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A DOMAIN DECOMPOSITION RAYLEIGH--RITZ ALGORITHM3

FOR SYMMETRIC GENERALIZED EIGENVALUE PROBLEMS\ast 
4

VASSILIS KALANTZIS\dagger 5

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper proposes a parallel domain decomposition Rayleigh--Ritz projection6

scheme to compute a selected number of eigenvalues (and, optionally, associated eigenvectors) of7

large and sparse symmetric pencils. The projection subspace associated with interface variables is8

built by computing a few of the eigenvectors and associated leading derivatives of a zeroth-order9

approximation of the nonlinear matrix-valued interface operator. On the other hand, the projection10

subspace associated with interior variables is built independently in each subdomain by exploiting11

local eigenmodes and matrix resolvent approximations. The sought eigenpairs are then approximated12

by a Rayleigh--Ritz projection onto the subspace formed by the union of these two subspaces. Sev-13

eral theoretical and practical details are discussed, and upper bounds of the approximation errors14

are provided. Our numerical experiments demonstrate the efficiency of the proposed technique on15

sequential/distributed memory architectures as well as its competitiveness against schemes such as16

shift-and-invert Lanczos and automated multilevel substructuring combined with p-way vertex-based17

partitionings.18

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . symmetric generalized eigenvalue problem, domain decomposition, high-performance19

computing, spectral Schur complement, Rayleigh--Ritz20
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1. Introduction. This paper proposes a Rayleigh--Ritz projection scheme based23

on algebraic domain decomposition to compute eigenvalues (and, optionally, associ-24

ated eigenvectors) of large and sparse symmetric matrix pencils. In particular, our25

focus lies in the computation of a large number of eigenvalues located immediately on26

the right of some real scalar. Eigenvalue problems of this form appear in applications27

such as low-frequency response analysis [16, 31] and spectral clustering [39], among28

others. Extensions to the case where the sought eigenvalues are located immediately29

on the left of some real scalar are straightforward.30

Computing eigenvalues located the closest to a given scalar is typically achieved31

by enhancing the projection method of choice by shift-and-invert [13, 41]. When32

the required accuracy in the approximation of the sought eigenvalues is not high, an33

alternative to Krylov subspace techniques is the automated multilevel substructuring34

technique (AMLS) [6, 7, 10, 28]. From an algebraic perspective, AMLS performs35

a Rayleigh--Ritz projection on a large projection subspace while avoiding excessive36

orthogonalization costs and has been demonstrated as a superior alternative to shift-37

and-invert Krylov subspace techniques when a very large number of eigenvalues is38

sought [29]. An analysis of the AMLS algorithm for elliptic PDE problems from39

a variational viewpoint can be found in [7]. Therein, tools from the mathematical40

theory of substructuring domain decomposition for elliptic PDEs are considered so as41

to understand how AMLS scales as the mesh is refined.42
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This paper focuses on algebraic domain decomposition eigenvalue solvers where43

the concept of domain decomposition is applied directly to the eigenvalue equation.44

Algebraic domain decomposition eigenvalue solvers start by calling an algebraic graph45

partitioner to partition the graph associated with the given matrix pencil into a num-46

ber of nonoverlapping subdomains. The variables within each subdomain are then47

classified into two different categories: (a) (interior) variables which are coupled with48

variables located only in the same subdomain, and (b) (interface) variables which are49

both coupled with local variables and variables located in neighboring subdomains.50

The sought eigenpairs are then approximated by a Rayleigh--Ritz projection onto a51

subspace formed by the combination of subspaces associated with the two different52

types of variables. An in-depth analysis of algebraic domain decomposition eigenvalue53

solvers can be found in [20].54

The main challenge of algebraic domain decomposition eigenvalue solvers is the55

construction of the projection subspace associated with interface variables due to the56

nonlinear nature of the interface matrix operator, also known as ``spectral Schur com-57

plement"" [21, 23]. From a purely algebraic perspective, AMLS builds this subspace58

by computing a few of the eigenvectors of a linear generalized eigenvalue problem59

involving the Schur complement matrix and its first derivative [6]. As a result, the60

accuracy provided by AMLS can deteriorate considerably as we look to compute ei-61

genvalues located away from the origin. An alternative suggested recently is to form62

the projection subspace associated with interface variables by applying a complex ra-63

tional transformation to the original pencil so as to annihilate components associated64

with unwanted eigenvalues, e.g., see the RF-DDES algorithm [24] and the discussion65

in [22, 27]. While these techniques can indeed lead to enhanced accuracy, multiple66

matrix factorizations computed in complex arithmetic are required.67

In this paper we propose an algorithm which preserves advantages of algebraic68

domain decomposition eigenvalue solvers such as reduced orthogonalization costs and69

inherent parallelism while, at the same time, increases their accuracy without consid-70

ering more than one shift.71

The key characteristics of the proposed scheme are summarized below.72

(1) Zeroth-order truncation of the interface matrix operator. In contrast to AMLS,73

the algorithm proposed in this paper generates the projection subspace associated with74

interface variables by solving partially a standard eigenvalue problem with the Schur75

complement matrix. This approach avoids the need to compute/apply the derivative76

of the spectral Schur complement.77

(2) Exploiting Taylor series expansions of interface eigenvectors. The accuracy of78

the projection subspace associated with interface variables is enhanced by expanding79

the (analytic) eigenvectors of the spectral Schur complement through their Taylor80

series and injecting a few leading eigenvector derivatives into the subspace. We show81

theoretically (and verify experimentally) that injecting up to second-order eigenvec-82

tor derivatives leads to eigenvalue approximations for which the upper bound of the83

absolute error reduces quartically. These eigenvector derivatives are computed inde-84

pendently of each other by exploiting deflated Krylov subspace solvers.85

(3) Reduced orthogonalization costs and enhanced parallelism. Similarly to do-86

main decomposition schemes such as AMLS and RF-DDES, orthonormalization is87

applied only to vectors whose length is equal to the number of interface variables in-88

stead of the entire set of domain variables. This becomes especially important when89

both a large number of eigenvalues is sought and the number of interface variables90

is much smaller compared to the total number of equations/unknowns. In addition,91

the projection subspaces associated with interior variables in each subdomain are92
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\lambda \kappa 1
\lambda \kappa 2

\lambda \kappa nev\alpha 

nev = 5

Fig. 1.1. An illustration of the eigenvalue problem considered in this paper. Our goal is to
compute the nev = 5 (real) eigenvalues located immediately on the right of \alpha \in \BbbR . The sought
eigenvalues are denoted by \lambda \kappa 1 , . . . , \lambda \kappa nev , 1 \leq \kappa 1 \leq \kappa nev \leq n.

106

107

108

built independently of each other by computing local eigenmodes and computing up93

to second-order resolvent expansions. We report experiments performed on sequen-94

tial/distributed memory architectures and demonstrate the suitability of the proposed95

technique in high-performance computing settings.96

1.1. Notation and outline. The eigenvalue problem considered in this paper97

is of the form Ax = \lambda Mx where the matrices A \in \BbbR n\times n and M \in \BbbR n\times n are assumed98

large, sparse, and symmetric, and matrix M is also positive-definite (SPD). Our99

goal is to compute the nev \ll n eigenvalues located immediately on the right of100

a user-given scalar \alpha . An illustrative example is shown in Figure 1.1. Extensions101

of the proposed technique to the computation of eigenvalues located immediately102

on the left of a user-given scalar are straightforward. Throughout the rest of this103

paper we will denote the pencil L - \lambda K by (L,K), and for any such pencil we define104

\Lambda (L,K) := \{ \lambda | det[L - \lambda K] = 0\} .105

The outline of this paper is as follows. Section 2 gives a brief introduction to109

Rayleigh--Ritz projection subspaces from the viewpoint of algebraic domain decom-110

position. Section 3 presents a spectral Schur complement approach to approximate a111

single eigenpair of the pencil (A,M). Section 4 extends these results to a Rayleigh--112

Ritz projection that approximates all sought eigenpairs from a common projection113

subspace. Section 5 presents numerical experiments performed on sequential and dis-114

tributed memory environments. Finally, in section 6 we give our concluding remarks.115

2. Rayleigh--Ritz projections from a domain decomposition viewpoint.116

The standard approach to compute a few eigenpairs of sparse and symmetric ma-117

trix pencils is by applying the Rayleigh--Ritz technique onto a carefully constructed118

subspace \scrZ of \BbbR n [33]. The goal is to find a subspace \scrZ that includes an invariant119

subspace associated with the nev sought eigenvalues \lambda \kappa 1
, . . . , \lambda \kappa nev . The sought eigen-120

pairs can then be recovered (in the absence or roundoff errors) as a subset of the Ritz121

pairs of the matrix pencil (ZTAZ,ZTMZ), where matrix Z represents a basis of \scrZ .122

Let the matrices A and M be partitioned in a 2\times 2 block form123

A =

\biggl( 
B E
ET C

\biggr) 
and M =

\biggl( 
MB ME

MT
E MC

\biggr) 
,124

125

where B andMB are square matrices of size d\times d, E andME are rectangular matrices126

of size d \times s, C and MC are square matrices of size s \times s, and n = d + s. Without127

loss of generality we assume nev \leq s. Similarly, the eigenvector x(i) associated with128

eigenvalue \lambda i can be written as129

x(i) =

\Biggl( 
u(i)

y(i)

\Biggr) 
, u(i) \in \BbbR d, y(i) \in \BbbR s.130

131

Rewriting Ax(i) = \lambda iMx(i) using the above block form gives132
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\Biggl( 
B  - \lambda iMB E  - \lambda iME

ET  - \lambda iM
T
E C  - \lambda iMC

\Biggr) \Biggl( 
u(i)

y(i)

\Biggr) 
= 0,(2.1)133

134

while eliminating u(i) from the second row equation in (2.1) leads to the s\times s nonlinear135

eigenvalue problem136

\Bigl[ 
C  - \lambda iMC  - (E  - \lambda iME)

T (B  - \lambda iMB)
 - 1(E  - \lambda iME)

\Bigr] 
y(i) = 0,(2.2)137

138

from which \lambda i and y
(i) can be determined. The missing d\times 1 part of x(i), u(i), is then139

recovered by solving the linear system140

(B  - \lambda iMB)u
(i) =  - (E  - \lambda iME)y

(i).141
142

From a domain decomposition perspective, an ideal choice is to set \scrZ = \scrU \oplus \scrY 143

where144

\scrU = span

\Biggl( \Biggl[ 
u(\kappa 1), . . . , u(\kappa nev )

0s,nev

\Biggr] \Biggr) 
, \scrY = span

\Biggl( \Biggl[ 
0d,nev

y(\kappa 1), . . . , y(\kappa nev )

\Biggr] \Biggr) 
,(2.3)145

146

and 0\chi ,\psi denotes the zero matrix of size \chi \times \psi .147

The main goal of algebraic domain decomposition eigenvalue solvers is to build a148

projection subspace which, ideally, includes the subspace in (2.3).149

2.1. Domain decomposition reordering. Practical applications of algebraic150

domain decomposition eigenvalue solvers rely on relabeling the unknowns/equations151

of the eigenvalue problem Ax = \lambda Mx such that the matrix B - \lambda MB is block-diagonal.152

This can be easily achieved by applying a graph partitioner to the adjacency graph153

of the matrix | A| + | M | , e.g., [25, 34].154

In this paper we only consider p-way partitionings, and the partitioner divides the155

graph into p > 1 nonoverlapping subdomains. The rows/columns of matrices A and156

M are then reordered so that unknowns/equations associated with interior variables157

(i.e., nodes of the adjacency graph which are connected only to nodes located in158

the same partition) are listed before those associated with interface variables (i.e.,159

nodes of the adjacency graph which are connected with nodes located in neighboring160

partitions). The permuted matrices A and M can be written1 as161

A := PAPT =

\left( 
      

B1 E1

B2 E2

. . .
...

