf
′′(x)− 2dβdxf

′(x) d ≥ 2.

Intuitively, g is the solution of Lg(x) = −x on (0,∞) with g(0) = 0, but care is
needed because (0,∞) is unbounded and we have only one boundary condition. To
be precise, g = limm→∞ gm where Lgm = −x in (0,m) and gm(0) = gm(m) = 0.
The limit exists since for fixed x, m→ gm(x) is increasing. From the limit result we
see that g can be characterized as the minimal nonnegative solution of Lg = −x on
(0,∞) with g(0) = 0, since any other nonnegative solution has h ≥ gm for all m.

In d ≥ 2 the differential equation is

g′′(x)− g′(x) = − 1

2dβd

.
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The solution we want is g(x) = x/βd. To check that this is the minimal solution note
that if h is another solution then δ = g− h satisfies δ′′− δ′ = 0 so δ = c or δ(x) = ex.
For a direct derivation of g(x) = x/βd, note that since 0 is absorbing

Ex

(∫ T0

0

Yr dr

)
=

∫ ∞

0

ExYr dr

=

∫ ∞

0

xe−2dβdr dr = x/(2dβd)

where the second equality follows from (d/dr)ExYr = −2dβdExYr.
In d = 1 we want to solve

g′′(x)− g′(x) = −x

If we guess g(x) = x2/2 + x then g′(x) = x+ 1 and g′′(x) = 1 so we have a solution.
Minimality holds for the same reason as before.

For a direct derivation use Itô’s formula to conclude that

Y 2
t /2− Y 2

0 /2 =

∫ t

0

Yr dYr +
1

2

∫ t

0

d〈Y 〉r

= martingale−
∫ t

0

Yr dr + t

since dYr =
√

2 dBr − dr and 〈Y 〉r = 2r. Taking t = T0, the expected value Ex, and
leaving the reader to check this is legitimate, we have

−x2/2 = −Ex

∫ T0

0

Yr dr + ExT0.

Since ExT0 = x this agrees with the previous computation.

Proof of Lemma 9.2. The number of unsuccessful type 1 mutations by time tJ/Nu1s
is ∼ tJ(1− s)/s. Dropping the 1− s and using (45), the number of “large” families,
i.e., those that reach ε/s before they die out will be ∼ tJ/ε. Using (37) we see that
the expected number of man hours in a type I family after it reaches ε/s is

`(s)

s
Eε

(∫ T0

0

Yr dr

)
.

In Lemma 9.3 we showed the expected value ∼ αdε as ε → 0, where α1 = 1 and
αd = 1/(2dβd) for d ≥ 2. Combining our calculations and recalling that J = 1/`(s)u2

we see that the expected number of man hours up to time tJ/Nu1s in the families of
unsuccessful type 1 mutations after they reach size ε/s is

∼ t

ε
· 1

`(s)u2

· `(s)
s

· αdε =
αdt

u2s
. (46) MHL3
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By repeating the of proof Lemma 2 in I, we see that the contribution from type 1
families before they reach ε/s (including the ones that never do), is of the same order of
magnitude as (46) but with a constant that tends to 0 as ε→ 0, so they can be ignored.
The next step is to argue that if the large families evolved on independent graphical
representations the result would follow from the law of large numbers. Following the
same argument as in the proof of Lemma 9.1, let M denote the number of large (reach
size ε/s) unsuccessful mutations by time tJ/Nu1s, denote the man hours of the ith
family by Xi, and the total man hours by SM = X1 + . . .+XM . The asymptotics of
E[SM ] are given by (46), and using (43) and the result of Lemma 6.4 we see that

V ar(SM) = O

(
t

ε`(s)u2

(
`(s)

s

)2

ε

)
= O

(
t`(s)

u2s2

)
.

This quantity is � (E[SM ])2 since `(s) � 1/u2. Thus the fact that the total space-
time volume is asymptotically 1 + o(1) times the mean follows from Chebyshev’s
inequality.

The last detail is to show that overlaps can be ignored. As discussed at the
beginning of this subsection, most of the space-time volume of type 2 families that
die out comes from families that reach size ε/s and there will be ∼ J/ε of them by
time J/Nu1s. Lemma 6.7 implies that these families occupy a region in space time
that is of size O(`(s)d/2 · `(s)). If we throw J/ε such rectangles into a region of size
N × J/Nu1s then the probability that one of them will hit the first rectangle is of
order

J

ε
· `(s)

(d+2)/2

J/u1s
=
u1s`(s)

(d+2)/2

ε
= ρ

which goes to 0 by (A0).
Let U(t) be the total man hours of large unsuccessful families until time T2(t) and

Ũ(t) be the total man hours, ignoring any loss from overlaps, of large unsuccessful
families until time T2(t).
From the previous calculation, E[U(t)] ≥ (1 − ρ)E[Ũ(t)] = (1 − ρ)αdt/(u2s) where
ρ → 0 as s → 0. Therefore E[U(t)] ∼ E[Ũ(t)]as s → 0. Since U(t) ≤ Ũ(t) due to
additivity, it follows that U(t)/Ũ(t) → 1, and hence U(t) ∼ αdt/(u2s).

