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Abstract—Sparse linear system solvers are computationally
expensive kernels that lie at the heart of numerous applications.
This paper proposes a preconditioning framework that combines
approximate inverses with stationary iterations to substantially
reduce the time and energy requirements of this task by utilizing
a hybrid architecture that combines conventional digital micro-
processors with analog crossbar array accelerators. Our analysis
and experiments with a simulator for analog hardware show that
an order of magnitude speedup is readily attainable despite the
noise in analog computations.

Index Terms—Richardson iteration, approximate inverse pre-
conditioners, analog crossbar arrays

I. INTRODUCTION

The iterative solution of sparse linear systems [1] is a
fundamental task across many applications in science, engi-
neering, and optimization. For decades, progress in speeding
up preconditioned iterative solvers was primarily driven by
constructing more effective preconditioning algorithms and
via steady microprocessor performance gains. The last decade
saw the advent of fast power-efficient low-precision hardware,
such as Graphics Processing Units (GPUs), which gave rise
to new opportunities to accelerate sparse iterative solvers [2]–
[8]. While these advances have led to remarkable performance
gains, conventional CMOS-based digital microprocessors pos-
sess inherent scaling and power dissipation limitations. It
is therefore imperative that we explore alternative hardware
architectures to address current and future challenges of sparse
iterative solvers. One such alternative paradigm is based on
analog devices configured as crossbar arrays of non-volatile
memory. These devices can achieve high degrees of paral-
lelism with low energy consumption by mapping matrices onto
arrays of memristive elements capable of storing information
and executing simple operations such as a multiply-and-
add. In particular, such devices can perform Matrix-Vector
Multiplication (MVM) in near constant time independent of
the number of nonzero entries in the operand matrices [9],
[10]. Indeed, considerable computational speed-ups have been
achieved with analog crossbar arrays [11]–[19], mostly for
machine learning applications that can tolerate the noise and
lower precision of these devices.

Analog designs with enhanced precision have been pro-
posed [20], [21] to meet the accuracy demands of scientific
applications, but the improvement in precision comes at the
cost of increased hardware complexity and energy consump-
tion. Memristive hardware with precision enhancement has

been exploited in the context of Jacobi iterations to solve
linear systems stemming from partial differential equations
(PDEs) [22], and as an autonomous linear system solver [23]
for small dense systems. The latter approach was used to apply
overlapping block-Jacobi preconditioners in the Generalized
Minimal RESidual (GMRES) iterative solver [20] with bit-
slicing for increasing precision. Inner-outer iterations [24]–
[26] have been considered for dense systems, where analog
arrays were used for the inner solver while iterative refinement
was used as an outer solver in the digital space.

The main contribution of this paper is a flexible precon-
ditioning framework for inexpensively solving a large class
of sparse linear systems by effectively utilizing simple analog
crossbar arrays without precision-enhancing extensions. Our
approach combines flexible iterative solvers and approximate
inverse preconditioners on a hybrid architecture consisting
of a conventional digital processor and an analog crossbar
array accelerator. We analytically and experimentally show
that this combination can solve certain sparse linear systems
at a fraction of the cost of solving them on digital processors.
Although the relative advantage of analog hardware grows
with the size of the linear systems, we demonstrate that an
order of magnitude speedup is achievable even for systems
with just a few hundred equations.

While our method can be used to provide a fast stand-
alone sparse solver, it also has exciting applications in the
context of the upcoming exascale platforms [27]. Extreme-
scale solvers are likely to be highly composable [28] and
hierarchical [29] with multiple levels of nested algorithmic
components. A solver like the one proposed in this paper,
running on analog accelerator-equipped nodes of a massively
parallel platform, is an ideal fast and low-power candidate for
a local subdomain or coarse-grid solver to tackle the local
components of a much larger sparse linear system.

II. LINEAR ALGEBRA ON ANALOG HARDWARE

We begin by briefly describing our architecture model and
its key properties. Figure 1 illustrates a hybrid digital-analog
architecture that combines a conventional microprocessor sys-
tem with an analog crossbar array for performing MVM. The
crossbar consists of rows and columns of conductors with a
memristive element at each row-column intersection [30]. The
conductance of these elements can be set, reset, or updated in
a non-volatile manner. Matrix operations are performed by
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Fig. 1: A hybrid digital-analog architecture consisting of a CPU and
a memristive crossbar array for multiplying an n×n matrix M with
a vector r.

mapping the n×n operand matrix M onto the crossbar array,
where the conductance Gij at the intersection of row i and
column j represents the value M [i, j] (i.e., the (i, j)-th entry
of the matrix M ) after a suitable scaling.

