
Reliable composition of domain-specific language features

Ted Kaminski
Computer Science and Engineering

University of Minnesota
Minneapolis, Minnesota

tedinski@cs.umn.edu

Eric Van Wyk
Computer Science and Engineering

University of Minnesota
Minneapolis, Minnesota
evw@cs.umn.edu

1. INTRODUCTION
What motivates us to reach for domain-specific languages

as a solution is often the need for domain-specific language
features, rather than a true need for an independent lan-
guage in its own right. General-purpose languages offer only
the most broadly applicable abstractions, and do not venture
deep into application domains. The furthest they go are lin-
guistic features for simple interfaces: foreach, do/flatmap,
LINQ, async/await. Designers avoid more specialized fea-
tures because choices are permanent, designs are hard, and
different domains demand different trade-offs. They cannot
hope to please everyone.

But a separate language (“external DSL”) like YACC isn’t
the only option for introducing new domain-specific lan-
guage features. Alternative approaches include:

• “Internal” DSLs (e.g. parser combinators), which ap-
proximate a DSL, but are implemented merely as a
library within a sufficiently flexible host language.

• String embedding (frequently SQL, regex), where the
DSL is inside a string within another language, per-
haps with tooling that can recognize and analyze it.

• Macro systems, like Racket [8]. These can be extraor-
dinarily flexible and powerful, but come with serious
drawbacks we’ll discuss shortly.

• A variety of other systems that have not yet achieved
the same level of adoption in practice, notably includ-
ing approaches like language extension (JastAdd [1]),
techniques like projectional editing (mbeddr [12]), or
type-based syntactic disambiguation (Wyvern [6]).

In this talk, we’ll discuss our approach to introducing
domain-specific language features via language extensions.
Both language extensions and macros suffer from a simi-
lar problem: the inability to reliably compose together
multiple independent extensions. We believe reliable com-
position is the key feature that can make language extension
practical. Internal DSLs suffer many drawbacks, but to use
two such DSLs in one program, one need only import both.
This task is considerably more complicated for language ex-
tension, and prone to failures for macro systems. (One may
be dismayed to discover that with Typed Racket [8] you are
unable to “extend the language of types” with a macro.)

A practical system of language extension would:

• Allow new syntax. Just the composition of syntax
from two extensions may cause conflicts.

• Allow new analysis. Combined with new syntax, we
go beyond just the expression problem to the indepen-
dent extensibility problem [13].

• Require no glue code. Bringing two extensions to-

gether should be as easy as it is for internal DSLs, and
should not require the skills of a compiler engineer.

• Permit no conflict and no interference between two
extensions. Everything should just work.

2. THE STATE OF OUR ART
We have a candidate solution achieving all of these aims,

and more besides: we can seamlessly re-use host language
syntax, and we can give extension language features the
same user experience of native features, without the feeling
of being tacked-on.

2.1 Syntax and parsing
Copper [11] is a context-aware LR(1) parser and scanner

generator. By considering scanning and parsing holistically,
rather than as separate phases, the scanner can use parsing
context to only match tokens valid in that parsing context.
This dramatically reduces the possibility of conflicts between
extensions, as separate contexts can no longer cause any
lexical conflict with each other.

Copper further implements a modular determinism analy-
sis [7] that imposes modest restrictions on extensions, and as
a result guarantees that the extensions will compose without
serious conflict. In simplified form:

• A bridge production transitioning from host to exten-
sion must begin with a marking token, which clearly
identifies the extension.

• Any re-use of host language nonterminals in extension
syntax must not add new terminals to the follow set
of the host language nonterminal.

As a result of these restrictions, the only possibility of
conflict is overlapping marking terminals. But this turns
out to be the same as for internal DSLs: you might have to
rename or qualify imported names. So Copper supports the
same mechanism.

2.2 Semantics and analysis
For analysis, we use a system based on attribute gram-

mars [5] with forwarding [10]. Forwarding (like context-
awareness) significantly reduces the problems associated with
composing extensions. When one extension introduces a
new attribute, and another extension introduces a new pro-
duction, there is a problem at the intersection: how to
compute a value for that attribute for that production?
Forwarding allows productions to compute a semantically
equivalent tree in the host language, similarly to macros,
where that attribute can be evaluated instead.

Silver [9] is our attribute grammar-based programming



language that comes with a modular well-definedness analy-
sis [4] that likewise places modest restrictions on extensions,
but guarantees that composing multiple extensions will re-
sult in a well-defined attribute grammar. These restrictions:

• Ensure that bridge productions all forward.
• Suitably freeze the flow types of all synthesized at-

tributes (the set of inherited attribute they may use
to compute their values).

While the story for Copper can stop here, for semantics we
have further concerns about correctness. One extension may
access an attribute and get a totally unexpected value from
an equation from another extension, causing misbehavior.

