
Creating and using domain-specific language features∗

Position Paper

Ted Kaminski
Department of Computer Science

and Engineering
University of Minnesota
Minneapolis, Minnesota

tedinski@cs.umn.edu

Eric Van Wyk
Department of Computer Science

and Engineering
University of Minnesota
Minneapolis, Minnesota
evw@cs.umn.edu

ABSTRACT
The value that domain-specific languages provide to their
users is the domain-specific language features they contain.
These features provide notations from the domain of inter-
est, as well as domain-specific analysis and optimizations.
But domain-specific languages are sometimes a poor means
of delivering these valuable features to their users. A chal-
lenge arises when a problem crosses multiple domains and
whose programming or modeling solution could benefit from
language features from all domains of interest. Using multi-
ple domain-specific languages can become cumbersome, per-
haps outweighing their benefits in the first place.

An alternative approach, advocated by this position pa-
per, is to provide domain-specific language features to pro-
grammers and modelers as composable language extensions
that they can import into their general-purpose program-
ming or modeling language. In our view, there are three re-
quirements for a language extension framework to be widely
usable. First, language extensions should be developed inde-
pendently, by domain-experts, as libraries or domain-specific
languages are now. Second, extensions should be automat-
ically composable so that programmers and modelers can
pick the language extensions they want, and direct tools
to compose them, without the need for writing “glue-code.”
Third, this composition process should not fail to yield a
working compiler (or other tools) for the custom extended
language. Thus, the programmer has some assurance that
the extensions that they pick will work together.

We briefly describe how this vision of extensible language
frameworks is supported by the Silver and Copper meta-
programming tools.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Extensible languages

∗This work is partially supported by NSF Awards No.
0905581 and 1047961.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GlobalDSL ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2043-6 ...$15.00.

1. INTRODUCTION
Domain-specific languages [2] (DSLs) provide language

features tailored to a particular area of interest in the form of
concrete syntax that incorporates notations from the domain
and semantic analysis and optimizations that are typically
not easily achieved in general purpose languages. Challenges
arise when a programming or modeling problem crosses mul-
tiple domains and one chooses to use multiple DSLs. Using
multiple DSL tools, which precipitates the use of multiple
files for programs and models in different languages, is only
manageable on a small scale. As the number of DSLs being
used grows this integration problem becomes more tedious.

Domain-specific languages, even when used individually,
also pose some challenges. Maintenance challenges can re-
sult in useful DSLs such as LN [5], which has optimizations
for computational geometry problems, to be no longer sup-
ported and thus difficult to use. Some DSLs, such the YACC
parser generator, are translated to a general purpose lan-
guage and allow one to write phrases in this language, but
they perform no syntactic or semantic analysis on these em-
bedded phrases; errors are only determined when the gener-
ated code is compiled. A similar problem occurs when DSL
phrases are written as strings in a general-purpose language,
as the JDBC library does for SQL queries. Syntactic and
semantic errors are not determined at compile time.

Programmers and modelers use DSLs because of the fea-
tures that they provide. But a complete, independent lan-
guage is often a poor mechanism for delivering these fea-
tures. Our hypothesis is that the problems described above
can be overcome if the domain-specific features in these lan-
guages are provided to users not as a new language but as
composable language extensions that can be imported into a
general-purpose programming or modeling language. Exten-
sible language frameworks should allow programmers, who
know little about language design and implementation, to
import domain-specific language features into a host gen-
eral purpose programming or (textual) modeling language.