The MVM operation y = Mr can be emulated by sending
pulses of Vin volts along the columns of the crossbar such that
the length tj of the pulse along column j is proportional to
the jth entry r[j] of vector r, with suitable normalization.
Following Ohm’s Law, this contributes a current equal to
VinGij on the conductor corresponding to row i for a duration
tj . Following Kirchoff’s Current Law, the currents along each
row accumulate and can be integrated over the time period
equivalent to the maximum pulse length using capacitors,
yielding a charge proportional to

∑n
j=1M [i, j]r[j], which

in turn is proportional to y[i]. This integrated value can
be recovered as a digital quantity via an analog-to-digital
converter (ADC), and yields an approximation ŷ[i] to y[i].

The above procedure involves multiple sources of nonde-
terministic noise so that the output ŷ ∈ Rn is equivalent
to a low-precision approximation of y. Writing M to the
crossbar array incurs multiplicative and additive write noises
NWm ∈ Rn×n and NWa ∈ Rn×n, respectively, and the
actual conductance values at the crosspoints of the array reflect
M̂ = M�(I+NWm)+NWa, where � denotes element-wise
multiplication. Similarly, digital-to-analog conversion (DAC)
of the vector r into voltage pulses suffers from multiplicative
and additive input noises N Im ∈ Rn and N Ia ∈ Rn,
respectively. As a result, the matrix M̂ is effectively multiplied
by a perturbed version of r given by r̂ = r�(1+N Im)+N Ia,
where 1 is a vector of all ones.

A characteristic equation to describe the output ŷ of an
analog MVM Mr can be written as

ŷ = M̂ r̂ � (1 +NOm) +NOa, (1)

where NOm ∈ Rn and NOa ∈ Rn denote the multiplicative
and additive components of the output noise, respectively.
These components reflect the inherent inexactness in the
multiplication based on circuit laws and current integration,
as well as the loss of precision in the ADC conversion of the
result vector. Equation (1) can be simplified as

ŷ = (M + E)r + N̂Oa, (2)

where N̂Oa is the overall effective additive noise that captures
all the lower order noise terms from Equation (1) and the
nondetermistic error matrix E is given by

E = M � (NWm + 1⊗N Im +NOm ⊗ 1) +NWa; (3)

here ⊗ denotes outer product. We provide additional technical
details in [31].

The exact characteristics and magnitudes of the noises
depend on the physical implementation [12], [25] of the analog
array and the materials used therein, the details of which are
beyond the scope of this paper but they are generally captured
by our model. Regardless of the implementation, the noises
are always device dependent and stochastic. The analog MVM
computation ŷ = M̂ r̂ can be performed in near-constant time
and, accounting for the O(n) I/O cost for loading operands and
reading the results, can achieve an O(n) speedup in practice
over its digital counterpart for a dense M . Therefore, a linear
system solver that can overcome the analog MVM error, even
if it requires many more MVM operations than its digital
counterpart, can substantially reduce the cost of the solution.

III. AN ITERATIVE SOLVER BASED ON MEMRISTIVE
APPROXIMATE INVERSE PRECONDITIONING

The goal of preconditioning is to transform an n×n system
of linear equations Ax = b to enable an iterative procedure
to compute a sufficient approximation of x in fewer steps.
Algebraically, preconditioning results in solving the system
MAx = Mb, where M ∈ Rn×n is an approximation of
A−1. Since A−1 is dense in general, most popular general-
purpose preconditioners are applied implicitly; e.g., the ILU
preconditioner generates a lower (upper) triangular matrix L
(U ) such that A ≈ LU . The preconditioner M = U−1L−1 is
then applied by forward/backward substitution [1].

A. Approximate inverse matrices as preconditioners

Although the inverse of a sparse matrix is dense in general,
a significant fraction of the entries in the inverse matrix
often have small magnitudes [32], [33]. Approximate inverse
preconditioners [34]–[36] exploit this fact and seek to compute
an approximation M to A−1 that can be applied via an MVM
operation. Computing M can be framed as an optimization
problem that seeks to minimize ||I − MA||F . One popular
method for computing M is by the Sparse Approximate In-
verse (SPAI) technique [36], which updates the sparsity pattern
of M dynamically by repeatedly choosing new profitable
indices for each column of M that lead to an improved approx-
imation of A−1. The quality of the approximation is controlled
by computing the norm of the residual I(:, j)−AM(:, j) after
each column update. The jth column of M has at most nnzAI

nonzero entries and satisfies ‖AM(:, j)− I(:, j)‖F ≤ tolAI,
for a given threshold tolerance tolAI ∈ R.

