
Domain-Specific Languages and
Language Extensions

Minnesota Extensible Language Tools
melt.cs.umn.edu

Develop
host

language

Verify
conflict

free

Host
developer

Distribute

Develop
extension

#1

Run
composition

tests

Develop
extension

#2

Run
composition

tests

Distribute Distribute

Extension
developer

#1

Extension
developer

#2

End
user

Compile Compile Compile
Compiler

IDE

Debugger

Automatically
Compose

Example

connection db c with table person ;
class Demo {
 boolean demo () {
 rs = using db c query { SELECT age, zip
 FROM person
 WHERE state = "NY" } ;
 res = res && table (a > 18 : T F
 z == 10001 : F *) ;
 return res ;
 }
}

Motivation

 ⊳ Domain-specific languages (DSLs) provide high-level
 notations for solving problems.
 ⊳ Advantages of DSLs include conciseness, robustness,
 and, in many cases, high-performance.
 ⊳ Our research aims to find ways to let programmers
 add domain-specific language features to mainstream
 languages such as Java and C.

⊳ Java host language
⊳ SQL extension
⊳ Boolean table extension
⊳ Independently developed
 extensions

Challenges:
⊳ Keyword conflicts
⊳ Parsing embedded languages
⊳ Semantic analysis
 e.g. typing SQL
⊳ Optimizing new constructs

Silver

 ⊳ An extensible attribute grammar system.
 ⊳ Used to specify the semantics of host
 languages and language extensions.
 ⊳ Modern attribute grammar features such as
 forwarding and higher-order attributes.
 ⊳ Attribute grammar specifications easily
 compose, making them suitable for use in
 extensible languages.

Van Wyk, Bodin, Gao, Krishnan. Silver: an Extensible
 Attribute Grammar System . LDTA '07
Van Wyk, Krishnan, Schwerdfeger, Bodin. Attribute
 Grammar-based Language Extensions for Java. ECOOP '07

Copper

 ⊳ Context-aware scanner and parser generator.
 ⊳ Provides verifiable composition of grammars
 and parse tables.
 ⊳ Gracefully handles many scanning problems
 from other languages (C++'s >> in templates)

Schwerdfeger, Van Wyk. Verifiable Composition of
 Deterministic Grammars . PLDI '09
Van Wyk, Schwerdfeger. Context-Aware Scanning for
 Parsing Extensible Languages. GPCE '07

Sponsors

We gratefully acknowledge the support that we
have received from the following organizations:
 ⊳ National Science Foundation:
 ⊳ CAREER: An Extensible Compiler Framework
 for Seamless Modular Language Extensions.
 NSF Grant #0347860.
 ⊳ A Catalytic Infrastructure for the Design,
 Development, and Deployment of Formal
 Modeling Tools. NSF Grant #0429640.
 ⊳ DC: Medium: Collaborative Research: ELLF:
 Extensible Language and Library Frameworks
 for Scalable and Efficient Data-Intensive
 Applications. NSF Grant #0905581.
 ⊳ IBM. Eclipse Innovation Award.
 ⊳ McKnight Foundation.

Process

 ⊳ A host language is developed using Copper to specify its
 concrete syntax and Silver to specify its semantics.
 ⊳ The host language developer is an expert in language
 design.
 ⊳ Language extensions are developed independently
 by different parties. They may add new constructs
 (syntax), semantics, optimizations, and translations to
 the host language.
 ⊳ Extension developer has some knowledge of language
 design.
 ⊳ End-user programmers acquire language extensions that
 apply to their problem domain and use the Silver and
 Copper tools to automatically create their custom
 extended language.
 ⊳ End-user programmers need to have no knowledge of
 language design.

Challenges

 ⊳ Automatically composing concrete syntax specifications.
 Solution: context-aware scanning and analysis of
 extension syntax used in Copper.
 ⊳ Automatically composing specifications of sophisticated
 language semantics. Solution: attribute grammars with
 forwarding as seen in Silver.
 ⊳ Tool support for compilation, debugging, and IDE
 support as seen in Eclipse.

Applications

 ⊳ SQL database queries.
 ⊳ Syntax checking of the SQL at compile time.
 ⊳ Type checking between program and DB schema.
 ⊳ Comparable to LINQ.
 ⊳ Dimension analysis. Use to ensure that physical
 measurement values are used correctly; e.g. a time
 value is not added to a length value.
 ⊳ Map Reduce. Provide language support, especially
 optimizations, to functional constructs used in
 imperative languages.
 ⊳ Computational geometry for fast and robust
 computations.

People

 ⊳ Eric Van Wyk
 ⊳ August Schwerdfeger
 ⊳ Ted Kaminski
 ⊳ Derek Bodin
 ⊳ Lijesh Krishnan

evw@cs.umn.edu
schwerdf@cs.umn.edu
tedinski@cs.umn.edu

bodin@cs.umn.edu
krishnan@cs.umn.edu

