
Modular well-definedness analysis for attribute grammars
Ted Kaminski Eric Van Wyk University of Minnesota

The language extension model

H

E1

H

E2

H

E3

H
H

E1

E2

E3

C

Host language
implementation

Independently developed
language extensions

Programmer produces
composed language

The problem
- The composition may be broken!
- Non-expert in compilers can't fix it.

Languages and compilers experts Non-experts

The solution
- Analyze each extension individually
 H ◁ E1

 H ◁ E2

 H ◁ E3

- Analysis must ensure properties about
 the composed language
 H ◁ (E1 E2 E3)

- Extension developers deal with errors
- User has no conflict errors

The full solution consists of:
- Forwarding
Van Wyk. de Moor. Backhouse. Kwiathowski. "Forwarding
in attribute grammars for modular language design." CC '02

- Copper's modular analysis for syntax
Schwerdfeger. Van Wyk. "Verifiable composition of
deterministic grammars." PLDI '09

- Silver's modular analysis for semantics
Kaminski. Van Wyk. "Modular well-definedness analysis
for attribute grammars." SLE '12 (also our topic on this poster)

The analysis

Orphaned
Productions

Synthesized
Completeness

Effective
Completeness

Effective Inherited
Completeness

Orphaned
Equations

Orphaned
Occurs

Modular
Flow Types

Flow Types

Evaluation

errors java env errors java env errors java env errors java env lexeme

production and production var
e l r e n

errors java env errors java env errors java env errors java env

production or

forwarde l r

errors java env

the stiched flow graph for the production not
e s

errors java env

the flow type for Expr

errors java env

See our talk on Friday

nonterminal...
...occurs...

...attribute...

nonterminal...
...attribute...
...occurs...

Attribute occurrences cannot be
separated from both its attribute and its nonterminal

- - -OR- - -

production...
...val.attr = ...

...occurs...

production...
...occurs...
...val.attr = ...

Attribute equations cannot be separated
from both its occurrence and its production

- - -OR- - -
nonterminal...
production...

nonterminal...
production... {
 ... forwards to ...

Productions must not be separated from
their nonterminals, or the production must forward

- - -OR- - -

Just ensure each non-forwarding production has an
equation for each synthesized attribute occurrence

fwd

Compute flow types twice:
ftH = flowtypes(H)
ftE = flowtypes(H ◁ E)

Just ensure each access of an attribute, suffient
inherited equations are supplied according to the flow type.

Host occurrences:
ftH(s) = ftE(s)

Host nonterminals:
ftH(fwd) = ftE(fwd)

nt nt

nt nt

Extension occurrences:
ftH(fwd) ⊆ ftE(s)nt nt

- A flow type fnt is a function mapping synthesized
 attributes to a set of their inherited attribute
 dependencies
- Flow types can be computed by an algorithm
 similar to Knuth's algorithm for testing
 non-circularity.

Questions:
1. Can we get grammars to pass this analysis?
2. Can we still extend syntax and semantics given the restrictions?

Tested by getting Silver itself to pass the analysis

Silver's extensions
- Unit testing (syntactic)
- Convenience (syntactic)
- Java translation (semantic)
- "Easy terminals" (both)

Results: Yes to both!
- Biggest problem was reference
 attributes. Worked around with
 error equations.
- Analysis identified many bits
 of code that were already in
 need of refactoring.