An effective approximate inverse preconditioner M can
still be considerably denser than the coefficient matrix A.
Therefore, preconditioning must lead to a drastic convergence
improvement for a reduction in the overall wall-clock time.
Applying approximate inverse preconditioners as proposed in



this paper has the advantage that the computation time and
energy consumption of preconditioning would be much lower
on an analog crossbar array than on digital hardware, even at
low precisions. Since MVM with M can be performed in near-
constant time on an analog array regardless of the number of
nonzeros in M , denser approximate inverses may be utilized
without increasing the associated costs.

While analog crossbar arrays can speed up the application
of the approximate inverse preconditioner, the accuracy of the
application step is constrained by the various nondeterministic
noises in the analog hardware discussed in Section II. This
restricts the use of popular Krylov subspace approaches such
as GMRES [37], which require a deterministic preconditioner.
Although flexible variants [38] exist, in which the precon-
ditioner can vary from one step to another, these variants
generally require the orthonormalization of large subspaces
and perform a relatively larger number of Floating Point Op-
erations (FLOPs) outside the preconditioning step. Therefore,
in this paper, we consider stationary iterative schemes.

B. Preconditioned Richardson iteration

Stationary methods approximate the solution of a linear
system Ax = b by iteratively applying an update of the form
xi = Dxi−1 + d, where D ∈ Rn×n and d ∈ Rn are fixed.
Preconditioned Richardson iteration can be defined as

αMAx = αMb, α ∈ R,
x = x+ αMb− αMAx

= (I − αMA)x+ αMb,

xi = (I − αMA)xi−1 + αMb,

which is identical to the form xi = Dxi−1 + d, with D =
I − αMA and d = αMb [39]. The approximate solution xi
produced by preconditioned Richardson iteration during the
ith iteration satisfies

xi − x = xi−1 − x− αMAxi−1 + αMAx

= (I − αMA)(xi−1 − x), and

‖xi − x‖ ≤ (‖I − αMA‖)i ‖x0 − x‖,
where the latter inequality holds for any vector norm and the
corresponding induced matrix norm. A similar bound can also
be shown for the residual vector ri = b−Axi; i.e.,

‖ri‖ ≤ (‖I − αAM‖)i ‖r0‖.

The above inequalities show that the sequence lim
i→∞

xi will
converge to the true solution x as long as the preconditioner
M and scaling scalar α are chosen such that ‖I−αMA‖ < 1.
In fact, the limit of the iterative process will converge to x as
long as the spectral radius ρ(I−αMA) of the matrix I−αMA
is strictly less than one. Nonetheless, we use the spectral norm
since ρ(I − αMA) ≤ ‖I − αMA‖. Moreover, denoting the
eigenvalues of the matrix MA by |λ1| ≤ . . . ≤ |λn|, we need

to pick α such that |1−αλn| < 1, i.e., we need 0 < α <
2λ∗n
|λn|2

.

Unless mentioned otherwise, we will assume α = 1.
The above analysis remains valid even in the case where M

varies between iterations, which outlines the flexible nature of

preconditioned Richardson iteration, and stationary iterative
schemes in general.

C. Preconditioning through memristive hardware

Algorithm 1 summarizes our hybrid Richardson iterations
preconditioned by applying an approximate inverse through
analog crossbar hardware. The iterative procedure terminates
when either the maximum number of iterations mit is reached
or the relative residual norm drops below a given threshold tol-
erance tol ∈ R. Each iteration of Algorithm 1 requires a sparse
MVM with the coefficient matrix A (Line 5), two “scalar alpha
times x plus y” (AXPY) [40] operations (Lines 5 and 7), a
vector norm computation (Line 6), and an MVM with the
approximate inverse preconditioner M (Line 7) computed in
analog hardware. Therefore, of the 3n+2(nnz(A)+nnz(M))
total FLOPs per iteration, 2nnz(M) can be performed in O(n)
time on the analog hardware.