Bp Ep
ET1 ET2 . . . ETp C

\right) 
      
, and

M := PMPT =

\left( 
        

M
(1)
B M

(1)
E

M
(2)
B M

(2)
E

. . .
...

M
(p)
B M

(p)
E\Bigl( 

M
(1)
E

\Bigr) T \Bigl( 
M

(2)
E

\Bigr) T
. . .

\Bigl( 
M

(p)
E

\Bigr) T
MC

\right) 
        
.

(2.4)162

163

1The eigenvalues of the pencil (A,M) in (2.4) are identical to those prior to the symmetric
permutation. If eigenvectors are also of interest, these need be postmultiplied by PT . Throughout
the rest of this paper we will work with the reordered matrices shown in (2.4).
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Let us denote the number of interior and interface variables residing in the jth164

subdomain by dj and sj , respectively. Matrices Bj and M
(j)
B are of size dj \times dj , while165

Ej and M
(j)
E are rectangular matrices of size dj \times s where s =

\sum p
j=1 sj . In particular,166

Ej and M
(j)
E have a special nonzero pattern of the form Ej = [0dj ,\ell j ,

\^Ej , 0dj ,\xi j ], and167

M
(j)
E = [0dj ,\ell j ,

\^M
(j)
E , 0dj ,\xi j ], where \ell j =

\sum k<j
k=1 sk, and \xi j =

\sum k=p
k>j sk. Note that168

typically the value of p is chosen such that s\ll d.169

Taking advantage of the Schur complements framework, the vectors u(i) and y(i)170

can be further partitioned as171

u(i) =

\left( 
    

u
(i)
1

...

u
(i)
p

\right) 
    and y(i) =

\left( 
    

y
(i)
1

...

y
(i)
p

\right) 
    ,172

173

where u
(i)
j \in \BbbR dj and y

(i)
j \in \BbbR sj denote the components of vectors u(i) and y(i) which174

are associated with the jth subdomain, respectively. Once the subvector y
(i)
j becomes175

available, u
(i)
j is computed independently of the rest of the subvectors of u(i) by solving176

the local linear system177

\Bigl( 
Bj  - \lambda iM

(j)
B

\Bigr) 
u
(i)
j =  - 

\Bigl( 
\^Ej  - \lambda i \^M

(j)
E

\Bigr) 
y
(i)
j .178

179

3. A scheme to approximate a single eigenpair. This section considers the180

approximation of a single eigenpair (\lambda , x) by (\^\lambda , \^x), where \^\lambda = \^xTA\^x
\^xTM \^x

is the Rayleigh181

quotient associated with the approximate eigenvector \^x.182

3.1. Spectral Schur complements. We begin by defining the univariate, non-183

linear, matrix-valued function184

S : \zeta \in \BbbR \rightarrow S(\zeta ) \in \BbbR s\times s, S(\zeta ) = C  - \zeta MC  - (E  - \zeta ME)
T (B  - \zeta MB)

 - 1(E  - \zeta ME).185
186

For each \zeta \in \BbbR \setminus \Lambda (B,MB), there exist s real eigenvalues and corresponding orthogonal187

eigenvectors of S(\zeta ). When \zeta \in \Lambda (B,MB), there exist at least s  - d (if s \geq d)188

eigenvalues of S(\zeta ) which are well-defined (see also section 3.2).189

Definition 3.1. For j = 1, . . . , s, we define the scalar-vector pairs190

(\mu j , yj) : \zeta \in \BbbR \setminus \scrD j  - \rightarrow (\mu j(\zeta ), yj(\zeta )) \in \{ \BbbR ,\BbbR s\} , where \scrD j \subseteq \Lambda (B,MB),191
192

such that for any \zeta /\in \scrD j, the pair (\mu j(\zeta ), yj(\zeta )) satisfies193

S(\zeta )yj(\zeta ) = \mu j(\zeta )yj(\zeta ).194
195

Each function \mu j(\zeta ) (from now on referred to as ``eigenvalue curve"") has either no196

or a finite number of poles \scrD j , and these poles are eigenvalues of the pencil (B,MB).197

Moreover, the corresponding eigenvector yj(\zeta ) is uniquely defined (up to a normalizing198

factor) and the associated spectral projector is analytic [4, 26]. Throughout the rest199

of this paper we assume that the spectrum of S(\zeta ) is implicitly arranged so that200

the eigenvalue curves \mu 1(\zeta ), . . . , \mu s(\zeta ) are analytic functions of \zeta everywhere within201

their domain of definition.2 This assumption corresponds to a mere reordering of202

the eigenpairs of S(\zeta ) and does not affect the practicality of the algorithm proposed203

throughout this paper nor require any additional work.204

2See also the discussion in [38, section 4].
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Remark 1. One idea to order the subscripts of the eigenvalue curves is to denote205

by \mu j(\zeta ) the eigenvalue curve for which \mu j(\zeta 0), \zeta 0 \in \BbbR \setminus \Lambda (B,MB) is equal to the jth206

algebraically smallest eigenvalue of matrix S(\zeta 0). Throughout this paper we denote207

by \mu j(\zeta ) the eigenvalue curve for which \mu j(0) is equal to the jth algebraically smallest208

eigenvalue of matrix S(0).209

3.2. Behavior of eigenvalue curves at their poles. In general, it is not210

possible to determine what eigenvalues (if any) of (B,MB) are poles of \mu j(\zeta ), nor211

does the algorithm proposed in this paper require such information. Nonetheless, we212

can determine the number of eigenvalue curves that remain analytic as \zeta approaches213

an eigenvalue of (B,MB).214

Definition 3.2. The eigenpairs of the matrix pencil (B,MB) will be denoted by215

(\delta \ell , v
(\ell )), \ell = 1, . . . , d, where V = [v(1), v(2), . . . , v(d)] is scaled so that V TMBV = I.216

Let w
(\ell )
\zeta = (E  - \zeta ME)

T v(\ell ), \ell = 1, . . . , d, and assume that \delta k is an eigenvalue217

of (B,MB) with multiplicity \rho \delta \leq s, and corresponding eigenvectors v
(1)
k , . . . , v

(\rho \delta )
k .218

Then, if rank(lim\zeta \rightarrow \delta k(E  - \zeta ME)
T [v

(1)
k , . . . , v

(\rho \delta )
k ]) = \theta \leq \rho \delta , there exist integers219

j1, . . . , j\theta \in \{ 1, . . . , s\} such that220

\Biggl\{ 
lim\zeta \rightarrow \delta k \mu \{ j1,...,j\theta \} (\zeta ) =  - \infty , when \zeta < \delta k, and

lim\zeta \rightarrow \delta k \mu \{ j1,...,j\theta \} (\zeta ) = +\infty , when \zeta > \delta k.
221

222

As \zeta \rightarrow \delta k, all but the above eigenvalue curves cross \delta k in an analytical manner. The223

eigenvalue curves are strictly decreasing in their entire domain of definition. Details224

on the above discussion can be found in [23, Theorem 4.1] and [30, Theorem 2.1] when225

M = I. Extensions to the case M \not = I are straightforward.226

3.3. Taylor series expansion of \bfity \bfitj (\bfitlambda ). Following (2.2), a scalar \lambda /\in \Lambda (B,MB)227

is an eigenvalue3 of the matrix pencil (A,M) if and only if there exists an integer228

1 \leq j \leq s such that \mu j(\lambda ) = 0 (e.g., see Figure 3.1). The eigenvector yj(\lambda ) associated229

with the eigenvalue \mu j(\lambda ) is then equal to the bottom s\times 1 subvector of eigenvector x230

associated with \lambda . Therefore, computing yj(\lambda ) is the first step toward approximating231

the eigenvector x.232

Let now \sigma \in [\lambda  - , \lambda +] be an approximation of \lambda , where [\lambda  - , \lambda +] is located between233

two consecutive poles of \mu j(\zeta ) (if such poles exist).4 In the ideal scenario, we have234

\sigma \equiv \lambda , which leads to yj(\sigma ) = yj(\lambda ). In practice, we can only hope that \sigma \approx \lambda ,235

and thus yj(\sigma ) is only an approximation of yj(\lambda ). To improve this approximation, we236

exploit the analyticity of the eigenpair (\mu j(\zeta ), yj(\zeta )).237

Let
diyj(\zeta )
d\zeta i denote the ith derivative of the univariate vector-valued function yj(\zeta ).240

Expanding yj(\lambda ) through its Taylor series around \sigma gives241

yj(\lambda ) =
\infty \sum 

i=0

(\lambda  - \sigma )i

i!

\biggl( 
diyj(\zeta )

d\zeta i

\biggr) 

\zeta =\sigma 

.(3.1)242

243

The above expression suggests that even when \sigma is not very close to \lambda , we can improve244

the approximation of yj(\lambda ) by considering higher-order derivatives of yj(\zeta ) evaluated245

at \sigma .246

3The case where \lambda \in \Lambda (B,MB) is more involved as it is possible that \bfd \bfe \bft [S(\lambda )] \not = 0. Nonetheless,
such scenarios can be easily detected, e.g., see [30].

4In practice a pole of \mu j(\zeta ) located inside the interval [\lambda  - , \lambda +] poses no threat as long as \sigma is
chosen carefully.
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\zeta 

\mu (\zeta )

\mu 1(\zeta )

\mu 2(\zeta ) \mu 3(\zeta )

\sigma 

\mu 1(\sigma )

\sigma 

\mu 1(\sigma )

\lambda 1 \lambda 2 \lambda 3\lambda  - 

\lambda +

\delta \equiv pole of \mu 1(\zeta )

\mu 1(\zeta )\zeta \rightarrow \delta  - \rightarrow  - \infty 

Fig. 3.1. Illustration of the concept of eigenvalue curves. We assume that \lambda \equiv \lambda 1 is a root of
the eigenvalue curve \mu 1(\zeta ). The figure shows two potential choices of the variable \sigma \in [\lambda  - , \lambda +].