9.3 K/(J +K) → θ ∈ (0, 1)

In this case the successful type 2 may come from a successsful or an unsuccessful type
1 family.

T3(t) =
t(J +K)

Nu1s
.

As in the two previous cases the desired result follows immediately from
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mixed_area Lemma 9.4. Under the assumptions of Theorem 5 if K/(J +K) → θ ∈ (0, 1) then

u2s

∫ T3(t)

0

Z∗
1(r) dr → γd(t/θ)

d+2

(d+ 1)(d+ 2)
and u2s

∫ T3(t)

0

Z0
1(r) dr → αdt

1− θ
,

in probability as u1, u2 and s→ 0.

Proof. First from the proofs of Lemmas 9.1 and 9.2 we know that we can ignore
overlaps.

We consider the Z∗
1 term first. Denote the number of successful type 1 clones by

T3(t) by M , and the respective man-hours by X1, . . . , XM . Observe that E[M ] =
t(J +K) and following the proof of Lemma 9.1 we see that conditional on M > 0

E[Xi] =
γdc

d
d

(d+ 1)(d+ 2
.

Therefore

u2sE[M ]E[Xi] =
u2sγdc

d
d

(d+ 1)(d+ 2)

(t(J +K))d+2

(Nu1s)d+1
=

γd

(d+ 1)(d+ 2)

(
t(J +K)

K

)d+2

.

The result for the integral of Z∗
1 then follows by analysis of the variance of X1 + . . .+

XM , which can be found in the proof of Lemma 9.1.
Next consider the Z0

1 term. Denote the number of large (reach size ε/s) unsuccess-
ful families created by T3(t) by M , and note that E[M ] ≈ t(J+K)/ε. Combining this

with the expected man-hours of a large family, `(s)
s
αdε, we see that the total expected

man hours time u2s is given by

tαd(J +K)`(s)u2 = tαd

(
J +K

J

)
.

The result then follows by analysis of the variance of the number of man-hours by
time T3(t) as in the proof of Lemma 9.2.

10 Proof of Theorem 1
speedpf

Convergence to Branching Brownian Motion. The part of the proof is from
Durrett and Zähle (1997). The first step is to recall the duality between the biased
voter model and coalescing random walk. For more details see Bramson and Griffeath
(1981). Let ηt be the coalescing random walk in which:

(i) particles jump at rate 2d to a randomly chosen neighboring site.
(ii) particles give birth at rate s to a particle sent to a randomly chosen neighboring

site.
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(iii) if a particle lands on an occupied site (due to jump or a birth) then the two
coalesce to 1

If we let ηB
t be the system starting with ηB

0 = B and let ξA
t be the biased voter model

starting from ξA
0 = A then the two systems satisfy the duality equation:

P (ξA
t ∩B 6= ∅) = P (ηB

t ∩ A 6= ∅).

In d ≥ 3 random walks are transient, so there is positive probability βd that an
offspring will never coalesce with its parent. Durrett and Zähle (1997) show that if
time is run at rate 1/s, and space is scaled by 1/

√
s, the coalescing random walk

converges to a branching Brownian motion ζt in which

(i) particles perform independent Brownian motions run at rate 2,
(ii) give birth to new particles at rate βd.

In order to achieve weak convergence they have to remove the particles that coa-
lesce with their parents, because these result in temporary increases of the population
that last (on the sped up time scale) for times of order s. To do this we ignore the
new born particles for time τ(s) =

√
s before we assign them mass 1.

In d = 2 random walks are recurrent but the probability an offspring does not
coalesce with its parent for time > t is

∼ π/(log t) (47) nohit

see e.g., Lemma 3.1 of Zähle, Cox and Durrett (2005). To compensate for the fact that
most particles coalesce with their parents, they run time at rate h(s) = (1/s) log(1/s)
and scale space by

√
h(s). Furthermore we ignore the new born particles for time

τ(s) = 1/
√

log(1/s) (on the sped up time scale) before we assign them mass 1. Note
that on the sped-up time scale we create new particles at rate sh(s) = log(1/s), and
we assign mass to only the fraction of those that survive for τ(s) units of time, which
from (47) is ∼ π/ log(1/s). Therefore we assign mass to new particles at O(1) rate.
Based on this the rescaled coalescing random walk converges to a branching Brownian
motion ζt in which

(i) particles perform independent Brownian motions run at rate 2,
(ii) give birth to new particles at rate π.

