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The language extension model
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The problem
- The composition may be broken!
- Non-expert in compilers can't fix it.

Languages and compilers experts Non-experts

The solution
- Analyze each extension individually
          H ◁ E1

          H ◁ E2

          H ◁ E3

- Analysis must ensure properties about
  the composed language
          H ◁ (E1       E2       E3)

- Extension developers deal with errors
- User has no conflict errors

The full solution consists of:
- Forwarding
Van Wyk. de Moor. Backhouse. Kwiathowski. "Forwarding 
in attribute grammars for modular language design." CC '02

- Copper's modular analysis for syntax
Schwerdfeger. Van Wyk. "Verifiable composition of
deterministic grammars." PLDI '09

- Silver's modular analysis for semantics
Kaminski. Van Wyk. "Modular well-definedness analysis 
for attribute grammars." SLE '12   (also our topic on this poster)

The analysis
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Attribute occurrences cannot be 
separated from both its attribute and its nonterminal

- - -OR- - -

production...
...val.attr = ...

...occurs...
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Attribute equations cannot be separated
from both its occurrence and its production

- - -OR- - -
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Productions must not be separated from
their nonterminals, or the production must forward

- - -OR- - -

Just ensure each non-forwarding production has an 
equation for each synthesized attribute occurrence

fwd

Compute flow types twice:
ftH = flowtypes(H)
ftE = flowtypes(H ◁ E)

Just ensure each access of an attribute, suffient
inherited equations are supplied according to the flow type.

Host occurrences:
ftH(s) = ftE(s)

Host nonterminals:
ftH(fwd) = ftE(fwd)

nt nt

nt nt

Extension occurrences:
ftH(fwd) ⊆ ftE(s)nt nt

- A flow type fnt is a function mapping synthesized
  attributes to a set of their inherited attribute
  dependencies
- Flow types can be computed by an algorithm
  similar to Knuth's algorithm for testing
  non-circularity.

Questions:
1. Can we get grammars to pass this analysis?
2. Can we still extend syntax and semantics given the restrictions?

Tested by getting Silver itself to pass the analysis

Silver's extensions
- Unit testing (syntactic)
- Convenience (syntactic)
- Java translation (semantic)
- "Easy terminals" (both)

Results:  Yes to both!
- Biggest problem was reference
  attributes.  Worked around with
  error equations.
- Analysis identified many bits
  of code that were already in
  need of refactoring.