Algorithm 1 Richardson iterations with approximate inverse
preconditioning on hybrid hardware

1: input: A ∈ Rn×n; b, x0 ∈ Rn; tol ∈ R; mit ∈ N.
2: Construct approximate inverse preconditioner M ∈ Rn×n;
3: Write M to the analog crossbar array;
4: for i = 0 to mit − 1 do
5: ri = b−Axi; // Digital MVM and AXPY
6: If (‖ri‖ ≤ tol‖b‖) exit;
7: xi+1 = xi +Mri; // Analog MVM, digital AXPY
8: end for
9: return xi;

In practice, the hybrid implementation is likely to require
more iterations to reach the same residual norm as the digital
implementation since the analog hardware leads to a less
accurate application of the preconditioner M . In particular,
excluding the time spent on constructing M and ADC-DAC
conversions, the optimal computational speedup achieved by
the hybrid implementation is bounded by

Stot =
md

mh

(
1 +

2nnz(M)

3n+ 2nnz(A)

)
,

where md and mh denote the number of digital and hybrid
preconditioned Richardson iterations, respectively.

D. The effects of device noise

Since the MVM between the preconditioner M and ri
is computed through an analog crossbar array, the inherent
inaccuracies of the analog device lead to the update

xi+1 = xi + (M + E)ri + N̂Oa,

where E and N̂Oa vary stochastically and nondeterministically
between iterations. The error norm ‖xi+1 − x‖ then satisfies
the relationships

‖xi+1 − x‖ ≥ ‖N̂Oa‖

and

‖xi+1 − x‖ ≤ ‖I − (M + E)A‖‖xi − x‖+ ‖N̂Oa‖.



In the following, we disregard conversion errors (i.e., N̂Oa)
since the dominant source of error is the inaccuracy during
the copy of matrix M to the analog crossbar array. Then, the
norm of the error ‖xi+1 − x‖ will be smaller than ‖xi − x‖
as long as ‖I − (M + E)A‖ < 1, for which we have

‖I − (M + E)A‖ ≤ ‖I −MA‖+ ‖E‖‖A‖.

Under the assumption that the spectral norm of the matrix
I −MA is less than one, i.e., ‖I −MA‖ < 1, a sufficient
condition for the spectral norm of the matrix I − (M +E)A
to be less than one is then given by

‖E‖ < 1− ‖I −MA‖
‖A‖

.

Additionally, under the condition M = A−1 + ∆, we have
‖I−(M+E)A‖ < 1 as long as ‖E‖ < ‖A‖−1−‖M−A−1‖.

Consistent with the original deterministic analysis for it-
erative refinement by Moler [41] from a digital perspective,
but adapted to Richardson iteration with noisy analog devices,
a sufficiently small ‖E‖ in a stochastic sense guarantees
the convergence of the preconditioned Richardson iteration
process. In particular, we need to have ‖E‖ < 1−‖I−MA‖

‖A‖ hold
in a sufficiently large number of iterations. To understand and
ensure when these conditions will hold, we establish explicit
bounds for ‖E‖ in terms of the statistical characteristics of the
elements of the matrix E. We omit the details here and refer
the interested reader to [31].

IV. SIMULATION EXPERIMENTS

Our experiments were conducted in a Matlab environment
(version R2020b) with 64-bit arithmetic on a single core of
a 2.3 GHz 8-Core Intel i9 machine with 64 GB of system
memory. We used a Matlab version of the publicly available
simulator [42] with a PyTorch interface for emulating the
noise, timing, and energy characteristics of an analog crossbar
array. The simulator models all sources of analog noise
outlined in Section II as scaled Gaussian processes. Using
Matlab notation, the components of the matrix write noise
were modeled as randn(·)× 5.0e− 3, and those of the input
and output noises were both modeled as randn(·)× 1.0e− 2;
these are the default settings in the simulator based on cur-
rently realizable analog hardware [16]. The number of bits
used in the ADC and DAC was set to 7 and 9, respectively.
Table I shows the default parameters used throughout our
experiments to simulate the analog device and to construct
the approximate inverse preconditioner.

TABLE I: Default parameters.

Module Parameter Value

Analog device NW 5.0e− 3
Analog device NI 1.0e− 2
Analog device NO 1.0e− 2
Richardson it. tol 1.0e− 5
Richardson it. mit 50
Approximate inverse nnzAI 40× nnz(A)
Approximate inverse tolAI 5.0e− 2
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Fig. 2: Left: Sparsity patterns of the discretized Laplacian for the
square mesh Ω := [0, 1]2 (top) and the circular mesh Ω := {x2 +
y2 = 1} (bottom). Right: Surface plots of the solutions u(x, y).