238

239

Following (3.1), the eigenvector x can be written as247

x =

\Biggl( 
 - (B  - \lambda MB)

 - 1(E  - \lambda ME)yj(\lambda )

yj(\lambda )

\Biggr) 

=

\left( 
   
 - (B  - \lambda MB)

 - 1(E  - \lambda ME)

\Biggl[ \sum \infty 

i=0

(\lambda  - \sigma )i

i!

\Bigl( 
diyj(\zeta )

d\zeta i

\Bigr) 
\zeta =\sigma 

\Biggr] 

\sum \infty 

i=0

(\lambda  - \sigma )i

i!

\Bigl( 
diyj(\zeta )

d\zeta i

\Bigr) 
\zeta =\sigma 

\right) 
   

=

\left( 
     

 - (B - \lambda MB)
 - 1(E  - \lambda ME)

\Biggl[ 
yj(\sigma ),

\Bigl( 
dyj(\zeta )

d\zeta 

\Bigr) 
\zeta =\sigma 

,
\Bigl( 

d2yj(\zeta )

d\zeta 2

\Bigr) 
\zeta =\sigma 

, . . .

\Biggr] 

\Biggl[ 
yj(\sigma ),

\Bigl( 
dyj(\zeta )

d\zeta 

\Bigr) 
\zeta =\sigma 

,
\Bigl( 

d2yj(\zeta )

d\zeta 2

\Bigr) 
\zeta =\sigma 

, . . .

\Biggr] 

\right) 
     

\left( 
      

1

(\lambda  - \sigma )/1!

(\lambda  - \sigma )2/2!

...

\right) 
      

.

248

249
250

3.4. Rayleigh quotient approximation of \bfitlambda .251

Definition 3.3. We define the following matrix-valued functions of \zeta \in \BbbR :252

B\zeta = B  - \zeta MB , E\zeta = E  - \zeta ME , and C\zeta = C  - \zeta MC .253
254

Definition 3.4. We define theM -norm of an SPD n\times n matrixM and a nonzero255

vector x \in \BbbR n to be equal to \| x\| M =
\surd 
xTMx.256

3.4.1. A basic approximation.257

Proposition 3.5. Let \lambda \in \Lambda (A,M) satisfy \mu j(\lambda ) = 0, and \lambda  - \leq \sigma \leq \lambda \leq \lambda +,258

where \lambda is the only root of \mu j(\zeta ) located inside the interval [\lambda  - , \lambda +]. Additionally, let259

\tau \in \BbbZ , and define the vectors260
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\^y =

\Biggl[ 
yj(\sigma ),

\biggl( 
dyj(\zeta )

d\zeta 

\biggr) 

\zeta =\sigma 

, . . . ,

\biggl( 
d\tau yj(\zeta )

d\zeta \tau 

\biggr) 

\zeta =\sigma 

\Biggr] \left( 
 

1
\lambda  - \sigma /1!

...
(\lambda  - \sigma )\tau /\tau !

\right) 
 (3.2)261

262

and263

\^x =

\Biggl( 
 - B - 1

\sigma E\sigma \^y

\^y

\Biggr) 
.264

265

Then, if \^\lambda = \^xTA\^x
\^xTM \^x

,266 \bigm| \bigm| \bigm| \lambda  - \^\lambda 
\bigm| \bigm| \bigm| = O

\bigl( 
(\lambda  - \sigma )2

\bigr) 
,267

268

where the big-O symbol is to be interpreted in the limit as \sigma \rightarrow \lambda .269

Proof. Let \rho (z) = zTAz
zTMz

be the Rayleigh quotient of any nonzero vector z \in \BbbR n.270

Expanding \rho (z) through its Taylor series expansion around the eigenvector x gives271

\rho (z) = \rho (x) + (z  - x)T\nabla \rho (x) +O(\| z  - x\| 2M ) as \^z \rightarrow x.272
273

The gradient of the Rayleigh quotient is equal to \nabla \rho (z) = 2Az(z
TMz) - Mz(zTAz)

(zTMz)2
, and274

thus \nabla \rho (x) = 0. It follows that275 \bigm| \bigm| \bigm| \lambda  - \^\lambda 
\bigm| \bigm| \bigm| = | \rho (x) - \rho (\^x)| = O

\bigl( 
\| \^x - x\| 2M

\bigr) 
as \^x\rightarrow x.276

277

Write now E\lambda = E\sigma  - (\lambda  - \sigma )ME and define the vector278

r =

\left( 
   
 - B - 1

\lambda E\lambda 

\biggl[ \Bigl( 
d\tau +1yj(\zeta )
d\zeta \tau +1

\Bigr) 
\zeta =\sigma 

,
\Bigl( 
d\tau +2yj(\zeta )
d\zeta \tau +2

\Bigr) 
\zeta =\sigma 

, . . .

\biggr] 

\biggl[ \Bigl( 
d\tau +1yj(\zeta )
d\zeta \tau +1

\Bigr) 
\zeta =\sigma 

,
\Bigl( 
d\tau +2yj(\zeta )
d\zeta \tau +2

\Bigr) 
\zeta =\sigma 

, . . .

\biggr] 

\right) 
   

\left( 
   

(\lambda  - \sigma )\tau +1/ (\tau + 1)!

(\lambda  - \sigma )\tau +2/ (\tau + 2)!

...

\right) 
   .279

280

The difference x - \^x can then be written as281

x - \^x = r  - 
\Biggl( \bigl[ 
B - 1
\lambda  - B - 1

\sigma 

\bigr] 
E\sigma \^y

0

\Biggr) 
+

\Biggl( 
(\lambda  - \sigma )B - 1

\lambda ME \^y

0

\Biggr) 
.282

283

Let now E\sigma \^y and ME \^y be expanded in the basis \{ MBv
(\ell )\} \ell =1,...,d:284

E\sigma \^y =MB

d\sum 

\ell =1

\epsilon \ell v
(\ell ), ME \^y =MB

d\sum 

\ell =1

\gamma \ell v
(\ell ),285

286

where [\epsilon \ell , \gamma \ell ]
T \in \BbbR 2 are the expansion coefficients associated with the direction v(\ell ).287

Taking advantage of the identity B - 1
\lambda  - B - 1

\sigma = (\lambda  - \sigma )B - 1
\lambda MBB

 - 1
\sigma and noticing that288

\| r\| M = O((\lambda  - \sigma )\tau +1) leads to289

\| x - \^x\| 2M =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| r  - 
\Biggl( 
(\lambda  - \sigma )B - 1

\lambda 

\bigl( 
MBB

 - 1
\sigma E\sigma  - ME

\bigr) 
\^y

0

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

M

(3.3)

290

= \| r\| 2M +
\bigm\| \bigm\| (\lambda  - \sigma )B - 1

\lambda 

\bigl( 
MBB

 - 1
\sigma E\sigma  - ME

\bigr) 
\^y
\bigm\| \bigm\| 2
MB

291

 - 2(\lambda  - \sigma )rTM

\Biggl( 
B - 1
\lambda 

\bigl( 
MBB

 - 1
\sigma E\sigma  - ME

\bigr) 
\^y

0

\Biggr) 
292

= O
\bigl( 
(\lambda  - \sigma )2\tau +2

\bigr) 
+ (\lambda  - \sigma )2

d\sum 

\ell =1

\biggl( 
\epsilon \ell  - \gamma \ell (\delta \ell  - \sigma )

(\delta \ell  - \sigma )(\delta \ell  - \lambda )

\biggr) 2

+O
\bigl( 
(\lambda  - \sigma )\tau +2

\bigr) 
,293

294
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where the big-O symbol is to be interpreted in the limit as \sigma \rightarrow \lambda , and we made use295

of the relations296

(\lambda  - \sigma )B - 1
\lambda 

\bigl( 
MBB

 - 1
\sigma E\sigma  - ME

\bigr) 
\^y = (\lambda  - \sigma )

d\sum 

\ell =1

\biggl( 
\epsilon \ell  - \gamma \ell (\delta \ell  - \sigma )

(\delta \ell  - \sigma )(\delta \ell  - \lambda )

\biggr) 
v(\ell )297

298

and299

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\Biggl( 
(\lambda  - \sigma )B - 1

\lambda 

\bigl( 
MBB

 - 1
\sigma E\sigma  - ME

\bigr) 
\^y

0

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

M

=
\bigm\| \bigm\| (\lambda  - \sigma )B - 1

\lambda 

\bigl( 
MBB

 - 1
\sigma E\sigma  - ME

\bigr) 
\^y
\bigm\| \bigm\| 2
MB

300

= (\lambda  - \sigma )2
d\sum 

\ell =1

\biggl( 
\epsilon \ell  - \gamma \ell (\delta \ell  - \sigma )

(\delta \ell  - \sigma )(\delta \ell  - \lambda )

\biggr) 2

.301

302

Proposition 3.5 remains valid even when the interval [\lambda  - , \lambda +] includes more than303

one root of \mu j(\zeta ) (including multiple eigenvalues). However, only one of these ei-304

genvalues can be approximated. Moreover, the interval [\lambda  - , \lambda +] can include poles of305

\mu j(\zeta ) but \sigma needs to be algebraically smaller than these poles.306

3.4.2. Improving accuracy by deflation. The bound on \| x - \^x\| 2M appearing307

in Proposition 3.5 can be improved (reduced) by explicitly removing those directions308

in which \| x - \^x\| 2M is large, i.e., the directions corresponding to the eigenvectors associ-309

ated with the few smallest (in magnitude) eigenvalues of the matrix pencil (B\sigma ,MB).310

This is especially true for the second and third terms shown in (3.3), both of which311

depend on the distance of \delta \ell , \ell = 1, . . . , d, from both \sigma and \lambda .312

More specifically, let the approximate eigenvector \^x set as313

\^x =

\Biggl( 
 - B - 1

\sigma E\sigma \^y

\^y

\Biggr) 
 - 
\Biggl( \bigl[ 
v(1), . . . , v(\^\kappa )

\bigr] 

0

\Biggr) 
\left( 
   

\nu 1
...