At this point if one ignores the detail of interchanging two limits Theorem 2 is
obvious. If particles are born at rate r and perform Brownian motions with covariance
matrix σ2I then the mean measure at time t for the process started with a single
particle at 0 at time 0 is

ert 1

(2πt)d/2
e−|x|

2/2σ2t (48) meanmeas

Ignoring the polynomial this is 1 when

|x| = t
√

2σ2r
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In our situation σ2 = 2, rd = βd in d ≥ 3 and r2 = π in d = 2. Taking into account
the space-time scaling the desired result follows.

The lower bound on the speed follows from a block construction. The argument is
almost the same as in Durrett and Zähle (2007), but we have to change some details
to get a sharp result. Let I = [−1, 1]d, let e1 be the first unit vector, let v <

√
4rd,

and for each m let Im = 2m(Lv)e1 + I. Let ζ̂t be a modification of the branching
Brownian motion in which particles are killed when they land outside [−4Lv, 4Lv]d.
Calculations on page 1760 of Durrett and Zähle (2007) show that for any ε > 0, we
can pick L large and then K large enough so that if there are at least K particles in
I0 in ζ̂0 then with probability ≥ 1− ε we have |ζ̂(L2)∩I1| ≥ K and |ζ̂(L2)∩I−1| ≥ K.
Picking L large makes the mean of |ζ̂(L2) ∩ I1| large because of (48). Then picking
K large controls the probability of deviations from the mean.

For integers m ≥ 0 and n with m + n even let θ(m,n) = 1 if |ζ̂(nL2) ∩ Im| ≥ K.
The result in the previous paragraph implies that η dominates 1-dependent oriented
percolation with density 1 − ε. Let rn = sup{m : θ(m,n) = 1}. A result in Durrett
(1984), see (2) on page 1030, implies that if δ > 0 and ε < ε(δ) then on the set where
the oriented percolation does not die out, lim infn→∞ rn/n ≥ 1− δ. This implies that
for the rescaled process the edge speed is ≥ (1− δ)v, which gives the lower bound.

The upper bound is proved by comparing the dual process on its original time
scale with the branching process. Suppose first that d ≥ 3. If we ignore newborn
particles that will coalesce with their parents then we have a branching process in
which particles are born at rate r = βds. We ignore coalescence events other than
mother-daughter so we can project onto the x-axis to get a one-dimensional branching
process Zt at time t. The number of particles to the right of ct at time t is

EZt(ct,∞) = ertP (St ≥ ct) (49) expcheby

where St is a random walks that takes steps that are ±1 with equal probability at
rate 2. The steps have moment generating function

φ(θ) =
eθ + e−θ

2

so the continuous time walk has

ψt(θ) = E exp(θSt) =
∞∑

n=0

e−2t [2t]
n

n!
φ(θ)n = exp (2t(φ(θ)− 1)) .

Let δ > 0 and let

a =

√
2− δ

1− 2δ
2r θa =

a

2
.

As θa → 0, φ(θa)− 1 ∼ −θ2
a/2, so if s is small

φ(θa)− 1 ≥ − θ2
a

2− δ
.
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Using Markov’s inequality,

P (St ≥ (a+ b)t) ≤ e−θa(a+b)tψt(θa)

≤ exp

(
−t
[
θa(a+ b)− 2θ2

a

2− δ

])
= exp

(
−t
[
a(a+ b)

2
− a2

2(2− δ)

])
= exp

(
−t
[
ab

2
− a2(1− δ)

2(2− δ)

])
≤ exp

(
−t
[

1− δ

1− 2δ
r +

ab

2

])
so using (49)

P (Zt((a+ b)t,∞)) > 0) ≤ exp

(
−t
[

δr

1− 2δ
+
ab

2

])
.

To bound the spread of the biased voter model, let Λ = Zd − [−at, at]d, By duality

P (ξ0
t ∩ [−at, at]d 6= ∅) = P (0 ∈ ηΛ

t )

≤
∑
x∈Λ

P (0 ∈ ηx
t ) ≤

∞∑
k=at

cdk
d−1P (Zt(k,∞) > 0) ≤ e−ct.