A slightly contrived example of a program using a collec-
tion of language extensions might help to clarify. In Figure 1
is a program written in a version of Java that has been ex-
tended with three domain-specific language extensions. The
first adds concrete syntax and type checking for SQL queries.
The program uses new features to establish a connection, c,
to a database and then uses that connection to import the
schemas of two tables, sites and depots. Next a new fea-
ture is used to write an SQL query that extracts the latitude
and longitude of tourist sites that are classified as historic, as

public class Demo {

void demo () {

connection c = "jdbc:/db/geo.db" ;

import table sites from c ;

/* FLOAT lat, FLOAT lon, VARCHAR category */

/* Latitude, longitude, and category of

tourist sites */

import table depots from c ;

/* FLOAT lat, FLOAT lon, STRING rentalCar */

/* Train depots latitude, longitude, and

availability of a rental car */

ResultSet geomData = using c query {

SELECT sites.lat, sites.lon,

depots.lat, depots.lat,

depots.rentalCar

FROM sites, depots

WHERE sites.category = "Historic" } ;

while (geomData.next()) {

UBRational s_lat = geomData.getFloat(1) ;

UBRational s_lon = geomData.getFloat(2) ;

UBRational d_lat = geomData.getFloat(3) ;

UBRational d_lon = geomData.getFloat(4) ;

Boolean d_rental = geomData.getString(5) ;

Boolean walkableDistance =

sign (... s_lat, s_lon, d_lat, d_lon, 1.5 ...) ;

Boolean driveableDistance =

sign (... s_lat, s_lon, d_lat, d_lon, 75.0 ...) ;

Boolean canVisit = table {

walkableDistance : T * ,

driveableDistance : * T ,

d_rental == "Y" : * T } ;

}

}

}

Figure 1: An example program written in using composable language extensions.

well as train depots and rental car availability at the station.
By using this SQL language extension, the extended com-
piler is able to parse the query to detect syntax errors and
perform semantic analysis to detect type errors. It trans-
lates the query, like all extension constructs, down to plain
Java code, in this case code that uses the JDBC library.

In the second column, the program extracts latitude and
longitude into an unbounded-precision rational number type
introduced by a second extension that incorporates features
from LN [5],a computational geometry DSL. The new sign

construct determines if a value computed over these rational
types is positive. Here an expression, which is elided, deter-
mines if the tourist site is within a circle of radius either 1.5
or 75.0 whose origin is at the depot. This is a common prim-
itive performed over geometric data. The extension restricts
expressions so that it can statically determine the number
of bits needed to represent the unbounded precision value.
This allows many optimizations to be applied; e.g., loops
that operate over these unbounded precision values can be
statically unrolled. These optimizations result in dramatic
speed-ups in computing these sorts of primitives [5].

Finally a extension for writing Boolean-valued expressions
in a tabular form is used to determine if the site can be
visited. This table extension consists of rows of Java ex-
pressions (which might contain other nested language ex-
tensions) followed by an equal number of flags indicating if
the value should be true (T), false (F), or either (*). Here,
the site can be visited if walkableDistance is true or if both
drivableDistance and d_rental == "Y" are true.

To make language extension practical, it must be possible
for programmers or modelers, who are not experts in lan-
guage design and implementation, to simply select the lan-
guage extensions that they want to use, while the language
extension framework takes care of the rest. We believe three
characteristics are required to realize this.

1. To ensure that a rich collection of extensions are avail-
able they must be independently developed by different

parties; one extension writer creating, for example, the
SQL extension above, and another creating the exten-
sion for computational geometry.

2. The programmer or modeler should not need to under-
stand the underlying language implementation tech-
niques and thus the extensions should be automati-
cally composable. Tools carry out the composition of
the host language and extensions without the need to
write any “glue code” to compose them.

3. Furthermore, this composition must always be success-
ful; despite the fact that even though many forms of
declarative specifications such as context free gram-
mars naturally compose, the composition is not always
one from which a compiler or translator for the ex-
tended language can be generated (for example, the
grammar may be ambiguous).

These lead to two challenges: first, composing specifica-
tions for concrete syntax so that a scanner and parser can be
generated, and second, composing specifications of seman-
tic analyses so that error checking and optimization of the
various extension constructs can be performed.

2. COMPOSABLE CONCRETE SYNTAX
Two immediate problems in composing concrete syntax

jump to mind. First, how do we cope with new keywords
introduced by different language extensions? In the previous
example, two extensions introduce table as a keyword and
this must be recognized as a different (terminal) symbol in
different contexts. Second, how can we be sure that the
automatically composed context free grammar, from which
a parser will be generated, is non-ambiguous?