\nu \^\kappa 

\right) 
   ,(3.4)314

315

where \^y is defined in (3.2), and \nu j = (\lambda  - \sigma )( \epsilon j - \gamma j(\delta j - \sigma )(\delta j - \lambda )(\delta j - \sigma ) ), j = 1, . . . , \^\kappa \leq d. Following316

the reasoning in Proposition 3.5 (we omit the intermediate steps), we can show317

\| x - \^x\| 2M = O
\bigl( 
(\lambda  - \sigma )2\tau +2\bigr) + (\lambda  - \sigma )2

d\sum 

\ell =\^\kappa +1

\biggl( 
\epsilon \ell  - \gamma \ell (\delta \ell  - \sigma )

(\delta \ell  - \sigma )(\delta \ell  - \lambda )

\biggr) 2

+O
\bigl( 
(\lambda  - \sigma )\tau +2\bigr) .318

319

The eigenvector approximation \^x shown in (3.4) becomes appealing when \^\kappa is set320

such that the eigenvalues \delta \^\kappa +1, . . . , \delta d lie far away from both \lambda and \sigma .321

3.4.3. Reducing the asymptotic order of the upper bound. The analysis322

in Proposition 3.5 suggests that regardless of the value of \tau , at the limit \sigma \rightarrow \lambda the323

term | \lambda  - \^\lambda | will be of the order O((\lambda  - \sigma )2) due to the approximation of the term324

B - 1
\lambda E\lambda by B - 1

\sigma E\sigma .325

Let us write B - 1
\lambda = B - 1

\sigma +\epsilon where \epsilon < min1\leq \ell \leq d | \delta \ell  - \sigma | . The matrix resolvent326

can then be written as B - 1
\lambda = ((I  - \epsilon MBB

 - 1
\sigma )B\sigma )

 - 1 = B - 1
\sigma 

\sum \infty 
k=0[\epsilon MBB

 - 1
\sigma ]k. The327

approximation u \approx  - B - 1
\sigma E\sigma \^y can be replaced by u \approx  - (B - 1

\sigma + \epsilon B - 1
\sigma MBB

 - 1
\sigma )E\sigma \^y.328

When ME \not = 0, the error term associated with B - 1
\lambda ME \^y can also be smoothed out329

by adding the vector B - 1
\sigma ME \^y, i.e., u \approx  - (B - 1

\sigma E\sigma + \epsilon B - 1
\sigma MBB

 - 1
\sigma E\sigma  - B - 1

\sigma ME)\^y.330
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Proposition 3.6. Let \lambda \in \Lambda (A,M) satisfy \mu j(\lambda ) = 0, and \lambda  - \leq \sigma \leq \lambda \leq \lambda +,331

where \lambda is the only root of \mu j(\zeta ) located inside the interval [\lambda  - , \lambda +]. Additionally, let332

\tau \in \BbbZ and define the vectors333

\^y =

\Biggl[ 
yj(\sigma ),

\biggl( 
dyj(\zeta )

d\zeta 

\biggr) 

\zeta =\sigma 

, . . . ,

\biggl( 
d\tau yj(\zeta )

d\zeta \tau 

\biggr) 

\zeta =\sigma 

\Biggr] \left( 
 

1
\lambda  - \sigma /1!

...
(\lambda  - \sigma )\tau /\tau !

\right) 
 334

335

and336

\^x =

\Biggl(  - 
\bigl[ 
B - 1

\sigma + (\lambda  - \sigma )B - 1
\sigma MBB

 - 1
\sigma 

\bigr] 
E\sigma \^y

\^y

\Biggr) 
+

\Biggl( 
B - 1

\sigma ME \^y

0

\Biggr) 
 - 

\left( 
 
\Bigl[ 
v(1), . . . , v(\^\kappa )

\Bigr] 

0

\right) 
 

\left( 
    

\nu 1

...

\nu \^\kappa 

\right) 
    ,337

338

where \nu j = (\lambda  - \sigma )2(
\epsilon j - \gamma j(\delta j - \sigma )

(\delta j - \lambda )(\delta j - \sigma )2 ), j = 1, . . . , \^\kappa \leq d.339

Then, if \^\lambda = \^xTA\^x
\^xTM \^x

,340

\bigm| \bigm| \bigm| \lambda  - \^\lambda 
\bigm| \bigm| \bigm| = O ((\lambda  - \sigma )\chi ) , where

\Biggl\{ 
\chi = 2, when \tau = 0, and

\chi = 4, when \tau \geq 1,
341

342

and the big-O symbol is to be interpreted in the limit as \sigma \rightarrow \lambda .343

Proof. First notice that344

(\lambda  - \sigma )
\bigl( 
B - 1
\lambda  - B - 1

\sigma 

\bigr) 
= (\lambda  - \sigma )2B - 1

\lambda MBB
 - 1
\sigma ,345

\bigl( 
B - 1
\lambda  - B - 1

\sigma  - (\lambda  - \sigma )B - 1
\sigma MBB

 - 1
\sigma 

\bigr) 
= (\lambda  - \sigma )2B - 1

\lambda MBB
 - 1
\sigma MBB

 - 1
\sigma .346

347

We can then write the difference x - \^x as348

x - \^x = r  - (\lambda  - \sigma )2
\Biggl[ \Biggl( 

B - 1
\lambda MBB

 - 1
\sigma MBB

 - 1
\sigma E\sigma \^y

0

\Biggr) 
 - 
\Biggl( 
B - 1

\lambda MBB
 - 1
\sigma ME \^y

0

\Biggr) \Biggr] 
349

+

\left( 
 
\Bigl[ 
v(1), . . . , v(\^\kappa )

\Bigr] 

0

\right) 
 

\left( 
    

\nu 1

...

\nu \^\kappa 

\right) 
    350

= r  - (\lambda  - \sigma )2
\Biggl( 
B - 1

\lambda MBB
 - 1
\sigma 

\bigl( 
MBB

 - 1
\sigma E\sigma  - ME

\bigr) 
\^y

0

\Biggr) 
+

\left( 
 
\Bigl[ 
v(1), . . . , v(\^\kappa )

\Bigr] 

0

\right) 
 

\left( 
    

\nu 1

...

\nu \^\kappa 

\right) 
    .351

352

Following the same reasoning as in Proposition 3.5 (we omit the intermediate steps),353

we get354

\| x - \^x\| 2M = O
\Bigl( 
(\lambda  - \sigma )2(\tau +1)

\Bigr) 
+ (\lambda  - \sigma )4

d\sum 

\ell =\^\kappa +1

\biggl( 
\epsilon \ell  - \gamma \ell (\delta \ell  - \sigma )

(\delta \ell  - \sigma )2(\delta \ell  - \lambda )

\biggr) 2

+O
\bigl( 
(\lambda  - \sigma )\tau +3\bigr) .355

356

Proposition 3.6 tells us that a first-order approximation of the resolvent B - 1
\lambda 361

combined with \tau = 1 leads to eigenvalue approximation errors of the order O((\lambda  - \sigma )4)362

as \sigma \rightarrow \lambda . Figure 3.2 plots the approximation error of eigenvalues \lambda 1, \lambda 2, and \lambda 3,363

obtained by Proposition 3.6 for some Dirichlet discretization of the Laplacian operator364

in the two-dimensional space. In agreement with Proposition 3.6, the true error curves365

follow nicely those of (\sigma  - \lambda j)2 (when \tau = 0) and (\sigma  - \lambda j)4 (when \tau = 1), respectively.366

The error reduction remains quartic even when \tau \geq 2. More generally, an increase by367

one in the value of \tau should be accompanied by the addition of one more term in the368

Neumann series approximation of the resolvent B - 1
\lambda if the order of the upper bound369

is to be decreased.370
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10-4 10-3 10-2

10-6

10-4

10-2

10-4 10-3 10-2

10-15

10-10

10-5

Fig. 3.2. Approximation error of eigenvalues \lambda 1, \lambda 2, and \lambda 3, obtained by Proposition 3.6 as
\sigma \in [0, \lambda 3). Matrix A is formed by a regular Dirichlet discretization of the Laplacian operator over
a square domain where the grid is partitioned into p = 4 subdomains (M = I). Left: \tau = 0. Right:
\tau = 1.

357

358

359

360

\zeta 

\mu \psi i(\zeta )

\mu 1(\zeta )
\mu 2(\zeta ) \mu 3(\zeta )

\sigma = 0.3 \sigma = 1.4

\lambda 1 \lambda 2 \lambda 3

\mu 1(\sigma )

\mu 2(\sigma )

\mu 3(\sigma )

\mu 1(\sigma )

\mu 2(\sigma )

\mu 3(\sigma )

Fig. 4.1. The eigenpairs of the matrix S(\sigma ) can be exploited for the approximation of more
than one eigenpair of the matrix pencil (A,M). In this example we have nev = 3 and \psi i = \kappa i = i.
Two different choices of \sigma are shown.

381

382

383

4. Computing a large number of eigenpairs. The technique discussed in371

section 3 can be extended to the simultaneous approximation of all nev sought eigen-372

pairs. More specifically, denote the nev sought eigenvalues located immediately on373

the right of a real scalar \alpha by \lambda \kappa 1
\leq \cdot \cdot \cdot \leq \lambda \kappa nev , and let eigenvalue \lambda \kappa i be a root of374

the eigenvalue curve \mu \psi i(\zeta ), i.e., \psi i = arg\{ j | \mu j(\lambda \kappa i) = 0\} . The eigenpair associated375

with eigenvalue \lambda \kappa i can then be approximated independently of the rest by comput-376

ing the eigenpair (\mu \psi i(\sigma ), y\psi i(\sigma )) and considering eigenvector y\psi i(\sigma ) as a zeroth-order377

approximation of the eigenvector y\psi i(\lambda \kappa i) \equiv y(\kappa i). Figure 4.1 illustrates an example378

where nev = 3 and \psi i = \kappa i = i. Eigenvalue \lambda i is a root of eigenvalue curve \mu i(\zeta ), and379

the theory presented in section 3 applies to each eigenvalue curve independently.380

Assume for the moment that no eigenvalue curves cross each other and let \sigma = \alpha .384

Since the eigenvalue curves are strictly decreasing, we can infer that the eigenvalues385
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\lambda \kappa 1
, . . . , \lambda \kappa nev are roots of consecutive eigenvalue curves, i.e., \psi i = \psi 1 + (i - 1). Ad-386

ditionally, since \alpha \leq \lambda \kappa 1
, \mu \psi 1

(\zeta ) is precisely the eigenvalue curve which crosses the387

algebraically smallest nonnegative eigenvalue of S(\alpha ). The two above observations388

tell us that the eigenvectors y\psi 1(\alpha ), . . . , y\psi nev (\alpha ) associated with the nev algebraically389

smallest nonnegative eigenvalues of the matrix S(\alpha ) form a zeroth-order approxima-390

tion of the vectors y\psi 1
(\lambda \kappa 1

) \equiv y(\lambda \kappa 1 ), . . . , y\psi nev (\lambda \kappa nev ) \equiv y(\lambda \kappa nev ). Note that the value391

of \psi 1 itself is not needed.392

In practice, eigenvalue curves which intersect each other pose no threat as long393

as each one of the nev algebraically smallest nonnegative eigenvalues of the matrix394