To prove the result in d = 2 we will compare the dual process with a branching
random walk, where if multiple offspring land on one site they are all retained. Mod-
ifying the construction of Durrett and Zähle (2007) we ignore new born particles for
time 1/s, and add them to the dual only if they have not collided with their parents.
Let Zt denote the number of particles in the modified branching random walk by
time t and let m(t) = E[Zt]. From the result (47) we know that the fraction of newly
created particles that are eventually added to the process is ∼ π/ log(1/s). Thus for
t > 1/s we have

m(t) =
πs

log(1/s)

∫ t−1/s

0

m(t− r)dr.

The previous display implies that

m(t) ≤ exp

(
πs

log(1/s)
t

)
.

If we set r = πs/ log(1/s) and repeat the calculation for the case d ≥ 3, we obtain
the desired result in d = 2.

References

Bach, S. et al (2000). Stem cells: the intestinal stem cell as a paradigm. Carcinogen-
esis Volume 21, Issue 3, 469-476.

37



Beerenwinkel, N. et al. (2007) Genetic progression and the waiting time to cancer.
PLoS Comp. Bio. Volume 3, Issue 11, 2239-2246.

Biggins, J.D. (1978) The asymptotic shape of the branching random walk. Advance
Appl. Prob. 10, 62–84

Bozic, I., et al. (2010) Accumulation of driver and passenger mutations during tumor
progression. Proc. Natl. Acad. Sci. 107, 18545–18550

Bramson, M., Cox T., Le Gall J. (2001) Super-Brownian Limits of Voter Model
Clusters. Ann. Probab. Vol. 29 (3), pp. 1001-1032

Bramson, M., and Griffeath, D. (1980a) Asymptotics for Interacting Particle Systems
on Zd. Z. fur Wahr. 53, 183-196.

Bramson, M., and Griffeath, D. (1980) On the Williams-Bjerknes tumour growth
model. II. Math. Proc. Cambridge Philos. Soc. 88, 339–357.

Bramson, M., and Griffeath, D. (1981) On the Williams-Bjerknes tumour growth
model. I. Ann. Probab. 9, 173–185.

Ceol, C., Pellman, D. and Zon, L. (2007). APC and colon cancer: two hits for one.
Nature Medicine. Volume 13, 1286 - 1287.

Chai, H. and Brown, R. (2009) Field effect in cancer - an update. —it Ann. Clin.
Lab. Sci. 39(4):331337.

Chatterjee, S. and Durrett, R. (2011) Asymptotic Behavior of Aldous’ Gossip Process.
Ann. Appl. Probab. 21, 2447-2482.

Cheng, H. et al. (1986) Crypt production in normal and diseased human colonic
epithelium. The Anatomical Record, 216(1):4448.

Cox, J.T., and Perkins, E.A. (2005) Rescaled Lotka-Volterra models converge to
super-Brownian motion. Ann. Probab. 33, 904–947.

Cox, J.T., and Perkins, E.A. (2008) Renormalization of the two-dimensional Lotka-
Volterra model. Ann. Appl. Probab. 18, 747–812.

Cristini, V., and Lowengrub, J. (2010) Multiscale Modeling of Cancer. Cambridge U.
Press.

Deisboeck, T.S., and Stamatakos, G.S. (2011) Multiscale Cancer Modeling. CRC
Press.

Durrett, R. (1984) Oriented percolation in two dimensions. Ann. Probab. 12, 999-
1040.

Durrett, R. (1995) Ten Lectures on Particle Systems. Pages 97-201 in St. Flour
Lecture Notes. Lecture Notes in Math 1608. (1995). Springer-Verlag, New York.

38



Durrett, R., Foo, J., Leder, K., Mayberry, J., and Michor, F. (2011a) Evolutionary
dynamics of tumor progression with random fitness values. Theor. Pop. Biol. 78
(2011), 54-66.

Durrett, R., Foo, J., Leder, K., Mayberry, J., and Michor, F. (2011b) Intratumor
heterogeneity in evolutionary models of tumor progression. Genetics, 188 (2011),
461-477.

Durrett, R., and Mayberry, J. (2011) Traveling waves of selective sweeps. Ann. Appl.
Prob. 21, 699–744.

Durrett, R., and Moseley, S. (2010) Evolution of resistance and progression to disease
during clonal expansion of cancer. Theor. Pop. Biol. 77, 42–48.

Durrett, R., Schmidt, D., and Schweinsberg, J. (2009) A waiting time problem arising
from the study of multi-stage carcinogenesis. Ann. Appl. Prob. 19, 676–718.