Our test problems originate from discretizations of model
PDEs. The first two matrices are derived from a Finite Element
(FE) discretization of Poisson’s equation on Ω ⊂ R2 with
homogeneous Dirichlet boundary conditions

−
(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) = f(x, y), u|∂Ω = 0, (4)

where ∂ denotes the partial derivative with respect to an
independent variable and f(x, y) denotes the load (or source)
vector. We consider two different domains: a square domain
Ω := [0, 1]2 and a circular domain Ω = {[x, y] ∈ R2

∣∣ x2 +
y2 = 1} of radius one centered at the origin. The Laplace

operator
(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) is discretized by linear finite

elements while the load vector is set equal to the constant
source function f(x, y) ≡ 1. Figure 2 plots the sparsity
patterns of the discretized Laplacian matrices A and the
surfaces of the solutions u(x, y) for the square (n = 625) and
circular (n = 362) meshes. Our third test matrix stems from a
Finite Difference (FD) discretization of the Laplace operator in
the unit cube with homogeneous Dirichlet boundary conditions
and n = 83. The average number of nonzero entries per row
in the discretized sparse matrices A and in the corresponding
preconditioners M are listed in Table II, which shows that the
fill-in factor (i.e., the ratio nnz(M)/nnz(A)) ranges from 14
to 24. Our test matrices are relatively small because we are
limited by the speed of the Matlab version of the simulator for
the analog crossbar arrays; however, our results are meaningful
because the relative advantage of analog hardware, in general,
only increases with larger matrices.

In our experiments, we mainly compare the following
iterative solvers: (a) Richardson iterations without precondi-
tioning; (b) Richardson iterations with approximate inverse
preconditioning applied in the IEEE 754 standard (denoted
by “Richardson+d-ai”); and (c) Richardson iterations with ap-
proximate inverse preconditioning applied through simulated
analog hardware (denoted by “Richardson+h-ai”). We observe
from the results in Table II that standard Richardson iterations



TABLE II: Comparison of Richardson iterations with digital (Md) and hybrid (Mh) preconditioning; m, md and mh denote the number of
non-preconditioned, digital, and hybrid preconditioned Richardson iterations, respectively; κ denotes the condition number of A.

Problem n κ
nnz(A)

n

nnz(M)

n
ρ(I −A) ρ(I −MdA) ρ(I −MhA) m md mh FLOPs(Md) FLOPs(Mh)

FE Square 625 3.4e+ 2 4.4 93.5 0.99 0.75 0.75 Failed 41 44 5.0e+ 6 3.1e+ 5
FE Circular 362 2.0e+ 2 5.6 86.6 0.97 0.55 0.55 Failed 21 23 1.4e+ 6 1.1e+ 5
FD 3D 512 6.2e+ 1 6.2 81.1 0.75 0.17 0.54 Failed 7 16 6.3e+ 5 1.2e+ 5
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Fig. 3: Relative residual norm achieved by Richardson iterations without and with digital/hybrid approximate inverse preconditioning.
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Fig. 4: FLOPs as a function of the achieved relative residual norm for each of the three problems in Table II.
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Fig. 5: FLOPs required to reach a certain accuracy by standard and preconditioned Richardson iterations as the maximum number of
nonzero entries in M varies according to nnzAI = 20× nnz(A), 40× nnz(A), and nnzAI = 60× nnz(A).

fail to converge within mit = 50 iterations for all three
test problems, but converge rapidly with approximate inverse
preconditioning. This is not surprising since the spectral radius
of the matrix I − A, i.e., ρ(I − A), is close to one in all
cases. The convergence behavior of the two preconditioned
variants is almost identical for the FE matrices, but hybrid
preconditioned Richardson iteration requires more than twice
the number iterations compared to the digital variant for the
FD matrix. Overall, the hybrid preconditioned Richardson
requires 5× to 10× fewer digital FLOPs compared to the
purely digital version.