S(\alpha ) coincides with one of the values \mu \psi 1(\alpha ), . . . , \mu \psi nev (\alpha ). Our default strategy395

throughout the rest of this paper is to set \sigma = \alpha .396

4.1. A Rayleigh--Ritz algorithm. The theoretical results presented in section397

3 focused on the eigenvalue approximation error resulting by a Rayleigh quotient398

approximation with an approximate eigenvector \^x. In practice, we cannot form \^x since399

we do not know the quantity \lambda  - \sigma . Nonetheless, we can overcome this drawback by400

approximating all nev eigenvalues from a single subspace by means of a Rayleigh--Ritz401

projection.402

Algorithm 4.1. The complete procedure
0. Input: A, M , p, \alpha , nev, \kappa 
1. Reorder A and M as in (2.4)
2. Call Algorithm 4.2 (subspace associated with interface variables)
3. Call Algorithm 4.3 (subspace associated with interior variables)
4. Build the projection matrix Z as described in section 4.3.1

5. Solve (ZTAZ)\~x = \^\lambda (ZTMZ)\~x for the nev sought (\~\lambda , \~x)
6. Form the Ritz vectors \^x = Z\~x associated with the nev computed

eigenpairs from step 5

403

Algorithm 4.1 describes the complete algorithmic procedure to compute the nev404

eigenvalues located immediately on the right of the user-given scalar \alpha \in \BbbR . The405

Rayleigh--Ritz eigenvalue problem shown in step 5 must be solved only for the eigen-406

pairs associated with the nev smallest eigenvalues that are greater than or equal to407

\alpha . Except for the matrices A and M , and the scalars nev and \alpha , Algorithm 4.1 also408

requires a number of partitions p and a nonzero integer \kappa denoting the number of409

eigenvectors computed from each matrix pencil (B
(j)
\sigma ,M

(j)
B ), j = 1, . . . , p.410

4.2. Building the projection subspace associated with interface vari-411

ables. Algorithm 4.2 begins by computing the eigenvectors associated with the nev412

smallest nonnegative eigenvalues of the matrix S(\alpha ). These can be computed by413

any appropriate sparse eigenvalue solver, e.g., the (block) Lanczos method com-414

bined with shift-and-invert [13] or (generalized) Davidson [36]. The algorithm pro-415

ceeds by computing the derivatives y\prime \psi i(\alpha ) \equiv (
dyj(\zeta )
d\zeta )\zeta =\alpha , y

\prime \prime 
\psi i
(\alpha ) \equiv (

d2yj(\zeta )
d\zeta 2 )\zeta =\alpha , . . .,416

i = 1, 2, . . . , nev. Details on the practical computation of these derivatives up to a417

second order are provided in the appendix.418

Algorithm 4.2. Projection subspace associated with interface variables
0. Input: \alpha , nev
1. Solve S(\alpha )y(\alpha ) = \mu (\alpha )y(\alpha ) for the nev smallest nonnegative

eigenvalues \mu (\alpha ) and associated eigenvectors y(\alpha )
-. Denote these eigenpairs as (\mu \psi i(\alpha ), y\psi i(\alpha )), i = 1, 2, . . . , nev
2. Form Y = [y\psi 1

(\alpha ), y\prime \psi 1
(\alpha ), y\prime \prime \psi 1

(\alpha ), . . . , y\psi 2
(\alpha ), y\prime \psi 2

(\alpha ), y\prime \prime \psi 2
(\alpha ), . . .]

419
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4.3. Building the projection subspace associated with interior vari-420

ables. Algorithm 4.3 provides a formal description of the procedure followed for421

the construction of the projection subspace associated with interior variables. The422

routine ``\tte \tti \ttg \tts (B
(j)
\alpha ,M

(j)
B , \kappa , sm)"" listed in step 2 denotes the computation of the eigen-423

vectors associated with the \kappa smallest (in magnitude) eigenvalues of each matrix pencil424

(B
(j)
\alpha ,M

(j)
B ), j = 1, . . . , p, and can be performed by any appropriate sparse eigenvalue425

solver. These eigenvectors form the columns of the dj \times \kappa matrix Vj . The value of \kappa 426

can be set either a priori or adaptively, e.g., see the related discussion in [40].427

Algorithm 4.3. Projection subspace associated with interior variables
0. Input: \alpha , p, \kappa , Y := orthonormal basis returned by Algorithm 4.2
1a. For j = 1, . . . , p

2. Compute Vj = \tte \tti \ttg \tts 
\Bigl( 
B

(j)
\alpha ,M

(j)
B , \kappa , sm

\Bigr) 

1b. End
3. Form U =

\bigl[ 
\=U (1), . . . , \=U (p), - B - 1

\alpha E\alpha Y, - B - 1
\alpha MBB

 - 1
\alpha E\alpha Y,B

 - 1
\alpha MEY

\bigr] 

where \=U (j) =

\biggl( 0\ell j ,\kappa 

Vj
0\xi j,\kappa 

\biggr) 
and we recall \ell j =

k<j\sum 
k=1

sk, and \xi j =
k=p\sum 
k>j

sk

428

4.3.1. The Rayleigh--Ritz eigenvalue problem. The matrix Y returned by429

Algorithm 4.2 is distributed among the p subdomains and can be written as430

Y =
\Bigl[ 
Y T1 Y T2 \cdot \cdot \cdot Y Tp

\Bigr] T
,(4.1)431

432

where Yj \in \BbbR sj\times \eta is the row block of matrix Y associated with the jth subdomain433

and \eta \in \BbbZ \ast denotes the column dimension of matrix Y . By definition \eta is equal to an434

integer multiple of nev.435

Define now the matrices436

\Bigl( 
\^B(j)
\alpha 

\Bigr)  - 1

=
\Bigl( 
B(j)
\alpha 

\Bigr)  - 1 \Bigl( 
I  - VjV

T
j M

(j)
B

\Bigr) 
and437

Pj =
\Bigl[ 
E(j)
\alpha , - M (j)

E

\Bigr] \Biggl( Yj 0

0 Yj

\Biggr) 
.438

439

The projection matrix Z can be then written as440

Z =

\left[ 
              

V1  - 
\Bigl( 
\^B
(1)
\alpha 

\Bigr)  - 1

P1  - 
\biggl( 
B

(1)
\alpha 

\Bigl( 
M

(1)
B

\Bigr)  - 1
\^B
(1)
\alpha 

\biggr)  - 1

E
(1)
\alpha Y1

V2  - 
\Bigl( 
\^B
(2)
\alpha 

\Bigr)  - 1

P2  - 
\biggl( 
B

(2)
\alpha 

\Bigl( 
M

(2)
B

\Bigr)  - 1
\^B
(2)
\alpha 

\biggr)  - 1

E
(2)
\alpha Y2

. . .
...

...

Vp  - 
\Bigl( 
\^B
(p)
\alpha 

\Bigr)  - 1

Pp  - 
\biggl( 
B

(p)
\alpha 

\Bigl( 
M

(p)
B

\Bigr)  - 1
\^B
(p)
\alpha 

\biggr)  - 1

E
(p)
\alpha Yp

[Y, 0s,\eta ]

\right] 
              

.441

442

The total memory overhead associated with the jth subdomain is equal to that of443

storing \kappa dj + (3dj + sj)\eta floating-point scalars. The dimension of the Rayleigh--Ritz444

pencil (ZTAZ,ZTMZ) is equal to \kappa p+3\eta and can be solved by the appropriate routine445

in LAPACK, e.g., \ttd \tts \tty \ttg \ttv [3]. As a sidenote, when M
(j)
E = 0 we have Pj = E

(j)
\alpha Yj and446

the bottom row block of matrix Z becomes [0s,p\kappa , Y, 0s,\eta ]. The dimension of the447

Rayleigh--Ritz pencil then reduces to \kappa p+ 2\eta .448
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4.4. Comparing Algorithm 4.1 with shift-and-invert Lanczos. A natural449

question is how Algorithm 4.1 compares against shift-and-invert Lanczos when the450

latter is applied directly to the pencil (A - \alpha M,M).451

The first key difference between these two techniques is orthogonalization cost.452

Applying k steps of shift-and-invert Lanczos to matrix pencils (S(\alpha ), I) and (A  - 453

\alpha M,M) leads to a total orthogonalization cost of O(k2s) and O(k2n), respectively.454

Thus, Algorithm 4.1 reduces orthogonalization costs by a factor of n/s, and this455

difference becomes more pronounced as nev increases (since k \geq nev).456

The second key difference between Algorithm 4.1 and shift-and-invert Lanczos457

is the number of linear system solutions with B\alpha as the coefficient matrix. It is458

straightforward to verify that applying k steps of shift-and-invert Lanczos to the459

pencil (A - \alpha M,M) requires 2k such linear system solutions. In contrast, Algorithm460

4.1 requires 3\eta (2\eta if ME = 0) linear solves with B\alpha . Nonetheless, these 3\eta linear461

solves can be performed simultaneously, since all right-hand sides are available at the462

same time. Thus, the associated cost can be marginally higher than that of solving463

for a few right-hand sides. To the above cost we also need to add the computational464

cost required to compute the eigenvectors of the block-diagonal pencil (B\alpha ,MB) in465

Algorithm 4.3.466

On the other hand, the accuracy achieved by shift-and-invert Lanczos can be467

significantly higher than that of Algorithm 4.1. Nonetheless, in many applications468

the sought eigenpairs need not be computed to high accuracy, e.g., eigenpairs of469

problems originating from discretizations need be approximated up to the associated470

discretization error.471

4.5. Parallel computing. Algorithm 4.1 is based on domain decomposition472

and is well-suited for execution in modern distributed memory environments. For473

example, each one of the p subdomains can be mapped to a separate MPI process.474

Performing any type of operation with the matrices B
(j)
\sigma , E

(j)
\sigma , and M

(j)
E is then475

an entirely local process in the jth subdomain (i.e., Algorithm 4.3 is embarrassingly476

parallel). An additional layer of parallelism can be realized in each subdomain by477

further exploiting shared memory parallelism to perform the required computations478

with the aforementioned matrices; e.g., see [24] for a similar discussion in the context479

of domain decomposition eigenvalue solvers and [15] for a general discussion on parallel480

computing and domain decomposition.481

In contrast to Algorithm 4.3, Algorithm 4.2 involves computations with the Schur482

complement matrix S(\alpha ), which is distributed among the p subdomains. In this case,483

point-to-point communication among neighboring subdomains is necessary. Finally,484

the Rayleigh--Ritz eigenvalue problem is typically small enough so that it can be485

replicated in all MPI processes and solved redundantly.486

5. Numerical experiments. Our sequential experiments are conducted in a487

MATLAB environment (version R2018b), using 64-bit arithmetic, on a single core of488

a computing system equipped with an Intel Haswell E5-2680v3 processor and 32 GB489

of system memory.490

The eigenvalues of the pencil (A,M) are ordered as \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n, and491

throughout the rest of this section we focus in computing the nev algebraically smallest492

eigenvalues \lambda 1, . . . , \lambda nev . Unless mentioned otherwise, the default values in Algorithm493

4.1 will be set as p = 8, \kappa = 5, and \alpha = 0. For indefinite pencils we first shift the494

spectrum so that all eigenvalues become positive, and then apply Algorithm 4.1 with495