And so we go further here and give an approach to achiev-
ing non-interference of language extensions through coher-
ence [3]. Skipping most of the theory here, this again im-
poses restrictions on extensions, but ensures all will be well-
behaved when composed. It turns out there’s a very reason-
able and effective way to enforce this via simple property
testing. Each value computed for an attribute can be re-
quired to obey an equality such as:

t.typerep.host = t.host.typerep

This approach appears to be sufficient to catch non-malicious
forms of non-compliance with the coherence restrictions.

2.3 Application
Using the above tools, we have implemented a C front-end

compiler that supports reliably composable language exten-
sion, called AbleC [2]. AbleC supports C11 and many GCC
extensions, and presently works by parsing, analyzing, and
translating extended-language programs to plain C, before
passing that off to an ordinary compiler (such as GCC).

cilk int count_matches(Tree *t) {

match(t) {

Fork(t1, t2, str) -> {

int res_t1, res_t2, res_str;

spawn res_t1 = count_matches(t1);

spawn res_t2 = count_matches(t2);

res_str = (str =~ /[1-9]+/) ? 1 : 0;

sync;

cilk return res_t1 + res_t2 + res_str;

}

Leaf(/[1-9]+/) -> { cilk return 1; }

_ -> { cilk return 0; }

};

}

Figure 1: Cilk, pattern matching, and regex inde-
pendent extensions to AbleC used together.

3. THE ROAD AHEAD
Our approach has yielded what we believe to be a candi-

date, practical approach to introducing domain-specific lan-
guage features via language extension. But there remains a
lot of both research and development work left to do. For
one thing, while we believe Silver & Coppper are a practical
solution for implementing an extensible compiler, there are
other important tools in language ecosystems.

For tooling like debuggers and documentation gener-
ators, we believe our approach can be made to adapt well
with future development. The task here is simply one of
ensuring that users are not confronted with generated code

they did not write. This can be accomplished by designing
the host language such that this information can be attached
as desired, instead of computed from the (for extensions,
machine-generated) AST.

A more vexing problem is IDE support. Some IDE fea-
tures can be supported in a similar way as the above kinds
of tools: the host language defines an API that extensions
can use to get the correct behavior. It would be annoying
that the host language needs polluting with such concerns,
but acceptable. The trouble comes with features like refac-
torings. Refactorings likewise want to analyze the code
as-written, not the code that gets generated. We’d like to
be able to introduce new refactorings like we introduce new
extensions, but it’s not possible for the host language to sup-
port all possible refactorings in advance. It’s not yet clear
where to go from here; further research is required.

In this talk, we’ll introduce an example of an extension
to AbleC, go through how the restrictions on extensions in-
fluence its design, and discuss the maturity of our platform
and future directions.

4. REFERENCES
[1] T. Ekman and G. Hedin. The JastAdd extensible Java

compiler. In OOPSLA 2007, pages 1–18. ACM, 2007.

[2] T. Kaminski, L. Kramer, T. Carlson, and
E. Van Wyk. Reliable and automatic composition of
language extensions to C. To appear OOPSLA 2017.

[3] T. Kaminski and E. Van Wyk. Ensuring
non-interference of composable language extensions.
To appear SLE 2017.

[4] T. Kaminski and E. Van Wyk. Modular
well-definedness analysis for attribute grammars. In
SLE 2012, v7745 of LNCS, p352–371. Springer, 2012.

[5] D. E. Knuth. Semantics of context-free languages.
Mathematical Systems Theory, 2(2):127–145, 1968.
Corrections in 5(1971) pp. 95–96.

[6] C. Omar, D. Kurilova, L. Nistor, B. Chung,
A. Potanin, and J. Aldrich. Safely composable
type-specific languages. In ECOOP 2014, volume 8586
of LNCS, pages 105–130. Springer, 2014.

[7] A. Schwerdfeger and E. Van Wyk. Verifiable
composition of deterministic grammars. In PLDI
2009, pages 199–210. ACM, 2009.

[8] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper,
M. Flatt, and M. Felleisen. Languages as libraries. In
PLDI 2011, pages 132–141. ACM, 2011.

[9] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan.
Silver: an extensible attribute grammar system. SCP,
75(1–2):39–54, January 2010.

[10] E. Van Wyk, O. de Moor, K. Backhouse, and
P. Kwiatkowski. Forwarding in attribute grammars for
modular language design. In CC 2002, volume 2304 of
LNCS, pages 128–142. Springer-Verlag, 2002.

[11] E. Van Wyk and A. Schwerdfeger. Context-aware
scanning for parsing extensible languages. In GPCE
2007, pages 63–72. ACM, 2007.

[12] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb.
Mbeddr: An extensible C-based programming
language and IDE for embedded systems. In SPLASH
Wavefront 2012, pages 121–140, ACM, 2012.

[13] M. Zenger and M. Odersky. Independently extensible
solutions to the expression problem. In FOOL 2005.


