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Example

connection db c with table person ;
class Demo {
  boolean demo ( ) {
    rs = using db c query { SELECT age, zip
                                          FROM person
                                          WHERE state = "NY" }  ;
    res = res && table ( a > 18         : T F
                                    z == 10001 : F * ) ;
    return res ;
  }
}

Motivation

 ⊳ Domain-specific languages (DSLs) provide high-level
     notations for solving problems.
 ⊳ Advantages of DSLs include conciseness, robustness,
     and, in many cases, high-performance.
 ⊳ Our research aims to find ways to let programmers
     add domain-specific language features to mainstream
     languages such as Java and C.

⊳ Java host language
⊳ SQL extension
⊳ Boolean table extension
⊳ Independently developed
    extensions

Challenges:
⊳ Keyword conflicts
⊳ Parsing embedded languages
⊳ Semantic analysis
    e.g. typing SQL
⊳ Optimizing new constructs

Silver

 ⊳ An extensible attribute grammar system.
 ⊳ Used to specify the semantics of host
     languages and language extensions.
 ⊳ Modern attribute grammar features such as
     forwarding and higher-order attributes.
 ⊳ Attribute grammar specifications easily
     compose, making them suitable for use in
     extensible languages.

Van Wyk, Bodin, Gao, Krishnan. Silver: an Extensible
   Attribute Grammar System . LDTA '07
Van Wyk, Krishnan, Schwerdfeger, Bodin. Attribute
  Grammar-based Language Extensions for Java.  ECOOP '07

Copper

 ⊳ Context-aware scanner and parser generator.
 ⊳ Provides verifiable composition of grammars
     and parse tables.
 ⊳ Gracefully handles many scanning problems
     from other languages (C++'s >> in templates)

Schwerdfeger, Van Wyk.  Verifiable Composition of
   Deterministic Grammars . PLDI '09
Van Wyk, Schwerdfeger.  Context-Aware Scanning for
   Parsing Extensible Languages. GPCE '07
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Process

 ⊳ A host language is developed using Copper to specify its
     concrete syntax and Silver to specify its semantics.
     ⊳ The host language developer is an expert in language
         design.
 ⊳ Language extensions are developed independently
     by different parties.  They may add new constructs
     (syntax), semantics, optimizations, and translations to
     the host language.
     ⊳ Extension developer has some knowledge of language
         design.
 ⊳ End-user programmers acquire language extensions that
     apply to their problem domain and use the Silver and
     Copper tools to automatically create their custom
     extended language.
     ⊳ End-user programmers need to have no knowledge of 
         language design. 

Challenges

 ⊳ Automatically composing concrete syntax specifications.
     Solution: context-aware scanning and analysis of
     extension syntax used in Copper.
 ⊳ Automatically composing specifications of sophisticated
     language semantics.  Solution: attribute grammars with
     forwarding as seen in Silver.
 ⊳ Tool support for compilation, debugging, and IDE
     support as seen in Eclipse.

Applications

 ⊳ SQL database queries.
    ⊳ Syntax checking of the SQL at compile time.
    ⊳ Type checking between program and DB schema.
    ⊳ Comparable to LINQ.
 ⊳ Dimension analysis.  Use to ensure that physical
     measurement values are used correctly; e.g. a time
     value is not added to a length value.
 ⊳ Map Reduce.  Provide language support, especially
     optimizations, to functional constructs used in
     imperative languages.
 ⊳ Computational geometry for fast and robust
     computations.
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