\alpha = 0. Throughout the rest of this paper we assume \psi i = i, i = 1, . . . , nev.496
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We consider three different choices to set span(Y ) in Algorithm 4.2:497

\{ y\} := \bfs \bfp \bfa \bfn 
\Bigl( 
[yi(\alpha )]i=1,...,3nev

\Bigr) 
,498

\{ y, dy\} := \bfs \bfp \bfa \bfn 

\left( 
 
\Biggl[ 
yi(\alpha ),

\biggl( 
dyi(\zeta )

d\zeta 

\biggr) 

\zeta =\alpha 

\Biggr] 

i=1,...,nev

\right) 
 ,499

\bigl\{ 
y, dy, d2y

\bigr\} 
:= \bfs \bfp \bfa \bfn 

\left( 
 
\Biggl[ 
yi(\alpha ),

\biggl( 
dyi(\zeta )

d\zeta 

\biggr) 

\zeta =\alpha 

,

\biggl( 
d2yi(\zeta )

d\zeta 2

\biggr) 

\zeta =\alpha 

\Biggr] 

i=1,...,nev

\right) 
 .500

501

The eigenpairs of matrix S(\alpha ) are computed up to a residual norm of 1.0\times 10 - 6.502

5.1. A model problem. Our first test case consists of a five-point stencil finite503

difference discretization of the Dirichlet eigenvalue problem504

\Delta u+ \lambda u = 0 in \Omega := (0, 1)\times (0, 1), u| \partial \Omega = 0,(5.1)505
506

where \Delta denotes the Laplace operator. Our goal is not to compute the actual eigen-507

values of the Laplace operator but rather to assess the performance of Algorithm 4.1.508

To this end, the Dirichlet eigenvalue problem is discretized on a 250\times 250 mesh, and509

we set nev = 150. Note that A has many eigenvalues of multiplicity \rho \lambda = 2. The510

proposed method can naturally capture multiple eigenvalues in contrast to (nonblock)511

Krylov-based approaches such as shift-and-invert Lanczos.512

Figure 5.1 plots the relative eigenvalue errors and associated residual norms of the520

approximate eigenpairs returned by Algorithm 4.1 when U =
\bigl[ 
u(1), . . . , u(nev)

\bigr] 
, i.e.,521

there is no error associated with interior variables. In agreement with the discussion522

in section 3, adding more eigenvector derivatives leads to higher accuracy, especially523

for those eigenvalues located closest to \alpha . Table 5.1 lists the maximum/minimum524
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Fig. 5.1. Relative eigenvalue errors (left) and residual norms (right) returned by Algorithm
4.1 in the approximation of the nev = 150 algebraically smallest eigenvalues of the 250\times 250 finite
difference discretization of the Dirichlet eigenvalue problem when U =

\bigl[ 
u(1), . . . , u(nev)

\bigr] 
.

513

514

515

Table 5.1516

Maximum/minimum relative eigenvalue error achieved by Algorithm 4.1 in the approximation
of the nev = 50 algebraically smallest eigenvalues of the 250\times 250 finite difference discretization of
the Dirichlet eigenvalue problem for U =

\bigl[ 
u(1), . . . , u(nev)

\bigr] 
and various values of p.

517

518

519

\{ y\} \{ y, dy\} 
\bigl\{ 
y, dy, d2y

\bigr\} 

max min max min max min

p = 2 1.1\times 10 - 6 9.0\times 10 - 9 5.7\times 10 - 7 5.2\times 10 - 12 2.9\times 10 - 9 1.7\times 10 - 15

p = 4 7.5\times 10 - 6 2.8\times 10 - 8 8.0\times 10 - 6 1.9\times 10 - 11 4.5\times 10 - 7 1.6\times 10 - 13

p = 8 4.7\times 10 - 5 7.2\times 10 - 8 8.4\times 10 - 5 2.0\times 10 - 11 6.7\times 10 - 6 2.8\times 10 - 12

p = 16 1.5\times 10 - 4 1.1\times 10 - 7 3.4\times 10 - 4 5.8\times 10 - 11 5.3\times 10 - 5 9.4\times 10 - 12
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Fig. 5.2. Plots of the relative eigenvalue errors (left) and residual norms (right) returned by
Algorithm 4.1 in the approximation of the nev = 150 algebraically smallest eigenvalues of the 250\times 
250 finite difference discretization of the Dirichlet eigenvalue problem when Y =

\bigl[ 
y(1), . . . , y(nev)

\bigr] 
,

and \kappa varies.

532

533

534

535

Table 5.2536

n: size of (A,M); s: number of interface variables (p = 8); nnz(.): number of nonzero entries.537

\# Matrix pencil n nnz(A)/n nnz(M)/n s Application Source

1. Si2 769 23.1 1.0 547 Quantum Chemistry [9]
2. nos3 960 16.5 1.0 170 Structural [9]
3. FEmesh 2,689 6.9 6.9 190 Finite Element -
4. VCNT 4000 4,000 40.0 1.0 640 Quantum Mechanics [19]
5. Kuu/Muu 7,102 47.9 24.0 488 Structural [9]
6. fv1 9,604 8.9 1.0 453 2D/3D [9]
7. FDmesh 62,500 5.0 1.0 1,032 2D -
8. qa8fk/qa8fm 66,172 25.1 25.1 5,270 3D Acoustic [9]

relative eigenvalue error for the same problem where nev = 50 and p varies. In525

summary, increasing the number of interface variables leads to lower accuracy unless526

more eigenvector derivatives are computed.527

Figure 5.2 considers the opposite scenario where U is set as in Algorithm 4.3528

and Y = [y(1), . . . , y(nev)]. Here, the asymptotic order of the approximation error is529

fixed (i.e., quartic), and increasing the value of \kappa reduces the upper bound of the530

approximation error.531

5.2. General pencils. Throughout the rest of this section we assume that ma-538

trices U and Y are set as described in Algorithm 4.1. Details on the numerical539

approximation of the first and second derivatives of each computed eigenvector of540

matrix S(\alpha ) are given in the appendix.5541

We consider the application of Algorithm 4.1 on a set of model problems and542

matrix pencils obtained by the SuiteSparse6 Matrix Collection [9], and the Elses7543

matrix library [19]. Details can be found in Table 5.2. The matrix pencil FEmesh544

represents a finite elements discretization of the Dirichlet eigenvalue problem on a545

[ - 1, 1] \times [ - 1, 1] plane where the Laplacian is discretized using linear elements with546

target maximum mesh edge length of h = 0.05. The matrix FDmesh represents the547

5The linear system solver we choose is preconditioned MINRES with a stopping tolerance of
1.0 \times 10 - 3 and a maximum number of five preconditioned iterations, whichever occurs first. The
convergence criterion is applied on the unpreconditioned residuals. For preconditioning we use matrix
S(\alpha ) combined with deflation.

6https://sparse.tamu.edu/.
7http://www.elses.jp/matrix/.
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Table 5.3551

Maximum relative error of the approximation of the nev = 50 algebraically smallest eigenvalues
returned by Algorithm 4.1 as \kappa varies.

552

553

\{ y\} \{ y, dy\} \{ y, dy, d2y\} 
\kappa = 20 \kappa = 10 \kappa = 20 \kappa = 40 \kappa = 10 \kappa = 20 \kappa = 40

Si2 5.0\times 10 - 4 1.4\times 10 - 3 9.4\times 10 - 4 6.1\times 10 - 4 7.7\times 10 - 4 1.2\times 10 - 4 2.5\times 10 - 5

nos3 3.4\times 10 - 3 1.4\times 10 - 3 5.4\times 10 - 4 2.7\times 10 - 4 4.8\times 10 - 3 3.6\times 10 - 4 9.9\times 10 - 5

FEmesh 1.7\times 10 - 3 2.1\times 10 - 3 1.4\times 10 - 3 8.9\times 10 - 4 9.1\times 10 - 4 2.4\times 10 - 4 1.1\times 10 - 4

VCNT 4000 4.2\times 10 - 3 3.6\times 10 - 3 2.6\times 10 - 3 9.0\times 10 - 4 6.7\times 10 - 3 9.4\times 10 - 4 2.7\times 10 - 4

\{ K,M\} uu 7.3\times 10 - 3 1.4\times 10 - 2 9.6\times 10 - 3 7.1\times 10 - 3 2.6\times 10 - 3 4.8\times 10 - 4 1.5\times 10 - 4

fv1 3.4\times 10 - 3 1.4\times 10 - 2 7.4\times 10 - 4 3.0\times 10 - 4 6.7\times 10 - 3 4.1\times 10 - 4 3.1\times 10 - 5

FDmesh 1.9\times 10 - 3 1.9\times 10 - 3 1.7\times 10 - 3 9.4\times 10 - 4 2.4\times 10 - 3 9.1\times 10 - 3 2.4\times 10 - 4

qa8f\{ k,m\} 4.7\times 10 - 3 9.0\times 10 - 3 5.5\times 10 - 3 4.2\times 10 - 3 6.1\times 10 - 3 2.2\times 10 - 3 9.5\times 10 - 4

250\times 250 finite difference discretization of the Dirichlet eigenvalue problem discussed548

in the previous section. With the exception of the matrix pencils FEmesh, Kuu/Muu,549

and qa8fk/qa8fm, all other pencils are of standard form.550

Table 5.3 lists the maximum relative error in the approximation of the nev = 50554

algebraically smallest eigenvalues returned by Algorithm 4.1 for all pencils listed in555

Table 5.2. Naturally, increasing \kappa enhances overall accuracy, and this enhancement556

becomes greater as the interface projection subspace also improves. Note though that557

the entries associated with the choices \{ y, dy\} and \{ y, dy, d2y\} are now closer to each558

other than what was shown in section 5.1. This is owed to (a) the inexact computation559

of the first and second derivatives and (b) the fact that the asymptotic order of the560

error is the same in both cases since only a first-order approximation of the resolvent561

B - 1
\lambda is considered.562

Finally, we compare the accuracy achieved by Algorithm 4.1 against that of our563

own variant of the AMLS method (termed ``p-way AMLS"" and denoted by \{ \^y\} ). For564

reasons of fairness and easiness in the interpretation of our comparisons, our own565

variant of AMLS is identical to Algorithm 4.1 except that matrix Y is formed as566

Y = [\^y(1), . . . , \^y(3nev)] where \^y(i) \in \BbbR s denotes the eigenvector associated with the ith567

algebraically smallest eigenvalue of the pencil (S(\alpha ), - S\prime (\alpha )). Our variant of AMLS568

is more accurate (but slower) than standard AMLS described in [7, 10].569

Figure 5.3 plots the relative error in the approximation of the nev = 50 algebrai-582

cally smallest eigenvalues returned by Algorithm 4.1 and p-way AMLS when applied583

on a subset of the pencils listed in Table 5.2. In summary, p-way AMLS is more accu-584

rate than the \{ y\} variant of Algorithm 4.1 but not as good as the variants \{ y, dy\} and585

