Modular well-definedness analysis for attribute grammars

Ted Kaminski Eric Van Wyk University of Minnesota

The language extension model

Languages and compilers experts Non-experts

lll
* L 4

The problem

- The composition may be broken!
- Non-expert in compilers can't fix it.

See our talk on Friday

L/
L
n
u
u

The solution

- Analyze each extension individually

- .

- - H<E
The full solution consists of: "y E1
- Forwarding 2
Van Wyk. de Moor. Backhouse. Kwiathowski. "Forwarding - < E3

in attribute grammars for modular language design." CC '02

- Copper's modular analysis for syntax

Schwerdfeger. Van Wyk. "Verifiable composition of
deterministic grammars." PLDI '09

- Silver's modular analysis for semantics

Kaminski. Van Wyk. "Modular well-definedness analysis
for attribute grammars." SLE '12 (also our topic on this poster)

- Analysis must ensure properties about
the composed language

H < (Ey Wy E, Wy Es)

- Extension developers deal with errors
- User has no conflict errors

Host language
implementation

Independently developed
language extensions

M s S S S IS I DS DS B BN BN B B B D S B B B B B B Ea B B B B B B e e e

Programmer produces
composed language

- O S S S S IS DS B B B B B EEE B B B B B B B B B B B e B B B B B e e e oy

Orphaneh
Occurs /

Attribute occurrences cannot be
separated from both its attribute and its nonterminal

{nonterminal...w { attribute J

...OCCurs. ..)

(...attribute... }

K ...OCCUTrS...

Orphaned
Productions

Just ensure each non-forwarding production has an

e equation for each synthesized attribute occurrence

from both its occurrence and its production

[production... w { oceUrS]

..val.attr = ..)

- --OR---
[production...

(...OCCUrS...
k ..val.attr = ...

Productions must not be separated from
their nonterminals, or the production must forward

nonterminal...
production...

- -OR- - -

[nonterminal... } ﬁDrOdUCtiO”---{ J

... forwards to .

[nonterminal... }

Modular\ \glnherih Effagctive

Effecti

Compute flow types twice:
ft™ = flowtypes(H)
ft= = flowtypes(H < E)

Flow Types/

Host occurrences:
ftﬁt(s) = ftrlmzt(s)

Extension occurrences:
fti(fwd) S ft=(s)

Host nonterminals:
ftr'?t(fwd) = ftEt(fwd)

Qmpletenesy . Completeness -

Just ensure each access of an attribute, suffient

inherited equations are supplied according to the flow type.

Flow Types

production and

production var

L lexeme

. S
-
“sasssmsmmmmmmmnnns®

. errors java env

* S
.
YissssEEEEEEEEEEEEEEEEEEEEEEEsEEEEsEseeeesesmmmmmnnnt®

- A flow type f;; is a function mapping synthesized
attributes to a set of their inherited attribute

dependencies

- Flow types can be computed by an algorithm
similar to Knuth's algorithm for testing
non-circularity.

Evaluation

Questions:
1. Can we get grammars to pass this analysis?
2. Can we still extend syntax and semantics given the restrictions?

Tested by getting Silver itself to pass the analysis

Silver's extensions

- Unit testing (syntactic)

- Convenience (syntactic)

- Java translation (semantic)
- "Easy terminals” (both)

Results: Yes to both!

- Biggest problem was reference
attributes. Worked around with
error equations.

- Analysis identified many bits
of code that were already in
need of refactoring.