Copper [17] is an integrated parser and context-aware
scanner generator that addresses these, and other, issues.
The declarative specifications used by Copper are familiar
in form, but are interpreted in a slightly different way. A

parser is constructed from the context-free grammars spec-
ified by the host language and language extensions, and
a scanner is generated from regular expressions associated
with each terminal symbol in the grammar.

From these specifications Copper generates an LALR(1)
parser that is slightly modified, in that it provides contex-
tual information to the generated scanner so that it can
differentiate terminal symbols that have overlapping regu-
lar expressions, such as the two terminal symbols for the
keyword table. When a Copper-generated parser calls its
scanner for the next token, it passes the scanner all termi-
nal symbols that are valid in the current state: those whose
entry in the LR-parse table for the current LR-parse state
is either shift, reduce, or accept, but not error. The scanner
will then only return a token for a terminal in this set.

In the fourth line of the example program, after the parser
has shifted the import token, it is in an LR-state in which the
terminal symbol matching table defined in the SQL exten-
sion is valid but the terminal symbol defined in the tabular-
Boolean-expression extension that also matches table is not.
Thus the scanner will return only the appropriate (valid) to-
ken. This ability to use context to distinguish between ter-
minal symbols with overlapping regular expressions is crucial
for parsing composed languages using a deterministic (LR)
parser. We have found that the flexibility provided by a
context-aware scanner can significantly reduce the sense of
brittleness sometimes associated with LR-parsers. Because
terminal symbols do not need to be overloaded for different
uses in different context, a more natural grammar can be
written that more easily fits into the LALR(1) class.

But to address the second problem of grammar ambiguity,
we use a modular analysis that is performed by the individ-
ual language extension developers. It checks that their ex-
tension, when combined with other independently-developed
extensions that also pass this analysis, will form a context
free grammar from which a deterministic LALR(1) parser
can be generated. The guarantees provided by this modular
determinism analysis [10] can be state precisely as follows:

(∀i ∈ [1, n]. conflictFree(CFGH ∪ CFGE
i) ∧

isComposable(CFGH , CFGE
i))

=⇒ conflictFree(CFGH ∪
{

CFGE
1 , . . . ,CFGE

n

}
)

This states that if each individual extension’s context free
grammar (CFGE

i) when combined with the common host
language grammar (CFGH) is free of conflicts in its LR-
parse table (conflictFree(CFGH ∪ CFGE

i)) and satisfies ad-
ditional structural requirements of the grammar and derived
constructs such as follow-sets (isComposable(CFGH , CFGE

i)),
then when any combination of extensions that pass this anal-
ysis are combined with the host language, the composed
grammar is also free of conflicts, and thus non-ambiguous.

This analysis satisfies the second and third requirements
(the second and third enumerated points on the previous
page), but, as one would expect, at the cost of putting some
restrictions on the syntactic extensions that can be made.
One of these restrictions requires an initial keyword “mark-
ing” token at the beginning of the right hand side of any
extension production with a host language production on
the left hand side, for example, the using and table key-
words in the example above.

One might consider using generalized parsing techniques
such as SGLR [13] and GLL [11] instead. These automati-
cally compose and thus satisfy our second requirement. How-

ever, because there is no assurance that the composed gram-
mar is not ambiguous they fail to satisfy our third require-
ment. A parser that returns multiple parse trees, as gener-
alized parsers may do, does not “just work” since the non-
expert programmer must determine which tree is the cor-
rect one. This requires the type of language implementation
knowledge that general programmers do not have. Another
option is projectional editors, such as those in Intentional
Programming [12] and MPS [18]; these alleviate the need
for a textual parser but do require a system-specific editor.

The full details of this analysis, along with a discussion of
related work, can be found in previous papers by Schwerd-
feger and Van Wyk [17, 10]. The second paper argues that
the imposed restrictions are not unreasonable and it also
describes an analysis that ensures there will be no lexical
ambiguities encountered by the scanner.