Durrett, R., and Zähle, I. (2007) On the width of hybrid zones. Stoch. Proc. Appl.
117, 1751–1763.

Eaden, J.A., Abrams, K.R., and Mayberry, J.F. (2001) The risk of colorectal cancer
in ulcerative colitis: a meta-analysis. Gut. 48:526-535.

Ethier, S., and Kurtz, T. (1986) Markov Processes: Characterization and Conver-
gence. John Wiley and Sons, New York.

Ferrari, P.L., and Prähofer, M. (2006) One-dimensional stochastic growth and Gaus-
sian ensembles of random matrices. Markov Processes Related Fields. 12, 203–234.

Fisher, R.A. (1937) The wave of advance of advantageous genes. Ann. Eugenics. 7,
355–369.

Griffeath, D.S. (1978) Additive and Cancellative Interacting Particle Systems. Springer
Lecture notes in Math 724.

Iwasa, Y., Michor, F., and Nowak, M.A. (2004) Stochastic tunnels in evolutionary
dynamics. Genetics. 166, 1571–1579.

Iwasa, Y., Michor, F., Komarova, N.L., and Nowak, M.A. (2005) Population genetics
of tumor suppressor genes. J. Theor. Biol. 233, 15–23.

Jones, S., et al. (2008) Comparative lesion sequencing provides insights into tumor
evolution. Prov. Natl. Acad. Sci. 105, 4283–4288.

Kardar, M., Parisi, G., and Zhang, Y.C. (1986) Dynamic scaling of growing interfaces.
Phys. Rev. Letters. 56, 889–892.

Kimura, M. (1962) On the probability of fixation of mutant genes in a population.
Genetics. 47, 713–719.

Komarova, N.L. (2007) Spatial stochastic models of cancer initiation and progression.
Bull. Math. Biol. 68, 1573-1599.

39



Komarova, N.L., Sengupta, A., and Nowak, M.A. (2003) Mutation-selection networks
of cancer initiation: tumor suppressor genes and chromosomal instability. J. Theor.
Biol. 223, 433–450.

Lieberman, E., Hauert, C., and Nowak, M.A. (2005) Evolutionary dynamics on
graphs. Nature. 433, 312–316.

Luebeck, E.G. and Moolgavkar, S.H. (2002) Multistage carcinogenesis and the inci-
dence of colorectal cancer. PNAS 99 (23):1509515100.

Maley, C. et al. (2006) Genetic clonal diversity predicts progression to esophageal
adeno- carcinoma. Nature Genetics. 38:468-473.

Martens, E.A., and Halltschek, O. (2011) Interfering waves of adaptation promote
spatial mixing. Genetics. 189, 1045–1060.

Martens, E.A., Kostadinov, R., Maely, C.C., and Halltschek, O. (2011) Spatial struc-
ture increases the waiting time for cancer. New J. Phys. 13, paper 115014.

Maruyama, T. (1970) On the fixation probability of mutant genes in a subdivided
population. Genet. Res. 15, 221–225.

Maruyama, T. (1974) A simple proof that certain quantities are independent of the
geographical structure of population. Theor. Pop. Biol. 5, 148–154.

Merle, M. (2008) Hitting probability of a distant point for the voter model started
with a single 1. Ann. Prob. 36, 807-861.

Merlo, L. et. al. (2006) Cancer as an evolutionary and ecological process. Nature
Reviews Cancer. 6:924-935.

Nicolas, P. et al. (2007) The stem cell population of the human colon crypt: analysis
via methylation patterns. PLoS Computational Biology 3(3), e28.

Parzen, E. (1999) Stochastic Processes. Volume 24 of Classics in Applied Math.
Society for Industrial and Applied Math.

Prähofer, M., and Spohn, H. (2000) Universal distributions for growth processes in 1
+1 dimensions and random matrices. Phys. Rev. Letters. 84, 4882–4885.

Revuz, D., and Yor, M. (1991) Continuous Martingales and Brownian Motion. Springer,
New York.

Totafurno, J., Bjerknes, M, and Cheng, H. (1987). The Crypt Cycle: Crypt and
Villus Production in the Adult Intestinal Epithelium. Biophysical Journal. Volume
52, Issue 2, 279294.

Williams, T., and Bjerknes, R. (1972) Stochastic model for abnormal clone spread
through epithelial basal layer. Nature. 235, 19–21.

Zähle, I., Cox, J.T., and Durrett, R. (2005) The stepping stone model. II: Genealogies
and the infinite sites model. Annals of Applied Probability. 15, 671-699.

40