\{ y, dy, d2y\} , especially for those eigenvalues located closer to \alpha . This performance586

gap increases favorably for Algorithm 4.1 as the projection subspace associated with587

interior variables improves.588

5.3. Comparisons against shift-and-invert Lanczos. This section presents589

wall-clock time comparisons between Algorithm 4.1 (variant \{ y, dy, d2y\} ) and implic-590

itly restarted shift-and-invert Lanczos with full orthogonalization applied directly to591

the pencil (A,M). We will refer to the latter as IRSIL. The maximum dimension592

of the Krylov subspace was set to 2nev. As our test matrix we choose a five-point593

506\times 296 finite difference discretization of the Dirichlet eigenvalue problem.594

Figure 5.4 plots sequential wall-clock times of the individual steps of IRSIL and595

Algorithm 4.1 when exploiting both schemes to approximate the nev algebraically596

smallest eigenvalues of the discretized Laplacian (left subfigure). In total, IRSIL re-597

quired 2.5, 6.3, 14.2, and 17.0 seconds to approximate the nev = 50, 100, 150, and598
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Fig. 5.3. Relative error of the approximation of the nev = 50 algebraically smallest eigenvalues
returned by Algorithm 4.1 and p-way AMLS (\{ \^y\} ). We also plot the curve (\lambda  - \alpha )4 adjusted so that
its first entry is equal to that of the curve \{ y, dy, d2y\} .
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Fig. 5.4. Sequential wall-clock times of IRSIL (applied to the pencil (A  - \alpha M,M)) and Al-
gorithm 4.1 (variant \{ y, dy, d2y\} ) for various values of nev. For IRSIL, we report the amount of
time spent on applying (A  - \alpha M) - 1 (solid) and orthogonalization (dashed) separately (\square \square \square ). For
Algorithm 4.1 we report the amount of time spent on (a) computing eigenvectors y1(\alpha ), . . . , ynev (\alpha )
(o), (b) approximating the two leading eigenvector derivatives by pseudoblock MINRES (\bigtriangleup ), and
(c) executing Algorithm 4.3 with \kappa = 40 (☆). Steps (a) and (b) form Algorithm 4.2. Notice that for
step (a) we report the amount of time spent on applying the operator (in this case S(\alpha ) - 1) (solid)
separately from that spent on orthogonalization (dashed). Left: fix p = 8 and vary nev. Right: fix
nev = 200 and vary p.

573

574

575

576

577

578

579

580

581



DOMAIN DECOMPOSITION EIGENVALUE SOLVER C19

nev = 200, algebraically smallest eigenvalues and associated eigenvectors up to a resid-599

ual norm 1.0\times 10 - 8. On the other hand, Algorithm 4.1 with the default choice p = 8600

required 4.9, 6.7, 8.7, and 10.5 seconds, respectively. As nev increases, IRSIL becomes601

increasingly slower than Algorithm 4.1 due to its increasing orthogonalization cost.602

For example, when nev = 200, IRSIL spent about 10 seconds in orthogonalization,603

while Algorithm 4.1 only required about a quarter of a second. The maximum ei-604

genvalue error returned by Algorithm 4.1 for any value of nev tested was O(10 - 4).605

Figure 5.4 also plots the sequential execution timing of Algorithm 4.1 as p varies and606

nev = 200 is fixed (right subfigure). Increasing the value of p leads to a greater number607

of interface variables (and thus increased orthogonalization costs), while solving linear608

systems with matrix S(\alpha ) also becomes more expensive. On the other hand, larger609

values of p generally decrease the amount of time spent in Algorithm 4.3. Note that610

for p = 64 the maximum error returned by Algorithm 4.1 was of the order O(10 - 3).611

Table 5.4 lists the total number of iterations required by implicitly restarted612

Lanczos to (a) compute the sought eigenvectors of matrix S(\alpha ) and (b) solve the613

original eigenvalue problem (i.e., compute the nev sought eigenpairs of (A,M)). For614

Algorithm 4.1 we considered setting p = 4, 16, and p = 32, respectively. In summary,615

we observe two patterns. First, as p increases so does the number of iterations required616

by Lanczos. In particular, increasing the size of the Schur complement matrix typically617

leads to a denser spectrum in matrix S(\alpha ) since the eigenvalues of the latter interlace618

those of (A  - \alpha M,M). This can be verified in Figure 5.5, where we plot the 250619

algebraically smallest eigenvalues of matrices FDmesh 506\times 296 and S(\alpha \equiv 0) as620

p = 4, 16, and p = 32, respectively. Second, working with the Schur complement621

matrix becomes the only practical approach if shift-and-invert is not possible, since622

applying implicitly restarted Lanczos to (A,M) can lead to very slow convergence623

and thus high orthogonalization costs.624

A preliminary distributed memory implementation of Algorithm 4.1 was built625

on top of the PETSc library [5].8 Message passing between different processes was626

achieved by means of the Message Passing Interface (MPI), a standard application627

programming interface for message passing applications [14]. We considered only628

one thread per MPI process, and the number of MPI processes will be equal to the629

number of subdomains p. To allow for a fair comparison we implemented our own ver-630

sion of IRSIL instead of that in the PETSc-based, state-of-the-art eigenvalue package631

632

Table 5.4633

Total number of iterations performed by implicitly restarted Lanczos to compute the sought
eigenvectors of (a) matrix S(\alpha ) and (b) the original eigenvalue problem. Flag \tts \tta (\tts \ttm ) indicates the
absence (presence) of shift-and-invert acceleration. An \bfF flag indicates that not all eigenvectors
were computed after 20 restarts, where the maximum Krylov subspace dimension was set equal to
2nev.

634

635

636

637

638

nev = 100 nev = 200

Alg. 4.1: p = 4 p = 16 p = 32 (A, I) Alg. 4.1: p = 4 p = 16 p = 32 (A, I)

``\tts \tta "" 605 1,027 1,289 \bfF 775 1,440 1,723 \bfF 
``\tts \ttm "" 304 310 315 317 400 440 472 553

8Our code builds on top of the implementation featured in [24] and was compiled using real
arithmetic. The source files were compiled with the Intel MPI compiler \ttm \ttp \tti \tti \ttc \ttp \ttc , using the -O3
optimization level. The linear system solutions with the distributed matrices A  - \alpha M and S(\alpha )
were computed by the Multifrontal Massively Parallel Sparse Direct Solver [2] and those with the
block-diagonal matrix B\alpha by MKL PARDISO [1].
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Fig. 5.5. Plot of the 250 algebraically smallest eigenvalues of matrix FDmesh 506\times 296 (left),
and matrix S(\alpha \equiv 0) setting p = 4, 16, 32 (right). On the right subfigure, the top, middle, and
bottom curves indicate the choice p = 4, 16, and p = 32, respectively. The solid part of each curve
indicates the algebraically smallest nev = 200 eigenvalues of each matrix.
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Module p = 4 p = 16 p = 64

IRSIL (sol.) 0.60 0.28 0.16
IRSIL (orth.) 0.89 0.73 0.40
IRSIL 0.76 0.41 0.15
Alg. 4.3 1.25 1.52 1.71
Alg. 4.2 0.55 0.34 0.14
Alg. 4.1 1.18 1.40 0.66

Fig. 5.6. Left: Distributed memory wall-clock times (strong scaling). Right: Ratio of true
speedup to theoretical speedup (efficiency) computed as Ts/(pTp), where Tp denotes the wall-clock
time using p MPI processes. For IRSIL we set Ts equal to its sequential wall-clock time shown in
Figure 5.4. For Algorithm 4.1 and its individual steps we set Ts = 2T2.

643

644

645

646

SLEPc [17]. Our experiments were performed at the \ttM \tte \tts \tta \ttb \tti cluster of the Minnesota647

Supercomputing Institute (https://www.msi.umn.edu/).648

Figure 5.6 plots the distributed memory wall-clock times of different modules of649

IRSIL and Algorithm 4.1 as nev = 200 and p = 2, 4, 8, 16, 32, and p = 64. The corre-650

sponding efficiency for some of these values of p is listed in the accompanying table.651

Algorithm 4.3 is the most scalable operation of Algorithm 4.1 and in this example652

provides superlinear speedups. As p increases, solving the distributed linear systems653

in Lanczos becomes the least scalable operation for both algorithms. Nonetheless, in-654

creasing p can still lead to a higher efficiency in Algorithm 4.1 up to a point where the655

amount of time spent in Algorithm 4.3 is small and thus the efficiency of the former656

is mainly determined by the efficiency of performing computations with the Schur657

complement matrix. This is the reason the efficiency of Algorithm 4.1 drops sharply658

from p = 16 to p = 64. This implies that increasing parallelism through increasing p659

is nonoptimal, and additional parallel resources should be exploited in a hierarchical660

fashion. In total, Algorithm 4.1 is about 3\times (5\times ) faster than IRSIL when 16 (64)661

MPI processes are used.662
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Fig. 5.7. Weak scaling efficiency (computed as T2/Tp where Tp denotes the wall-clock time of
Algorithm 4.1 for p = 2, 4, 8, 16, 32, 64) of different modules of Algorithm 4.1 as p varies. The mesh
size of the discretized Laplacian scaled as

\surd 
p50\times \surd 

p50. Left: nev = 100. Right: nev = 200.