3. COMPOSABLE SEMANTIC ANALYSIS
Silver [14] is our extensible attribute grammar system

that is used to specify the semantics of the host language
and language extensions. Like context free grammars, at-
tribute grammars (AGs) naturally compose. Extensions can
introduce new non-terminals, productions, attributes, etc.
as well as equations for new attributes for existing host lan-
guage productions. A mechanism also exists to add new
contributions to existing equations so that, for example, an
extension can perform a new semantic analysis and add addi-
tional error messages into an existing list-of-errors attribute
for existing host language productions.

A key feature for composition in Silver is forwarding [15].
During attribute evaluation a production can define a se-
mantically equivalent tree from which it will automatically
get values for attributes that do not have defining equa-
tions. Inherited attributes are automatically copied to the
“forwards-to” tree from the “forwarding” tree. This enables
a solution to a form of the “expression problem”; if one ex-
tension defines new attributes for host language productions
and another adds new productions, the new productions can
forward to a host language tree for values of attributes de-
fined in the other extension. For example, the tabular ex-
pression extension above forwards to a plain Java expression
of nested conjunction (&&) and disjunction (||) expressions.

Even though AGs naturally compose, the composition is
not always complete or well-defined ; that is, the composition
may be missing equations that define the value of certain
attributes introduced in the different extensions. But Silver
has a modular well-definedness analysis [7], similar in form
to the one in Copper, that ensures that the composition
of AGs that pass this analysis, called modComplete, will be
well-defined. This is stated precisely below:

(∀i ∈ [1, n].modComplete(AGH ,AGE
i))

=⇒ complete(AGH ∪ {AGE
1 , ...,AGE

n }).

If a language extension (e.g. AGE
i) does not pass this anal-

ysis then the extension writer has the opportunity to fix the
problem. This analysis performs structural checks on the
grammar determines what inherited attributes are needed
to compute each synthesized attribute and imposes some re-
strictions on these to ensure that the composition of gram-
mars will be well-defined. Our previous paper [7] on this
analysis provides the full details and a more complete dis-
cussion of related work than is possible here.

4. CONCLUSIONS
We have used Silver and Copper to build extensible lan-

guage frameworks for both programming and textual mod-
eling languages. ableJ is our implementation of Java 1.4 in
which some Java 5 features were added as languages exten-
sions. These include the enhanced-for-loop and auto-boxing
and unboxing of primitive types [16]. These techniques also
work for textual modeling languages as demonstrated by the
Silver specifications of Lustre [6], a synchronous language,
and Promela [9], the modeling language for the spin model
checker. Modeling languages often lack linguistic support for
some commonly-used general purpose and less commonly-
used domain-specific concepts; this leaves the engineer to
encode them as idioms, a time-consuming and error-prone
process that can be avoided when appropriate language ex-
tensions are used. Both modular analyses restrict what ex-
tension writers can specify as composable language exten-
sions, but we found the restrictions quite reasonable given
the strong guarantees that they provide; our past work [10,
7] provides the details of these restrictions.

There is much other work in extensible languages using
other implementation techniques. To mention just a few,
there is the SugarJ [4] extensible Java implementation is
based term rewriting and scannerless generalized parsing in
the Spoofax framework [8], the Neverlang[1] system based
on a notion of “roles,” and the extensible JastAdd Java com-
piler [3] based on reference attribute grammars. These ap-
proaches target a slightly different audience that we have,
however. They support the re-use and extension of declara-
tive language specifications but lack the modular analyses in
Silver and Copper that provide strong guarantees that the
automatic composition of specifications will result in a trans-
lator that will “just work.” Consequently, their audience is
primarily those who have some compiler implementation ex-
pertise.

Currently we are using Silver and Copper and their
modular analyses to develop an extensible specification of C
into which we are adding extensions targeting the domains
of data-mining and high performance computing. One chal-
lenge is just in the design and implementation of these ex-
tensions and their included optimizations so that efficient
parallel code can be generated. Another challenge is to de-
sign the host language so that it is as extensible as possible.
Different host language designs (and implementations) can
be more easily extended in different ways. We thus see “ex-
tensibility” as another (host) language design criterion.