Figure 3 plots the relative residual norm after each Richard-

son iteration both without preconditioning and with the various
preconditioners considered in this paper. As expected, hybrid
preconditioning requires more iterations; however, this trade-
off is highly beneficial because analog hardware allows for a
rapid application of the preconditioner. This is evident in Fig-
ure 4 which shows that, on an average, hybrid preconditioning
requires substantially fewer digital FLOPs to converge. For
reference, we have also included Richardson iterations with an
ILU(0) preconditioner [1] applied in the IEEE 754 standard.

Figure 5 plots the number of digital FLOPs versus the
relative residual norm for nnzAI values of 20 × nnz(A),
40 × nnz(A), and 60 × nnz(A). A denser preconditioner



speeds up the convergence rate at the cost of additional
FLOPs per iteration in the digital implementation. For the
square FE mesh, the hybrid implementation yields a greater
improvement in FLOPs compared to its digital counterpart as
the preconditioner is made denser because the time to apply
M on the analog device does not increase with nnz(M ).
However, this trend is not observed for the other matrices
and diminishes with increasing preconditioner density because
the analog noises limit the accuracy of the MVM operation
Mr even if M is highly accurate. As a result, the number of
iterations does not always decline as nnz(M ) increases.

Figures 3–5 show that Richardson iterations preconditioned
with approximate inverses on the hybrid architecture out-
perform preconditioned Richardson iterations on the digital
architecture by greater margins as the condition number (listed
in Table II) of A grows larger. Figure 5 also shows that our
method can use denser preconditioners more effectively for
matrices with higher condition numbers. These trends bode
well for the potential use of our proposed preconditioning
framework on a hybrid architecture in real-life problems that
are likely to be larger and more ill-conditioned.
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Fig. 6: Simulated wall-clock time of various steps of Algorithm 1 as
a function of the upper limit γ on the number of nonzeros per row.

Figure 6 plots the simulated wall-clock time of the com-
putations in the key steps of Algorithm 1 for the FE square
matrix for various values of the fill-in factor γ on hypothetical
digital and hybrid platforms based on the current state of
hardware technology. The hybrid variant is significantly faster
for all values of γ considered, and especially for smaller values
when the preconditioner is less effective and convergence is
slow. These times do not include the cost of data movement.
For reference, the simulated cost of loading M on the analog
crossbar array is about 3×10−3 seconds. This is roughly of the
same order of magnitude as the cost of transferring a matrix
of this size, which is only 625×625, between L3 cache and a
typical CPU or a GPU. The current state of analog hardware
technology is capable of realizing crossbar arrays of sizes up to
4000×4000 [16], which can be further combined to accommo-
date matrices of larges sizes that are even more favorable for
the hybrid platform. Since M is written to the analog device
only once, we expect the gap between the digital and hybrid

variants to be higher in practice, and increase for larger and
more ill-conditioned/slower-convergeing problems, especially
when solving for multiple right-hand sides [43], [44]. Note that
we omit the cost of constructing the preconditioner M here
since, in practice, this step is relatively fast due the ample
availability of parallelism [35], [36].
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Fig. 7: Number of iterations required by hybrid preconditioned
Richardson as the number of DAC/ADC bits vary. For the 5-bit DAC,
no convergence was obtained after 100 iterations for the FE matrices.

Some hardware parameters, such as the number of DAC and
ADC bits, can have a profound impact on the time and energy
consumption of the analog device, and therefore on its overall
performance. We vary the number of DAC and ADC bits and
plot the results in Figure 7 to justify our choice of 7 DAC bits
and 9 ADC bits. Fewer bits tend to lead to divergence, while
more bits result in increased time and energy consumption
with little or no improvement in convergence, as the accuracy
of the analog computations is limited by other sources of noise.

V. CONCLUDING REMARKS

With the slowing of Moore’s law [45] for digital micro-
processors, there has been considerable interest in exploring
alternatives, such as analog computing, for speeding up com-
putationally expensive kernels. While simple analog crossbar
arrays have been shown to be effective in many applications
involving dense matrices, it has been challenging to address
sparse matrix problems, such as solving sparse linear systems,
because they do not naturally map to dense crossbar arrays
and generally have a low tolerance for the stochastic errors
pervasive in analog computing. This paper proposes, analyzes,
and experimentally evaluates a preconditioning framework that
exploits inexpensive MVM on analog arrays to substantially
reduce the time and energy required for solving an important
practical class of sparse linear systems. These and similar
efforts are critical for meeting the continually growing compu-
tational demands of various applications of sparse solvers and
for preparing these solvers for the fast but energy-constrained
embedded and exascale [27] systems of the future.
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