668

669

670

Finally, Figure 5.7 plots the weak scaling efficiency of different modules of Algo-663

rithm 4.1 for a Laplacian discretized on a square mesh with mesh size
\surd 
p50\times \surd 

p50.664

The number of sought eigenpairs was set to nev = 100, and nev = 200. Again we ob-665

serve that the least scalable parts are those enabling the solution of distributed linear666

systems. Moreover, larger values of nev are more challenging in terms of scalability.667

6. Summary and future work. This paper presented a domain decompo-671

sition technique for the computation of a few eigenpairs of symmetric generalized672

eigenvalue problems. The proposed technique is based on Rayleigh--Ritz projections673

onto subspaces formed by decoupling the original eigenvalue problem into two dis-674

tinct subproblems, each one associated with the interface and interior variables of the675

domain, respectively. The part of the subspace associated with the interface vari-676

ables of the global domain is formed by the eigenvectors and associated derivatives677

of a zeroth-order approximation of the nonlinear interface matrix-valued operator.678

On the other hand, the part of the subspace associated with the interior variables679

is formed in parallel among the different subdomains by exploiting local eigenmodes680

and approximations of resolvent expansions.681

Future work includes a study on the effects which the number of interface variables682

has in the accuracy of the technique proposed in this paper. A parallel implementation683

with additional levels of parallelism (both distributed and shared memory), possibly684

combined with harmonic Rayleigh--Ritz projections, is in our short-term plans.685

Appendix A. Analytical formulas. In this section we present analytical686

formulas for the computation of the first two derivatives of the eigenpairs (\mu i(\sigma ), yi(\sigma ))687

of the matrix S(\sigma ), \sigma \in \BbbR .688

Proposition A.1. The first and second derivatives of the matrix S(\sigma ), \sigma \in \BbbR ,689

are given by690

S\prime (\sigma ) =
dS(\sigma )

d\sigma 
=  - MC  - ET\sigma B

 - 1
\sigma MBB

 - 1
\sigma E\sigma + ET\sigma B

 - 1
\sigma ME +MT

EB
 - 1
\sigma E\sigma 691

692

and693
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S\prime \prime (\sigma ) =
d2S(\sigma )

d\sigma 2
= 2

\bigl( 
ET\sigma B

 - 1
\sigma MBB

 - 1
\sigma MBB

 - 1
\sigma E\sigma +MT

EB
 - 1
\sigma ME

\bigr) 

 - 2
\bigl( 
MT
EB

 - 1
\sigma MBB

 - 1
\sigma E\sigma + ET\sigma B

 - 1
\sigma MBB

 - 1
\sigma ME

\bigr) 
,

694

695

respectively. The first and second derivatives of each eigenvalue curve \mu i(\sigma ) are given696

by697

\mu \prime 
i(\sigma ) =

d\mu i(\sigma )

d\sigma 
=
yTi (\sigma )S

\prime (\sigma )yi(\sigma )

yTi (\sigma )yi(\sigma )
698

699

and700

\mu \prime \prime 
i (\sigma ) =

d2\mu i(\sigma )

d\sigma 2
=
yTi (\sigma )S

\prime \prime (\sigma )yi(\sigma ) + 2yTi (\sigma )S
\prime (\sigma )y\prime i(\sigma )

yTi (\sigma )yi(\sigma )
,701

702

respectively. Finally, the first and second derivatives of each eigenvector yi(\sigma ) satisfy703

the equations704

(S(\sigma ) - \mu i(\sigma )I) y
\prime 
i(\sigma ) = (\mu \prime 

i(\sigma )I  - S\prime (\sigma )) yi(\sigma )(A.1)705
706

and707

(S(\sigma ) - \mu i(\sigma )I) y
\prime \prime 
i (\sigma ) =

\Bigl[ \bigl( 
\mu \prime \prime 
i (\sigma )I  - S\prime \prime (\sigma )

\bigr) 
yi(\sigma ) + 2

\bigl( 
\mu \prime 
i(\sigma )I  - S\prime (\sigma )

\bigr) 
y\prime 
i(\sigma )

\Bigr] 
,(A.2)708

709

respectively, where y\prime i(\sigma ) = (dyi(\zeta )d\zeta )\zeta =\sigma and y\prime \prime i (\sigma ) = (d
2yi(\zeta )
d\zeta 2 )\zeta =\sigma .710

Differentiating the normalization condition yTi (\sigma )yi(\sigma ) = 1 gives yTi (\sigma )y
\prime 
i(\sigma ) = 0,711

and thus the leading derivative of the eigenvector yi(\sigma ) can be computed by solv-712

ing the linear system in (A.1). On the other hand, solving the linear system in713

(A.2) will only provide the second derivative up to the direction yi(\sigma ) (note that714

yTi (\sigma )y
\prime \prime 
i (\sigma ) =  - \| y\prime i(\sigma )\| 22). Nonetheless, the latter eigenvector direction already exists715

in the subspace span (Y ) (Y is defined in Algorithm 4.2). Throughout the rest of716

this paper, when we refer to ``y\prime \prime i (\sigma )"" it should be understood that we actually refer717

to the solution of the linear system in (A.2).718

Remark 2. When M is equal to the identity matrix, the first and second deriva-719

tives of the matrix-valued function S(\zeta ) evaluated at \sigma simplify to the block-diagonal720

matrices S\prime (\sigma ) =  - I  - ET\sigma B
 - 2
\sigma E\sigma , and S

\prime \prime (\sigma ) =  - ET\sigma B - 3
\sigma E\sigma .721

Appendix B. Computation of eigenvector derivatives. The computation722

of the first and second derivatives of each eigenvector yi(\sigma ), i = 1, 2, . . . , s, requires723

the application of an iterative solver, e.g., the minimum residual (MINRES) Krylov724

subspace method [8, 32], to the solution of the singular linear system725

(S(\sigma ) - \mu i(\sigma )I)x = b(i),(B.1)726
727

where b(i) \in \BbbR s is defined as728

b(i) :=

\Biggl\{ 
(\mu \prime 
i(\sigma )I  - S\prime (\sigma )) yi(\sigma ) (to compute y\prime i(\sigma )),

(\mu \prime \prime 
i (\sigma )I  - S\prime \prime (\sigma )) yi(\sigma ) + 2 (\mu \prime 

i(\sigma )I  - S\prime (\sigma )) y\prime i(\sigma ) (to compute y\prime \prime i (\sigma )).
729

730

The eigenvalues of the matrix S(\sigma ) - \mu i(\sigma )I are equal to \{ \mu k(\sigma ) - \mu i(\sigma )\} k=1,2,...,s.731

Let the nev computed eigenvalues of S(\sigma ) be indexed as \mu \psi 1
(\sigma ), . . . , \mu \psi nev (\sigma ),732

where \psi 1 \leq i \leq \psi nev . We can enhance the convergence rate of MINRES applied to733
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(B.1) by explicitly removing the components along the directions associated with the734

computed eigenvectors of matrix S(\sigma ). In particular, the solution of the linear system735

with each matrix S(\sigma )  - \mu i(\sigma )I is split into two phases. During the first phase we736

apply MINRES to the deflated linear equation737

\scrP (S(\sigma ) - \mu i(\sigma )I)\=x = \scrP b(i),(B.2)738
739

where \scrP = I  - W (WTW ) - 1WT , C = [y\psi 1(\sigma ), . . . , y\psi i - 1(\sigma ), y\psi i+1(\sigma ), . . . , y\psi nev (\sigma )],740

andW = (S(\sigma ) - \mu i(\sigma )I)C. As soon as the deflated linear equation in (B.2) is solved,741

the solution of the original linear system is formed as742

x = \scrQ \=x+ (I  - \scrQ )b(i),(B.3)743
744

where \scrQ = I - C(WTW ) - 1WT . Details on deflated MINRES can be found in [11, 12].745

In case a symmetric factorization of S(\sigma ) is already at hand, this can be further746

exploited to compute the solution of the linear system (S(\sigma )  - \mu i(\sigma )I)x = b(i) by747

solving the linear system9
748

S(\sigma ) - 1(S(\sigma ) - \mu i(\sigma )I)x = S(\sigma ) - 1b(i).749
750

The matrix S(\sigma ) - 1(S(\sigma )  - \mu i(\sigma )I) is symmetric, and its eigenvalues are equal to751

\{ \mu k(\sigma ) - \mu i(\sigma )\mu k(\sigma )
\} k=1,...,s. This preconditioned linear system can also be combined with752

deflation. In the latter case MINRES is applied to the equation \scrP S(\sigma ) - 1(S(\sigma )  - 753

\mu i(\sigma )I)x = \scrP S(\sigma ) - 1b(i) and the original linear system solution is obtained exactly as754

in (B.3).755

Corollary B.1. Let the eigenvalues of matrix S(\sigma ) be ordered as756

\mu 1(\sigma ) \leq \cdot \cdot \cdot \leq \mu \psi 1 - 1(\sigma ) \leq \mu \psi 1(\sigma ) \leq \cdot \cdot \cdot \leq \mu \psi nev (\sigma ) \leq \mu \psi nev+1(\sigma ) \leq \cdot \cdot \cdot \leq \mu s(\sigma ).757
758

Then, the effective condition number of the matrix \scrP (S(\sigma ) - \mu i(\sigma )I) is equal to759

\kappa MR,i =
max\{ | \mu 1(\sigma ) - \mu i(\sigma )| , | \mu s(\sigma ) - \mu i(\sigma )| \} 

min\{ | \mu \psi 1 - 1(\sigma ) - \mu i(\sigma )| , | \mu \psi nev+1(\sigma ) - \mu i(\sigma )| \} 
, i = \psi 1, . . . , \psi nev .760

761

Similarly, the effective condition number of the preconditioned matrix \scrP S(\sigma ) - 1(S(\sigma ) - 762

\mu i(\sigma )I) is equal to763

\kappa PMR,i =
max

\Bigl\{ \bigm| \bigm| \bigm| 1 - \mu i(\sigma )
\mu 1(\sigma )

\bigm| \bigm| \bigm| ,
\bigm| \bigm| \bigm| 1 - \mu i(\sigma )

\mu s(\sigma )

\bigm| \bigm| \bigm| 
\Bigr\} 

min
\Bigl\{ \bigm| \bigm| \bigm| 1 - \mu i(\sigma )

\mu \psi 1 - 1(\sigma )

\bigm| \bigm| \bigm| ,
\bigm| \bigm| \bigm| 1 - \mu i(\sigma )

\mu \psi nev+1(\sigma )

\bigm| \bigm| \bigm| 
\Bigr\} .764

765

If we do not deflate the nev computed eigenvectors of the matrix S(\sigma ), the de-766

nominators in Corollary B.1 become min\{ | \mu i - 1(\sigma )  - \mu i(\sigma )| , | \mu i+1(\sigma )  - \mu i(\sigma )| \} and767

min\{ | 1  - \mu i(\sigma )
\mu i - 1(\sigma )

| , | 1  - \mu i(\sigma )
\mu i+1(\sigma )

| \} , respectively. When 0 \leq \sigma \leq \lambda \bfm \bfi \bfn (A,M), deflated768

MINRES can be replaced by a deflated variant of the conjugate gradient method [18];769

see, for example, [35, 37].770

Figure B.1 plots the number of iterations required by MINRES to compute the774

eigenvector derivatives y\prime i(\sigma ), i = 1, . . . , nev, up to a tolerance equal to 1.0 \times 10 - 8,775

for a 253 \times 148 finite difference discretization of the Dirichlet eigenvalue problem.776

9Recall that MINRES requires an SPD preconditioner. If S(\sigma ) is not SPD, then alternative
Kyrlov subspace iterative linear system solvers should be considered.



C24 VASSILIS KALANTZIS

20 40 60 80 100 120 140
100

101

102

Fig. B.1. Number of (deflated) MINRES iterations with/without preconditioning to compute
the eigenvector derivatives y\prime i(\sigma ), i = 1, . . . , nev. Legend: ``-"" (deflation without preconditioning),
``-"" (preconditioning without deflation), and ``-."" (preconditioning with deflation).

771

772

773

Combining preconditioning by matrix S(\sigma ) while deflating the invariant subspace777

associated with the nev computed eigenvectors of the matrix S(\sigma ) proved to be the778

fastest scheme in terms of iterations required to achieve convergence. Moreover, linear779

systems corresponding to eigenvector derivatives associated with eigenvalues that lie780

closer to \sigma converge faster due to a smaller effective condition number.781
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