5. REFERENCES
[1] W. Cazzola. Domain-specific languages in few steps:

The Neverlang approach. In Proc. of Intl. Conf. on
Software Composition (SC), volume 7306 of LNCS,
pages 162–177. Springer, 2012.

[2] A. v. Deursen, P. Klint, and J. Visser. Domain-specific
languages: An annotated bibliography. ACM
SIGPLAN Notices, 35(6):26–36, June 2000.

[3] T. Ekman and G. Hedin. The JastAdd extensible Java
compiler. In Proc. of OOPSLA, pages 1–18. ACM,
2007.

[4] S. Erdweg, T. Rendel, C. K astner, and K. Ostermann.
SugarJ: Library-based syntactic language extensibility.
In Proc. of OOPSLA. ACM, 2011.

[5] S. Fortune and C. J. van Wyk. Static analysis yields

efficient exact integer arithmetic for computational
geometry. ACM Trans. on Graphics, 15(3):223–248,
1996.

[6] J. Gao, M. Heimdahl, and E. Van Wyk. Flexible and
extensible notations for modeling languages. In
Fundamental Approaches to Software Engineering,
FASE 2007, volume 4422 of LNCS, pages 102–116.
Springer-Verlag, March 2007.

[7] T. Kaminski and E. Van Wyk. Modular
well-definedness analysis for attribute grammars. In
Proc. of Intl. Conf. on Software Language Engineering
(SLE), volume 7745 of LNCS, pages 352–371.
Springer-Verlag, September 2012.

[8] L. C. L. Kats and E. Visser. The Spoofax language
workbench. Rules for declarative specification of
languages and IDEs. In Proc. of OOPSLA, pages
444–463. ACM, 2010.

[9] Y. Mali and E. Van Wyk. Building extensible
specifications and implementations of Promela with
AbleP. In Proc. of Intl. SPIN Workshop on Model
Checking of Software, volume 6823 of LNCS, pages
108–125. Springer-Verlag, July 2011.

[10] A. Schwerdfeger and E. Van Wyk. Verifiable
composition of deterministic grammars. In Proc. of
Conf. on Programming Language Design and
Implementation (PLDI), pages 199–210. ACM, June
2009.

[11] E. Scott and A. Johnstone. GLL parsing. Electronic
Notes in Theoretical Computer Science, 235:177–189,
2010.

[12] C. Simonyi, M. Christerson, and S. Clifford.
Intentional software. SIGPLAN Not., 41(10):451–464,
2006.

[13] M. van den Brand, J. Scheerder, J. Vinju, and
E. Visser. Disambiguation filters for scannerless
generalized LR parsers. In Proc. 11th International
Conf. on Compiler Construction, volume 2304 of
LNCS, pages 143–158, 2002.

[14] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan.
Silver: an extensible attribute grammar system.
Science of Computer Programming, 75(1–2):39–54,
January 2010.

[15] E. Van Wyk, O. de Moor, K. Backhouse, and
P. Kwiatkowski. Forwarding in attribute grammars for
modular language design. In 11th Conf. on Compiler
Construction (CC), volume 2304 of LNCS, pages
128–142. Springer-Verlag, 2002.

[16] E. Van Wyk, L. Krishnan, A. Schwerdfeger, and
D. Bodin. Attribute grammar-based language
extensions for Java. In Proc. of European Conf. on
Object Oriented Prog. (ECOOP), volume 4609 of
LNCS, pages 575–599. Springer-Verlag, 2007.

[17] E. Van Wyk and A. Schwerdfeger. Context-aware
scanning for parsing extensible languages. In Intl.
Conf. on Generative Programming and Component
Engineering, (GPCE), pages 63–72. ACM, 2007.

[18] M. Voelter. Language and IDE development,
modularization and composition with MPS. In
GTTSE 2011, volume 7680 of LNCS, pages 383–430.
Springer, 2011.

